plot_utils.py 48.1 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
Chris Smith committed
7
# TODO: All general plotting functions should support data with 1, 2, or 3 spatial dimensions.
Chris Smith's avatar
Chris Smith committed
8

9
from __future__ import division, print_function, absolute_import, unicode_literals
10
11

import inspect
12
from warnings import warn
13
import sys
Chris Smith's avatar
merged    
Chris Smith committed
14
import h5py
15
import matplotlib.pyplot as plt
16
17
import numpy as np
import scipy
18
from scipy.signal import blackman
19
from matplotlib.colors import LinearSegmentedColormap
20
from mpl_toolkits.axes_grid1 import ImageGrid
21

22
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels
23

Somnath, Suhas's avatar
Somnath, Suhas committed
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

Somnath, Suhas's avatar
Somnath, Suhas committed
57

58
59
60
61
62
63
64
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
65
        color map object that can be used in place of plt.cm.viridis
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
87

Chris Smith's avatar
Chris Smith committed
88

Somnath, Suhas's avatar
Somnath, Suhas committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def cmap_from_rgba(name, interp_vals, normalization_val):
    """
    Generates a colormap given a matlab-style interpolation table

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    interp_vals : List of tuples
        Interpolation table that describes the desired color map. Each entry in the table should be described as:
        (position in the colorbar, (red, green, blue, alpha))
        The position in the color bar, red, green, blue, and alpha vary from 0 to the normalization value
    normalization_val : number
        The common maximum value for the position in the color bar, red, green, blue, and alpha

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        desired color map
    """

    normalization_val = np.round(1.0 * normalization_val)

    cdict = {'red': tuple([(dist / normalization_val, colors[0] / normalization_val, colors[0] / normalization_val)
                           for (dist, colors) in interp_vals][::-1]),
             'green': tuple([(dist / normalization_val, colors[1] / normalization_val, colors[1] / normalization_val)
                             for (dist, colors) in interp_vals][::-1]),
             'blue': tuple([(dist / normalization_val, colors[2] / normalization_val, colors[2] / normalization_val)
                            for (dist, colors) in interp_vals][::-1]),
             'alpha': tuple([(dist / normalization_val, colors[3] / normalization_val, colors[3] / normalization_val)
                            for (dist, colors) in interp_vals][::-1])}

    return LinearSegmentedColormap(name, cdict)


def make_linear_alpha_cmap(name, solid_color, normalization_val, min_alpha=0, max_alpha=1):
    """
    Generates a transparent to opaque color map based on a single solid color

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    solid_color : List of numbers
        red, green, blue, and alpha values for a specific color
    normalization_val : number
        The common maximum value for the red, green, blue, and alpha values. This is 1 in matplotlib
    min_alpha : float (optional. Default = 0 : ie- transparent)
        Lowest alpha value for the bottom of the color bar
    max_alpha : float (optional. Default = 1 : ie- opaque)
        Highest alpha value for the top of the color bar

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        transparent to opaque color map based on the provided color
    """
    solid_color = np.array(solid_color) / normalization_val * 1.0
    interp_table = [(1.0, (solid_color[0], solid_color[1], solid_color[2], max_alpha)),
                    (0, (solid_color[0], solid_color[1], solid_color[2], min_alpha))]
    return cmap_from_rgba(name, interp_table, 1)
Chris Smith's avatar
Chris Smith committed
150
151


Somnath, Suhas's avatar
Somnath, Suhas committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def cmap_hot_desaturated():
    """
    Returns a desaturated color map based on the hot colormap

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Desaturated version of the hot color map
    """
    hot_desaturated = [(255.0, (255, 76, 76, 255)),
                       (218.5, (107, 0, 0, 255)),
                       (182.1, (255, 96, 0, 255)),
                       (145.6, (255, 255, 0, 255)),
                       (109.4, (0, 127, 0, 255)),
                       (72.675, (0, 255, 255, 255)),
                       (36.5, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    return cmap_from_rgba('hot_desaturated', hot_desaturated, 255)
Chris Smith's avatar
Chris Smith committed
171
172


173
def discrete_cmap(num_bins, base_cmap=plt.cm.viridis):
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Discretized color map

Chris Smith's avatar
Chris Smith committed
189
190
191
192
193
    Notes
    -----
    Jake VanderPlas License: BSD-style
    https://gist.github.com/jakevdp/91077b0cae40f8f8244a

194
195
196
197
198
199
200
    """

    base = plt.cm.get_cmap(base_cmap)
    color_list = base(np.linspace(0, 1, num_bins))
    cmap_name = base.name + str(num_bins)
    return base.from_list(cmap_name, color_list, num_bins)

201

Chris Smith's avatar
Chris Smith committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
def _add_loop_parameters(axes, switching_coef_vec):
    """
    Add the loop parameters for the given loop to a list of axes

    Parameters
    ----------
    axes : list of matplotlib.pyplo.axes
        Plot axes to add the coeffients to
    switching_coef_vec : 1D numpy.ndarray
        Array of loop parameters arranged by position

    Returns
    -------
    axes : list of matplotlib.pyplo.axes
    """
    positions = np.linspace(0, switching_coef_vec.shape[0] - 1, len(axes.flat), dtype=np.int)

    for ax, pos in zip(axes.flat, positions):
        ax.axvline(switching_coef_vec[pos]['V+'], c='k', label='V+')
        ax.axvline(switching_coef_vec[pos]['V-'], c='r', label='V-')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 1'], c='k', ls=':', label='Nucleation Bias 1')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 2'], c='r', ls=':', label='Nucleation Bias 2')
        ax.axhline(switching_coef_vec[pos]['R+'], c='k', ls='-.', label='R+')
        ax.axhline(switching_coef_vec[pos]['R-'], c='r', ls='-.', label='R-')

    return axes
228

229
def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=plt.cm.viridis, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
230
231
232
233
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

234
235
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
236
237
238
239
240
241
242
243
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
244
245
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
246
247
    """
    pts_per_step = int(len(ai_vec) / num_steps)
248
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
249
250
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
251
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
252
253
254
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
255
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
256
    """
257
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.viridis)
Somnath, Suhas's avatar
Somnath, Suhas committed
258
259
260
    fig.colorbar(CS3)"""


261
262
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='',
                     cmap=plt.cm.viridis, y_offset=0, **kwargs):
263
264
265
266
267
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
268
    axis : axis handle
269
270
271
272
273
274
275
276
277
278
279
280
281
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
282
283
    y_offset : (optional) number
        quantity by which the lines are offset from each other vertically (useful for spectra)
284
285
286
287
288
289
290
291
292
293
    """
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

294
    for line_ind in range(num_lines):
295
        axis.plot(x_axis, line_family[line_ind] + line_ind*  y_offset,
296
297
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
298
299


Chris Smith's avatar
Chris Smith committed
300
def plot_map(axis, data, stdevs=2, origin='lower', **kwargs):
301
302
303
304
305
306
307
308
309
310
311
312
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
Chris Smith's avatar
Chris Smith committed
313
314
315
316
    origin : str
        Where should the origin of the image data be located.  'lower' sets the origin to the
        bottom left, 'upper' sets it to the upper left.
        Default 'lower'
317

318
319
320
321
322
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
323
324
325
    im = axis.imshow(data, interpolation='none',
                     vmin=data_mean - stdevs * data_std,
                     vmax=data_mean + stdevs * data_std,
326
                     origin=origin,
327
                     **kwargs)
328
329
    axis.set_aspect('auto')

330
    return im
331

332

333
334
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True, plots_on_side=5, x_label='',
               y_label='', subtitles='Position', title='', central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
335
    # TODO: Allow multiple excitation waveforms
Somnath, Suhas's avatar
Somnath, Suhas committed
336
    """
337
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
338
339
340
341
342

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
343
344
345
346
347
348
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
349
350
351
352
353
354
355
356
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
357
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
372
    if type(datasets) in [h5py.Dataset, np.ndarray]:
373
374
375
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
376
        datasets = [datasets]
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return


    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
414
415

    plots_on_side = min(abs(plots_on_side), 5)
416

Somnath, Suhas's avatar
Somnath, Suhas committed
417
418
419
420
421
422
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

423
    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, sharex=True, figsize=(12, 12))
424
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
425

426
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
427
428
429
430
431
432
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
433
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
434
435

    for count, posn in enumerate(chosen_pos):
436
437
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
438
        else:
439
440
441
            for dataset, col_val in zip(datasets, line_colors):
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind], color=col_val)
        if h5_pos is not None:
442
            # print('Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0]))
Somnath, Suhas's avatar
Somnath, Suhas committed
443
444
445
446
447
448
449
450
451
452
453
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
454
455
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
456
457
458
459
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
460

Somnath, Suhas's avatar
Somnath, Suhas committed
461
462
###############################################################################

463
464

def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2):
Somnath, Suhas's avatar
Somnath, Suhas committed
465
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
466
467
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
468
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
469
    -------------
470
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
471
472
473
474
475
476
477
478
479
480
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

Chris Smith's avatar
Chris Smith committed
481
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
482
483
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
484
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
485
486
487
488
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

489
    for index in range(num_comps):
490
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
491
492
493
494
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
495
496
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
Somnath, Suhas's avatar
Somnath, Suhas committed
497
498
499
500
501
502
503
504
505
506
507
508
            ax.imshow(func(cur_map), cmap='inferno',
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

509
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
510
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
511
512
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
513
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
514
    -------------
515
516
517
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
518
519
520
521
522
        The vector to plot against
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
523
    x_label : String
Somnath, Suhas's avatar
Somnath, Suhas committed
524
525
526
527
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting

Chris Smith's avatar
Chris Smith committed
528
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
529
530
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
531
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
532
533
534
535
536
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
537
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
538

539
    for index in range(num_comps):
540
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
541
542
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
543
544
545
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
546
547
548
549
550
551
552
    fig201.tight_layout()

    return fig201, axes201

###############################################################################


553
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
554
    """
555
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
556

Chris Smith's avatar
Chris Smith committed
557
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
558
    -------------
559
560
    scree : 1D real numpy array
        The scree vector from SVD
Somnath, Suhas's avatar
Somnath, Suhas committed
561

Chris Smith's avatar
Chris Smith committed
562
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
563
564
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
565
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
566
567
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
568
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
569
570
571
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
572
573
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
574
575
576
577
578
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


579
580
581
# ###############################################################################


582
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False,
Chris Smith's avatar
Chris Smith committed
583
                   title='Component', heading='Map Stack', fig_mult=(4, 4), pad_mult=(0.1, 0.07), **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
584
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
585
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
586

Chris Smith's avatar
Chris Smith committed
587
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
588
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
589
    map_stack : 3D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
590
        structured as [rows, cols, component]
591
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
592
593
594
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
595
    color_bar_mode : String, Optional
596
597
598
599
600
        Options are None, single or each. Default None
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
601
602
603
604
605
    heading : String
        ###Insert description here### Default 'Map Stack'
    fig_mult : length 2 array_like of uints
        Size multipliers for the figure.  Figure size is calculated as (num_rows*`fig_mult[0]`, num_cols*`fig_mult[1]`).
        Default (4, 4)
Chris Smith's avatar
Chris Smith committed
606
607
608
609
610
611
612
    pad_mult : length 2 array_like of floats
        Multipliers for the axis padding between plots in the stack.  Padding is calculated as
        (pad_mult[0]*fig_mult[1], pad_mult[1]*fig_mult[0]) for the width and height padding respectively.
        Default (0.1, 0.07)
    kwargs : dictionary
        Keyword arguments to be passed to either matplotlib.pyplot.figure, mpl_toolkits.axes_grid1.ImageGrid, or
        pycroscopy.vis.plot_utils.plot_map.  See specific function documentation for the relavent options.
Somnath, Suhas's avatar
Somnath, Suhas committed
613

Chris Smith's avatar
Chris Smith committed
614
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
615
616
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
617
    """
618
619
620
621
622
623
624
625
    num_comps = abs(num_comps)
    num_comps = min(num_comps, map_stack.shape[-1])

    if evenly_spaced:
        chosen_pos = np.linspace(0, map_stack.shape[-1] - 1, num_comps, dtype=int)
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

626
627
628
629
630
631
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
632
            title += ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
633
634
635
    else:
        if not isinstance(title, str):
            title = 'Component'
636
        title = [title + ' ' + str(x) for x in chosen_pos]
637

638
    fig_h, fig_w = fig_mult
639
640
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
641
642
    if p_rows*p_cols < num_comps:
        p_cols += 1
Chris Smith's avatar
Chris Smith committed
643
644
645
646
647
648
649

    pad_w, pad_h = pad_mult

    '''
    Set defaults for kwargs to the figure creation and extract any non-default values from current kwargs
    '''
    figkwargs = dict()
650
651
652
653
654
655
656

    if sys.version_info.major == 3:
        inspec_func = inspect.getfullargspec
    else:
        inspec_func = inspect.getargspec

    for key in inspec_func(plt.figure).args:
Chris Smith's avatar
Chris Smith committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        if key in kwargs:
            figkwargs.update({key: kwargs.pop(key)})

    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h), **figkwargs)

    '''
    Set defaults for kwargs to the ImageGrid and extract any non-default values from current kwargs
    '''
    igkwargs = {'cbar_pad': '1%',
                'cbar_size': '5%',
                'cbar_location': 'right',
                'direction': 'row',
                'add_all': True,
                'share_all': False,
                'aspect': True,
                'label_mode': 'L'}
Somnath, Suhas's avatar
Somnath, Suhas committed
673
    for key in igkwargs.keys():
Chris Smith's avatar
Chris Smith committed
674
675
676
        if key in kwargs:
            igkwargs.update({key: kwargs.pop(key)})

677
678
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
Chris Smith's avatar
Chris Smith committed
679
680
                        axes_pad=(pad_w*fig_w, pad_h*fig_h),
                        **igkwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
681
682
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
683

684
685
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
686
                      map_stack[:, :, index],
687
688
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
689
        if color_bar_mode is 'each':
690
            axes202.cbar_axes[count].colorbar(im)
691
692
693

    if color_bar_mode is 'single':
        axes202.cbar_axes[0].colorbar(im)
Somnath, Suhas's avatar
Somnath, Suhas committed
694
695
696

    return fig202, axes202

697

698
699
def plot_cluster_h5_group(h5_group, y_spec_label, centroids_together=True):
    """
Chris Smith's avatar
Chris Smith committed
700
    Plots the cluster labels and mean response for each cluster
701

Chris Smith's avatar
Chris Smith committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    Parameters
    ----------
    h5_group : h5py.Datagroup object
        H5 group containing the labels and mean response
    y_spec_label : str
        Label to use for Y axis on cluster centroid plot
    centroids_together : Boolean, optional - default = True
        Whether or nor to plot all centroids together on the same plot

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
    """
718
    # TODO: The quantity and units for the main dataset itself are missing in most cases!
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0,None,pos_dims[0]), 1]]
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)
752
    # TODO: cleaner x and y axes labels instead of 0.0000125 etc.
753

754
755
756
757
758
759
760
    if centroids_together:
        return plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                             spec_label=x_spec_label, resp_label=y_spec_label,
                                             pos_labels=pos_labels, pos_ticks=pos_ticks)
    else:
        return plot_cluster_results_separate(label_mat, mean_response, max_centroids=4, x_label=x_spec_label,
                                             spec_val=np.squeeze(h5_spec_vals[0]), y_label=y_spec_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
761
762

###############################################################################
763
764


765
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=plt.cm.viridis,
766
767
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
768
    """
769
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
770
771
772
773
774

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
775
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
776
777
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
778
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
779
780
781
782
783
784
785
786
787
788
789
790
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
791
792
793
794
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
795
796
797
798
799
800
801

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
802
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
803

804
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
805
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
806
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
807
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
808
809
810
811
812
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

    if type(spec_val) == type(None):
Chris Smith's avatar
Chris Smith committed
813
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
814

Chris Smith's avatar
Chris Smith committed
815
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
816
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
817
818
819
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
820
821
        axes = [ax_map, ax_amp, ax_phase]

822
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
Chris Smith's avatar
Chris Smith committed
823
                        resp_label + ' - Amplitude', cmap, 'Mean Response')
824
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
Somnath, Suhas's avatar
Somnath, Suhas committed
825
                        resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
826
827
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
828
    else:
Chris Smith's avatar
Chris Smith committed
829
830
831
832
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
833
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
Chris Smith's avatar
Chris Smith committed
834
835
836
837
838
839
                        resp_label, cmap, 'Mean Response')
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
840
841

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
842
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
843
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
844
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
845
846
847
848
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
849

Chris Smith's avatar
Chris Smith committed
850
    # im = ax_map.imshow(label_mat, interpolation='none')
851
852
853
854
855
856
857
858
859
860
861
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

862
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
863
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
864
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
865
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.viridis))
866
    ax_map.axis('tight')"""
867
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.viridis))
868
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
869
    ax_map.axis('tight')
870
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
871
872
873
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
874
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
875
876
877
878
879

    return fig, axes

###############################################################################

880

881
882
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4,
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
883
    """
884
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
885

886
887
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
888
889
890
891
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
892
893
    max_centroids : unsigned int
                    Number of centroids to plot
894
895
896
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
897
898
899
900
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
901

902
903
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
904
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
905
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
906

907
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

936
    # First plot the labels map:
937
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0],
938
                                                      base_cmap=plt.cm.viridis))
939
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
940
941
    fax1.axis('tight')
    fax1.set_aspect('auto')
942
    fax1.set_title('Cluster Label Map')
943
    """im = fax1.imshow(label_mat, interpolation='none')
944
945
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
946
947
948
949
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
950
951

    # Plot results
952
953
954
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
955
                    color=plt.cm.viridis(int(255 * index / (cluster_centroids.shape[0] - 1))))
956
957
958
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
959
            plot_map(ax, cluster_centroids[index])
960
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
961
962

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
963
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
964
965
966
967
968
969

    return fig501


###############################################################################

970
971
def plot_cluster_dendrogram(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                            sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
972
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
973
974
975
976
977
978
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
979
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
980
    e_vals: 3D real numpy array of eigenvalues
981
        structured as [component, rows, cols]
982
    num_comp : int
983
984
985
        Number of components used to make eigenvalues
    num_cluster : int
        Number of cluster used to make the label_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
986
    mode: str, optional
987
988
989
        How should the dendrograms be created.
        "Full" -- use all clusters when creating the dendrograms
        "Truncated" -- stop showing clusters after 'last'
Somnath, Suhas's avatar
Somnath, Suhas committed
990
    last: int, optional - should be provided when using "Truncated"
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
        How many merged clusters should be shown when using
        "Truncated" mode
    sort_type: {'count', 'distance'}, optional
        What type of sorting should be used when plotting the
        dendrograms.  Options are:
        count - Uses the count_sort from scipy.cluster.hierachy.dendrogram
        distance - Uses the distance_sort from scipy.cluster.hierachy.dendrogram
    sort_mode: {False, True, 'ascending', 'descending'}, optional
        For the chosen sort_type, which mode should be used.
        False - Does no sorting
        'ascending' or True - The child with the minimum of the chosen sort
        parameter is plotted first
        'descending' - The child with the maximum of the chosen sort parameter is
        plotted first
Somnath, Suhas's avatar
Somnath, Suhas committed
1005
1006
1007

    Returns
    ---------
1008
1009
    fig : matplotlib.pyplot Figure object
        Figure containing the dendrogram
Somnath, Suhas's avatar
Somnath, Suhas committed
1010
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1011
1012
1013
1014
1015
    if mode == 'Truncated' and not last:
        warn('Warning: Truncated dendrograms requested, but no last cluster given.  Reverting to full dendrograms.')
        mode = 'Full'

    if mode == 'Full':
1016
        print('Creating full dendrogram from clusters')
Somnath, Suhas's avatar
Somnath, Suhas committed
1017
1018
        mode = None
    elif mode == 'Truncated':
1019
        print('Creating truncated dendrogram from clusters.  Will stop at {}.'.format(last))
Somnath, Suhas's avatar
Somnath, Suhas committed
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
        mode = 'lastp'
    else:
        raise ValueError('Error: Unknown mode requested for plotting dendrograms. mode={}'.format(mode))

    c_sort = False
    d_sort = False
    if sort_type == 'count':
        c_sort = sort_mode
        if c_sort == 'descending':
            c_sort = 'descendent'
    elif sort_type == 'distance':
        d_sort = sort_mode

    centroid_mat = np.zeros([num_cluster, num_comp])
1034
    for k1 in range(num_cluster):
Somnath, Suhas's avatar
Somnath, Suhas committed
1035
1036
        [i_x, i_y] = np.where(label_mat == k1)
        u_stack = np.zeros([len(i_x), num_comp])
1037
        for k2 in range(len(i_x)):
Somnath, Suhas's avatar
Somnath, Suhas committed
1038
1039
1040
1041
            u_stack[k2, :] = np.abs(e_vals[i_x[k2], i_y[k2], :num_comp])

        centroid_mat[k1, :] = np.mean(u_stack, 0)

1042
    # Get the distrance between cluster means
1043
    distance_mat = scipy.spatial.distance.pdist(centroid_mat)
Somnath, Suhas's avatar
Somnath, Suhas committed
1044
1045

    # get hierachical pairings of clusters
1046
    linkage_pairing = scipy.cluster.hierarchy.linkage(distance_mat, 'weighted')
Somnath, Suhas's avatar
Somnath, Suhas committed
1047
1048
1049
    linkage_pairing[:, 3] = linkage_pairing[:, 3] / max(linkage_pairing[:, 3])

    fig = plt.figure()
1050
1051
1052
    scipy.cluster.hierarchy.dendrogram(linkage_pairing, p=last, truncate_mode=mode,
                                       count_sort=c_sort, distance_sort=d_sort,
                                       leaf_rotation=90)
Somnath, Suhas's avatar
Somnath, Suhas committed
1053
1054
1055
1056
1057
1058
1059
1060

    fig.axes[0].set_title('Dendrogram')
    fig.axes[0].set_xlabel('Index or (cluster size)')
    fig.axes[0].set_ylabel('Distance')

    return fig


1061
def plot_1d_spectrum(data_vec, freq, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
    """
    Plots the Step averaged BE response

    Parameters
    ------------
    data_vec : 1D numpy array
        Response of one BE pulse
    freq : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if len(data_vec) != len(freq):
1084
1085
        warn('plot_1d_spectrum: Incompatible data sizes!!!!')
        print('1D:', data_vec.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
1086
        return
1087
1088
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
Somnath, Suhas's avatar
Somnath, Suhas committed
1089
1090
1091
1092
1093
1094
1095
1096
    ax[0].plot(freq, np.abs(data_vec) * 1E+3)
    ax[0].set_title('Amplitude (mV)')
    ax[1].plot(freq, np.angle(data_vec) * 180 / np.pi)
    ax[1].set_title('Phase (deg)')
    ax[1].set_xlabel('Frequency (kHz)')
    fig.suptitle(title + ': mean UDVS, mean spatial response')
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
1097
    return
Somnath, Suhas's avatar
Somnath, Suhas committed
1098
1099
1100
1101


###############################################################################

1102
def plot_2d_spectrogram(mean_spectrogram, freq, title, cmap=None, figure_path=None, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    mean_spectrogram : 2D numpy complex array
        Means spectrogram arranged as [frequency, UDVS step]
    freq : 1D numpy float array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
1114
    cmap : matplotlib.colors.LinearSegmentedColormap object
1115
        color map. Default = plt.cm.viridis
Somnath, Suhas's avatar
Somnath, Suhas committed
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    ax : Matplotlib.pyplot axis
        Axis handle
    """
    if mean_spectrogram.shape[1] != len(freq):
1127
1128
        warn('plot_2d_spectrogram: Incompatible data sizes!!!!')
        print('2D:', mean_spectrogram.shape, freq.shape)
Somnath, Suhas's avatar
Somnath, Suhas committed
1129
        return
1130
1131
1132
1133

    """cmap = kwargs.get('cmap')
    kwargs.pop('cmap')"""
    if cmap is None:  # unpack from kwargs instead
1134
        col_map = plt.cm.viridis  # overriding default
1135

1136
1137
    freq *= 1E-3  # to kHz
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
1138
1139
    # print(mean_spectrogram.shape)
    # print(freq.shape)
1140
1141
    ax[0].imshow(np.abs(mean_spectrogram), interpolation='nearest', cmap=col_map,
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0], **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
1142
1143
1144
1145
    ax[0].set_title('Amplitude')
    # ax[0].set_xticks(freq)
    # ax[0].set_ylabel('UDVS Step')
    ax[0].axis('tight')
1146
1147
    ax[1].imshow(np.angle(mean_spectrogram), interpolation='nearest', cmap=col_map,
                 extent=[freq[0], freq[-1], mean_spectrogram.shape[0], 0], **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
1148
1149
1150
1151
1152
1153
1154
    ax[1].set_title('Phase')
    ax[1].set_xlabel('Frequency (kHz)')
    # ax[0].set_ylabel('UDVS Step')
    ax[1].axis('tight')
    fig.suptitle(title)
    if figure_path:
        plt.savefig(figure_path, format='png', dpi=300)
1155
    return fig, ax
Somnath, Suhas's avatar
Somnath, Suhas committed
1156
1157
1158

###############################################################################

1159
1160

def plot_histgrams(p_hist, p_hbins, title, figure_path=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    """
    Plots the position averaged spectrogram

    Parameters
    ------------
    p_hist : 2D numpy array
        histogram data arranged as [physical quantity, frequency bin]
    p_hbins : 1D numpy array
        BE frequency that serves as the X axis of the plot
    title : String
        Plot group name
    figure_path : String / Unicode
        Absolute path of the file to write the figure to

    Returns
    ---------
    fig : Matplotlib.pyplot figure
        Figure handle
    """

    base_fig_size = 7
    h_fig = base_fig_size
    w_fig = base_fig_size * 4

    fig = plt.figure(figsize=(w_fig, h_fig))
    fig.suptitle(title)
    iplot = 0

    p_Nx, p_Ny = np.amax(p_hbins, axis=1) + 1

    p_hist = np.reshape(p_hist, (4, p_Ny, p_Nx))

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Amp (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[0])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Phase (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[1])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Real (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[2])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    iplot += 1
    p_plot_title = 'Spectral BEHistogram Imag (log10 of counts)'
    p_plot = fig.add_subplot(1, 4, iplot, title=p_plot_title)
    p_im = p_plot.imshow(np.rot90(np.log10(p_hist[3])), interpolation='nearest')
    p_plot.axis('tight')
    fig.colorbar(p_im, fraction=0.1)

    if figure_path:
        plt.savefig(figure_path, format='png')

1224
    return fig
1225
1226