be_odf.py 47.8 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:24:12 2015

@author: Suhas Somnath, Stephen Jesse
"""

8
from __future__ import division, print_function, absolute_import  # int/int = float
9

Somnath, Suhas's avatar
Somnath, Suhas committed
10
from os import path, listdir, remove
11
from warnings import warn
12

Somnath, Suhas's avatar
Somnath, Suhas committed
13
14
import numpy as np
from scipy.io.matlab import loadmat  # To load parameters stored in Matlab .mat file
15

16
from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, parmsToDict, generatePlotGroups, \
17
    createSpecVals, requires_conjugate, nf32
Somnath, Suhas's avatar
Somnath, Suhas committed
18
from .translator import Translator
19
from .utils import generate_dummy_main_parms, build_ind_val_dsets
Somnath, Suhas's avatar
Somnath, Suhas committed
20
21
22
from ..hdf_utils import getH5DsetRefs, linkRefs, calc_chunks
from ..io_hdf5 import ioHDF5
from ..microdata import MicroDataGroup, MicroDataset
23

Chris Smith's avatar
Chris Smith committed
24
25
26
# nf32 = np.dtype([('super_band', np.float32), ('inter_bin_band', np.float32),
#                  ('sub_band', np.float32)])

27

28

Somnath, Suhas's avatar
Somnath, Suhas committed
29
30
31
32
33
class BEodfTranslator(Translator):
    """
    Translates either the Band Excitation (BE) scan or Band Excitation 
    Polarization Switching (BEPS) data format from the old data format(s) to .h5
    """
Chris Smith's avatar
Chris Smith committed
34
35
36
37
38
    def __init__(self, *args, **kwargs):
        super(BEodfTranslator, self).__init__(*args, **kwargs)

        self.hdf = None
        self.h5_raw = None
39
        self.num_rand_spectra = kwargs.pop('num_rand_spectra', 1000)
Chris Smith's avatar
Chris Smith committed
40

Somnath, Suhas's avatar
Somnath, Suhas committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=False):
        """
        Translates .dat data file(s) to a single .h5 file
        
        Parameters
        -------------
        file_path : String / Unicode
            Absolute file path for one of the data files. 
            It is assumed that this file is of the OLD data format.
        show_plots : (optional) Boolean
            Whether or not to show intermediate plots
        save_plots : (optional) Boolean
            Whether or not to save plots to disk
        do_histogram : (optional) Boolean
            Whether or not to construct histograms to visualize data quality. Note - this takes a fair amount of time
            
        Returns
        ----------
        h5_path : String / Unicode
            Absolute path of the resultant .h5 file
        """
        (folder_path, basename) = path.split(file_path)
63
        (basename, path_dict) = self._parse_file_path(file_path)
Somnath, Suhas's avatar
Somnath, Suhas committed
64
            
Somnath, Suhas's avatar
Somnath, Suhas committed
65
        h5_path = path.join(folder_path, basename + '.h5')
Somnath, Suhas's avatar
Somnath, Suhas committed
66
67
68
69
70
71
72
        tot_bins_multiplier = 1
        udvs_denom = 2
        
        if 'parm_txt' in path_dict.keys():
            (isBEPS,parm_dict) = parmsToDict(path_dict['parm_txt'])
        elif 'old_mat_parms' in path_dict.keys():
            isBEPS = True
Somnath, Suhas's avatar
Somnath, Suhas committed
73
            parm_dict = self.__get_parms_from_old_mat(path_dict['old_mat_parms'])
Somnath, Suhas's avatar
Somnath, Suhas committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        else:
            warn('No parameters file found! Cannot translate this dataset!')
            return
          
        ignored_plt_grps = []
        if isBEPS:
            parm_dict['data_type'] = 'BEPSData'
            
            field_mode = parm_dict['VS_measure_in_field_loops']
            std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file'
            
            if not std_expt:
                warn('This translator does not handle user defined voltage spectroscopy')
                return
            
            spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode']) 
            
Somnath, Suhas's avatar
Somnath, Suhas committed
91
            if parm_dict['VS_mode'] in ['DC modulation mode', 'current mode']:
Somnath, Suhas's avatar
Somnath, Suhas committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
                if field_mode == 'in and out-of-field':
                    tot_bins_multiplier = 2
                    udvs_denom = 1
                else:
                    if field_mode == 'out-of-field':
                        ignored_plt_grps = ['in-field']
                    else:
                        ignored_plt_grps = ['out-of-field']
            else:
                tot_bins_multiplier = 1
                udvs_denom = 1
                    
        else:
            spec_label = 'None'
            parm_dict['data_type'] = 'BELineData'
            
        # Check file sizes:
        if 'read_real' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
110
111
            real_size = path.getsize(path_dict['read_real'])
            imag_size = path.getsize(path_dict['read_imag'])
Somnath, Suhas's avatar
Somnath, Suhas committed
112
113
114
115
116
117
118
119
        else:
            real_size = path.getsize(path_dict['write_real'])
            imag_size = path.getsize(path_dict['write_imag'])
            
        if real_size != imag_size:
            raise ValueError("Real and imaginary file sizes DON'T match!. Ending")

        add_pix = False         
Somnath, Suhas's avatar
Somnath, Suhas committed
120
121
122
123
        num_rows = int(parm_dict['grid_num_rows'])
        num_cols = int(parm_dict['grid_num_cols'])
        num_pix = num_rows*num_cols
        tot_bins = real_size/(num_pix*4)
Chris Smith's avatar
Chris Smith committed
124
125
        # Check for case where only a single pixel is missing.
        check_bins = real_size/((num_pix-1)*4)
Somnath, Suhas's avatar
Somnath, Suhas committed
126
127
128
        
        if tot_bins % 1 and check_bins % 1: 
            warn('Aborting! Some parameter appears to have changed in-between')
Somnath, Suhas's avatar
Somnath, Suhas committed
129
            return
Somnath, Suhas's avatar
Somnath, Suhas committed
130
        elif not tot_bins % 1:
Chris Smith's avatar
Chris Smith committed
131
            # Everything's ok
Somnath, Suhas's avatar
Somnath, Suhas committed
132
133
134
135
136
137
138
139
140
            pass
        elif not check_bins % 1:
            tot_bins = check_bins
            warn('Warning:  A pixel seems to be missing from the data.  File will be padded with zeros.') 
            add_pix = True 
         
        tot_bins = int(tot_bins)*tot_bins_multiplier
        
        if 'parm_mat' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
141
            (bin_inds, bin_freqs, bin_FFT, ex_wfm) = self.__read_parms_mat(path_dict['parm_mat'], isBEPS)
Somnath, Suhas's avatar
Somnath, Suhas committed
142
        elif 'old_mat_parms' in path_dict.keys():
Somnath, Suhas's avatar
Somnath, Suhas committed
143
            (bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec) = self.__read_old_mat_be_vecs(path_dict['old_mat_parms'])
Somnath, Suhas's avatar
Somnath, Suhas committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        else:
            band_width = parm_dict['BE_band_width_[Hz]']*(0.5 - parm_dict['BE_band_edge_trim'])
            st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width
            en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width            
            bin_freqs = np.linspace(st_f, en_f, tot_bins, dtype=np.float32)
            
            print('No parms .mat file found.... Filling dummy values into ancillary datasets.')
            bin_inds = np.zeros(shape=tot_bins, dtype=np.int32)
            bin_FFT = np.zeros(shape=tot_bins, dtype=np.complex64)
            ex_wfm = np.zeros(shape=100, dtype=np.float32)
            
        # Forcing standardized datatypes:
        bin_inds = np.int32(bin_inds)
        bin_freqs = np.float32(bin_freqs)
        bin_FFT = np.complex64(bin_FFT)
        ex_wfm = np.float32(ex_wfm)
160
161
162

        ds_ex_wfm = MicroDataset('Excitation_Waveform', ex_wfm)

Somnath, Suhas's avatar
Somnath, Suhas committed
163
        self.FFT_BE_wave = bin_FFT
164

Unknown's avatar
Unknown committed
165
        ds_pos_ind, ds_pos_val = build_ind_val_dsets([num_rows, num_cols], is_spectral=False,
166
                                                     labels=['X', 'Y'], units=['m', 'm'], verbose=False)
Somnath, Suhas's avatar
Somnath, Suhas committed
167
168
        
        if isBEPS:
Somnath, Suhas's avatar
Somnath, Suhas committed
169
            (UDVS_labs, UDVS_units, UDVS_mat) = self.__build_udvs_table(parm_dict)
Somnath, Suhas's avatar
Somnath, Suhas committed
170
171
172
173
           
#             Remove the unused plot group columns before proceeding:
            (UDVS_mat, UDVS_labs, UDVS_units) = trimUDVS(UDVS_mat, UDVS_labs, UDVS_units, ignored_plt_grps)
           
Somnath, Suhas's avatar
Somnath, Suhas committed
174
            spec_inds = np.zeros(shape=(2, tot_bins), dtype=np.uint)
Somnath, Suhas's avatar
Somnath, Suhas committed
175
176
177
178
179
180
181
                      
#             Will assume that all excitation waveforms have same number of bins
            num_actual_udvs_steps = UDVS_mat.shape[0]/udvs_denom
            bins_per_step = tot_bins/num_actual_udvs_steps
           
            if bins_per_step % 1:
                warn('Non integer number of bins per step!')
Somnath, Suhas's avatar
Somnath, Suhas committed
182
183
                print('UDVS mat shape: {}, total bins: {}, bins per step: {}'.format(UDVS_mat.shape, tot_bins,
                                                                                     bins_per_step))
Somnath, Suhas's avatar
Somnath, Suhas committed
184
185
186
187
188
189
                return
            
            bins_per_step = int(bins_per_step)
            num_actual_udvs_steps = int(num_actual_udvs_steps)
               
            stind = 0           
Somnath, Suhas's avatar
Somnath, Suhas committed
190
191
192
193
194
            for step_index in range(UDVS_mat.shape[0]):  
                if UDVS_mat[step_index, 2] < 1E-3: # invalid AC amplitude
                    continue  # skip
                spec_inds[0, stind:stind+bins_per_step] = np.arange(bins_per_step, dtype=np.uint32) # Bin step
                spec_inds[1, stind:stind+bins_per_step] = step_index * np.ones(bins_per_step, dtype=np.uint32) # UDVS step
Somnath, Suhas's avatar
Somnath, Suhas committed
195
                stind += bins_per_step
Somnath, Suhas's avatar
Somnath, Suhas committed
196
            del stind, step_index
Somnath, Suhas's avatar
Somnath, Suhas committed
197
           
Somnath, Suhas's avatar
Somnath, Suhas committed
198
        else:  # BE Line
Somnath, Suhas's avatar
Somnath, Suhas committed
199
            self.signal_type = 1
Somnath, Suhas's avatar
Somnath, Suhas committed
200
            self.expt_type = 1  # Stephen has not used this index for some reason
Somnath, Suhas's avatar
Somnath, Suhas committed
201
202
            num_actual_udvs_steps = 1
            bins_per_step = tot_bins
Somnath, Suhas's avatar
Somnath, Suhas committed
203
            UDVS_labs = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'be-line']
Somnath, Suhas's avatar
Somnath, Suhas committed
204
            UDVS_units = ['', 'V', 'A', '', '', '']
Somnath, Suhas's avatar
Somnath, Suhas committed
205
206
            UDVS_mat = np.array([1, 0, parm_dict['BE_amplitude_[V]'], 1, 1, 1],
                                dtype=np.float32).reshape(1, len(UDVS_labs))
Somnath, Suhas's avatar
Somnath, Suhas committed
207
208
209
210
211
212

            spec_inds = np.vstack((np.arange(tot_bins, dtype=np.uint), np.zeros(tot_bins, dtype=np.uint32)))
        
        # Some very basic information that can help the processing / analysis crew
        parm_dict['num_bins'] = tot_bins
        parm_dict['num_pix'] = num_pix
213
        parm_dict['num_udvs_steps'] = num_actual_udvs_steps
Somnath, Suhas's avatar
Somnath, Suhas committed
214
        
Somnath, Suhas's avatar
Somnath, Suhas committed
215
        udvs_slices = dict()
Somnath, Suhas's avatar
Somnath, Suhas committed
216
        for col_ind, col_name in enumerate(UDVS_labs):
Somnath, Suhas's avatar
Somnath, Suhas committed
217
            udvs_slices[col_name] = (slice(None), slice(col_ind, col_ind+1))
Somnath, Suhas's avatar
Somnath, Suhas committed
218
219
220
221
222
223
224
        ds_UDVS = MicroDataset('UDVS', UDVS_mat)
        ds_UDVS.attrs['labels'] = udvs_slices
        ds_UDVS.attrs['units'] = UDVS_units
#         ds_udvs_labs = MicroDataset('UDVS_Labels',np.array(UDVS_labs))
        ds_UDVS_inds = MicroDataset('UDVS_Indices', spec_inds[1])        
        
#         ds_spec_labs = MicroDataset('Spectroscopic_Labels',np.array(['Bin','UDVS_Step']))
Somnath, Suhas's avatar
Somnath, Suhas committed
225
        ds_bin_steps = MicroDataset('Bin_Step', np.arange(bins_per_step, dtype=np.uint32), dtype=np.uint32)
Somnath, Suhas's avatar
Somnath, Suhas committed
226
227
228
229
230
231
        
        # Need to add the Bin Waveform type - infer from UDVS        
        exec_bin_vec = self.signal_type*np.ones(len(bin_inds), dtype=np.int32)

        if self.expt_type == 2:
            # Need to double the vectors:
Somnath, Suhas's avatar
Somnath, Suhas committed
232
233
234
            exec_bin_vec = np.hstack((exec_bin_vec, -1*exec_bin_vec))
            bin_inds = np.hstack((bin_inds, bin_inds))
            bin_freqs = np.hstack((bin_freqs, bin_freqs))
Somnath, Suhas's avatar
Somnath, Suhas committed
235
            # This is wrong but I don't know what else to do
Somnath, Suhas's avatar
Somnath, Suhas committed
236
            bin_FFT = np.hstack((bin_FFT, bin_FFT))
Somnath, Suhas's avatar
Somnath, Suhas committed
237
238
239
240
241
242
243
        
        ds_bin_inds = MicroDataset('Bin_Indices', bin_inds, dtype=np.uint32)       
        ds_bin_freq = MicroDataset('Bin_Frequencies', bin_freqs)        
        ds_bin_FFT = MicroDataset('Bin_FFT', bin_FFT)
        ds_wfm_typ = MicroDataset('Bin_Wfm_Type', exec_bin_vec)
        
        # Create Spectroscopic Values and Spectroscopic Values Labels datasets
Somnath, Suhas's avatar
Somnath, Suhas committed
244
245
246
247
248
249
250
        spec_vals, spec_inds, spec_vals_labs, spec_vals_units, spec_vals_labs_names = createSpecVals(UDVS_mat,
                                                                                                     spec_inds,
                                                                                                     bin_freqs,
                                                                                                     exec_bin_vec,
                                                                                                     parm_dict,
                                                                                                     UDVS_labs,
                                                                                                     UDVS_units)
Chris Smith's avatar
Chris Smith committed
251

Somnath, Suhas's avatar
Somnath, Suhas committed
252
253
254
255
256
257
        spec_vals_slices = dict()
#         if len(spec_vals_labs) == 1:
#             spec_vals_slices[spec_vals_labs[0]]=(slice(0,1,None),)
#         else:

        for row_ind, row_name in enumerate(spec_vals_labs):
Somnath, Suhas's avatar
Somnath, Suhas committed
258
            spec_vals_slices[row_name] = (slice(row_ind, row_ind+1), slice(None))
Somnath, Suhas's avatar
Somnath, Suhas committed
259
260
261
262

        ds_spec_mat = MicroDataset('Spectroscopic_Indices', spec_inds, dtype=np.uint32)
        ds_spec_mat.attrs['labels'] = spec_vals_slices
        ds_spec_mat.attrs['units'] = spec_vals_units                   
Somnath, Suhas's avatar
Somnath, Suhas committed
263
        ds_spec_vals_mat = MicroDataset('Spectroscopic_Values', np.array(spec_vals, dtype=np.float32))
Somnath, Suhas's avatar
Somnath, Suhas committed
264
265
266
        ds_spec_vals_mat.attrs['labels'] = spec_vals_slices
        ds_spec_vals_mat.attrs['units'] = spec_vals_units
        for entry in spec_vals_labs_names:
Chris Smith's avatar
Chris Smith committed
267
            label = entry[0]+'_parameters'
Somnath, Suhas's avatar
Somnath, Suhas committed
268
            names = entry[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
269
270
            ds_spec_mat.attrs[label] = names
            ds_spec_vals_mat.attrs[label] = names
Chris Smith's avatar
Chris Smith committed
271

Somnath, Suhas's avatar
Somnath, Suhas committed
272
        # Noise floor should be of shape: (udvs_steps x 3 x positions)
Somnath, Suhas's avatar
Somnath, Suhas committed
273
274
        ds_noise_floor = MicroDataset('Noise_Floor', np.zeros(shape=(num_pix, num_actual_udvs_steps), dtype=nf32),
                                      chunking=(1, num_actual_udvs_steps))
Somnath, Suhas's avatar
Somnath, Suhas committed
275
276

        """
Chris Smith's avatar
Chris Smith committed
277
        New Method for chunking the Main_Data dataset.  Chunking is now done in N-by-N squares
Somnath, Suhas's avatar
Somnath, Suhas committed
278
        of UDVS steps by pixels.  N is determined dynamically based on the dimensions of the
Chris Smith's avatar
Chris Smith committed
279
        dataset.  Currently it is set such that individual chunks are less than 10kB in size.
Somnath, Suhas's avatar
Somnath, Suhas committed
280
281
282
        
        Chris Smith -- csmith55@utk.edu
        """
Chris Smith's avatar
Chris Smith committed
283
284
285
286
287
288
289
290
        BEPS_chunks = calc_chunks([num_pix, tot_bins],
                                  np.complex64(0).itemsize,
                                  unit_chunks=(1, bins_per_step))
        ds_main_data = MicroDataset('Raw_Data', data=[],
                                    maxshape=(num_pix, tot_bins),
                                    dtype=np.complex64,
                                    chunking=BEPS_chunks,
                                    compression='gzip')
Somnath, Suhas's avatar
Somnath, Suhas committed
291
292
293
294
295
        
        chan_grp = MicroDataGroup('Channel_')
        chan_grp.attrs['Channel_Input'] = parm_dict['IO_Analog_Input_1']
        chan_grp.addChildren([ds_main_data, ds_noise_floor])
        chan_grp.addChildren([ds_ex_wfm, ds_pos_ind, ds_pos_val, ds_spec_mat, ds_UDVS,
Chris Smith's avatar
Chris Smith committed
296
297
                              ds_bin_steps, ds_bin_inds, ds_bin_freq, ds_bin_FFT,
                              ds_wfm_typ, ds_spec_vals_mat, ds_UDVS_inds])
Somnath, Suhas's avatar
Somnath, Suhas committed
298
299
300
301
302
303
304
        
        # technically should change the date, etc.
        meas_grp = MicroDataGroup('Measurement_')
        meas_grp.attrs = parm_dict
        meas_grp.addChildren([chan_grp])
        
        spm_data = MicroDataGroup('')
305
        global_parms = generate_dummy_main_parms()
Somnath, Suhas's avatar
Somnath, Suhas committed
306
307
        global_parms['grid_size_x'] = parm_dict['grid_num_cols']
        global_parms['grid_size_y'] = parm_dict['grid_num_rows']
Somnath, Suhas's avatar
Somnath, Suhas committed
308
309
310
311
        try:
            global_parms['experiment_date'] = parm_dict['File_date_and_time']
        except KeyError:
            global_parms['experiment_date'] = '1:1:1'
Chris Smith's avatar
Chris Smith committed
312

Somnath, Suhas's avatar
Somnath, Suhas committed
313
        # assuming that the experiment was completed:
Somnath, Suhas's avatar
Somnath, Suhas committed
314
315
316
        global_parms['current_position_x'] = parm_dict['grid_num_cols']-1
        global_parms['current_position_y'] = parm_dict['grid_num_rows']-1
        global_parms['data_type'] = parm_dict['data_type']
Somnath, Suhas's avatar
Somnath, Suhas committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        global_parms['translator'] = 'ODF'
            
        spm_data.attrs = global_parms
        spm_data.addChildren([meas_grp])
        
        if path.exists(h5_path):
            remove(h5_path)
        
        # Write everything except for the main data.
        self.hdf = ioHDF5(h5_path)
        
        h5_refs = self.hdf.writeData(spm_data)
                    
        self.h5_raw = getH5DsetRefs(['Raw_Data'], h5_refs)[0]
            
Somnath, Suhas's avatar
Somnath, Suhas committed
332
333
334
335
        # Now doing linkrefs:
        aux_ds_names = ['Excitation_Waveform', 'Position_Indices', 'Position_Values',
                        'Spectroscopic_Indices', 'UDVS', 'Bin_Step', 'Bin_Indices', 'UDVS_Indices',
                        'Bin_Frequencies', 'Bin_FFT', 'Bin_Wfm_Type', 'Noise_Floor', 'Spectroscopic_Values']
336
        linkRefs(self.h5_raw, getH5DsetRefs(aux_ds_names, h5_refs))
Somnath, Suhas's avatar
Somnath, Suhas committed
337

Chris Smith's avatar
Chris Smith committed
338
        self._read_data(UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix)
Somnath, Suhas's avatar
Somnath, Suhas committed
339
340
341
        
        generatePlotGroups(self.h5_raw, self.hdf, self.mean_resp, folder_path, basename,
                           self.max_resp, self.min_resp, max_mem_mb=self.max_ram,
Somnath, Suhas's avatar
Somnath, Suhas committed
342
                           spec_label=spec_label, show_plots=show_plots, save_plots=save_plots,
Somnath, Suhas's avatar
Somnath, Suhas committed
343
344
345
346
347
                           do_histogram=do_histogram)
        
        self.hdf.close()
        
        return h5_path
Chris Smith's avatar
Chris Smith committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

    def _read_data(self, UDVS_mat, parm_dict, path_dict, real_size, isBEPS, add_pix):
        """
        Checks if the data is BEPS or BELine and calls the correct function to read the data from
        file

        Parameters
        ----------
        UDVS_mat : numpy.ndarray of float
            UDVS table
        parm_dict : dict
            Experimental parameters
        path_dict : dict
            Dictionary of data files to be read
        real_size : dict
            Size of each data file
        isBEPS : boolean
            Is the data BEPS
        add_pix : boolean
            Does the reader need to add extra pixels to the end of the dataset

        Returns
        -------
        None
        """
        # Now read the raw data files:
        if not isBEPS:
            # Do this for all BE-Line (always small enough to read in one shot)
376
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
377
378
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'out-of-field':
            # Do this for out-of-field BEPS ONLY that is also small (256 MB)
379
            self.__quick_read_data(path_dict['read_real'], path_dict['read_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
380
381
        elif real_size < self.max_ram and parm_dict['VS_measure_in_field_loops'] == 'in-field':
            # Do this for in-field only
382
            self.__quick_read_data(path_dict['write_real'], path_dict['write_imag'], parm_dict['num_udvs_steps'])
Chris Smith's avatar
Chris Smith committed
383
384
        else:
            # Large BEPS datasets OR those with in-and-out of field
Somnath, Suhas's avatar
Somnath, Suhas committed
385
            self.__read_beps_data(path_dict, UDVS_mat.shape[0], parm_dict['VS_measure_in_field_loops'], add_pix)
Chris Smith's avatar
Chris Smith committed
386
387
        self.hdf.file.flush()

Somnath, Suhas's avatar
Somnath, Suhas committed
388
    def __read_beps_data(self, path_dict, udvs_steps, mode, add_pixel=False):
Somnath, Suhas's avatar
Somnath, Suhas committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        """
        Reads the imaginary and real data files pixelwise and writes to the H5 file 
        
        Parameters 
        --------------------
        path_dict : dictionary
            Dictionary containing the absolute paths of the real and imaginary data files
        udvs_steps : unsigned int
            Number of UDVS steps
        mode : String / Unicode
            'in-field', 'out-of-field', or 'in and out-of-field'
        add_pixel : boolean. (Optional; default is False)
            If an empty pixel worth of data should be written to the end             
        
        Returns 
        -------------------- 
        None
        """
        
        print('---- reading pixel-by-pixel ----------')
        
        bytes_per_pix = self.h5_raw.shape[1]*4 
        step_size = self.h5_raw.shape[1]/udvs_steps          
        
        if mode == 'out-of-field':
Somnath, Suhas's avatar
Somnath, Suhas committed
414
415
            parsers = [BEodfParser(path_dict['read_real'], path_dict['read_imag'], 
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
416
        elif mode == 'in-field':
Somnath, Suhas's avatar
Somnath, Suhas committed
417
418
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'], 
                                   self.h5_raw.shape[0], bytes_per_pix)]
Somnath, Suhas's avatar
Somnath, Suhas committed
419
420
421
422
423
424
425
        elif mode == 'in and out-of-field':
            # each file will only have half the udvs steps:
            if 0.5*udvs_steps % 1:
                warn('Odd number of UDVS')
                return
            udvs_steps = int(0.5*udvs_steps)
            # be careful - each pair contains only half the necessary bins - so read half
Somnath, Suhas's avatar
Somnath, Suhas committed
426
427
428
429
            parsers = [BEodfParser(path_dict['write_real'], path_dict['write_imag'], 
                                   self.h5_raw.shape[0], int(bytes_per_pix / 2)),
                       BEodfParser(path_dict['read_real'], path_dict['read_imag'], 
                                   self.h5_raw.shape[0], int(bytes_per_pix/2))]
Somnath, Suhas's avatar
Somnath, Suhas committed
430
431
432
433
434
            
            if step_size % 1:
                warn('weird number of bins per UDVS step. Exiting')
                return
            step_size = int(step_size)
435

436
437
        rand_spectra = self.__get_random_spectra(parsers, self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
438
        take_conjugate = requires_conjugate(rand_spectra)
439

Somnath, Suhas's avatar
Somnath, Suhas committed
440
441
442
443
444
445
446
447
448
449
        self.mean_resp = np.zeros(shape=(self.h5_raw.shape[1]), dtype=np.complex64)
        self.max_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)
        self.min_resp = np.zeros(shape=(self.h5_raw.shape[0]), dtype=np.float32)

        numpix = self.h5_raw.shape[0] 
        """ 
        Don't try to do the last step if a pixel is missing.   
        This will be handled after the loop. 
        """ 
        if add_pixel: 
Somnath, Suhas's avatar
Somnath, Suhas committed
450
            numpix -= 1 
Somnath, Suhas's avatar
Somnath, Suhas committed
451
        
Somnath, Suhas's avatar
Somnath, Suhas committed
452
        for pix_indx in range(numpix):
Somnath, Suhas's avatar
Somnath, Suhas committed
453
454
            if self.h5_raw.shape[0] > 5:
                if pix_indx % int(round(self.h5_raw.shape[0]/10)) == 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
455
                    print('Reading... {} complete'.format(round(100*pix_indx / self.h5_raw.shape[0])))
Somnath, Suhas's avatar
Somnath, Suhas committed
456
457
458
459
                    
            # get the raw stream from each parser
            pxl_data = list()
            for prsr in parsers:
Somnath, Suhas's avatar
Somnath, Suhas committed
460
                pxl_data.append(prsr.read_pixel())
Somnath, Suhas's avatar
Somnath, Suhas committed
461
462
463
464
465
466
467
            
            # interleave if both in and out of field
            # we are ignoring user defined possibilities...
            if mode == 'in and out-of-field':
                in_fld = pxl_data[0]
                out_fld = pxl_data[1]
                
Somnath, Suhas's avatar
Somnath, Suhas committed
468
469
470
471
472
                in_fld_2 = in_fld.reshape(udvs_steps, step_size)
                out_fld_2 = out_fld.reshape(udvs_steps, step_size)
                raw_mat = np.empty((udvs_steps*2, step_size), dtype=out_fld.dtype)
                raw_mat[0::2, :] = in_fld_2
                raw_mat[1::2, :] = out_fld_2
Somnath, Suhas's avatar
Somnath, Suhas committed
473
474
                raw_vec = raw_mat.reshape(in_fld.size + out_fld.size).transpose()
            else:
Somnath, Suhas's avatar
Somnath, Suhas committed
475
                raw_vec = pxl_data[0]  # only one parser
Somnath, Suhas's avatar
Somnath, Suhas committed
476
477
            self.max_resp[pix_indx] = np.max(np.abs(raw_vec))
            self.min_resp[pix_indx] = np.min(np.abs(raw_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
478
            self.mean_resp = (1/(pix_indx+1))*(raw_vec + pix_indx * self.mean_resp)
479
480
481

            if take_conjugate:
                raw_vec = np.conjugate(raw_vec)
482
            self.h5_raw[pix_indx, :] = np.complex64(raw_vec[:])
Somnath, Suhas's avatar
Somnath, Suhas committed
483
484
485
486
            self.hdf.file.flush()
            
        # Add zeros to main_data for the missing pixel. 
        if add_pixel: 
Somnath, Suhas's avatar
Somnath, Suhas committed
487
            self.h5_raw[-1, :] = 0+0j             
Somnath, Suhas's avatar
Somnath, Suhas committed
488
489
            
        print('---- Finished reading files -----')
490
491

    def __quick_read_data(self, real_path, imag_path, udvs_steps):
Somnath, Suhas's avatar
Somnath, Suhas committed
492
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
493
494
495
496
497
498
499
500
        Returns information about the excitation BE waveform present in the .mat file

        Parameters
        -----------
        real_path : String / Unicode
            Absolute file path of the real data file
        imag_path : String / Unicode
            Absolute file path of the real data file
501
502
        udvs_steps : unsigned int
            Number of UDVS steps
Somnath, Suhas's avatar
Somnath, Suhas committed
503
504
505
        """
        print('---- reading all data at once ----------')  

506
507
508
        parser = BEodfParser(real_path, imag_path, self.h5_raw.shape[0], self.h5_raw.shape[1]*4)

        step_size = self.h5_raw.shape[1] / udvs_steps
509
510
        rand_spectra = self.__get_random_spectra([parser], self.h5_raw.shape[0], udvs_steps, step_size,
                                                 num_spectra=self.num_rand_spectra)
511
        take_conjugate = requires_conjugate(rand_spectra)
Somnath, Suhas's avatar
Somnath, Suhas committed
512
        raw_vec = parser.read_all_data()
513
        if take_conjugate:
514
            print('Taking conjugate to ensure positive Quality factors')
515
            raw_vec = np.conjugate(raw_vec)
Somnath, Suhas's avatar
Somnath, Suhas committed
516
                                      
Somnath, Suhas's avatar
Somnath, Suhas committed
517
        raw_mat = raw_vec.reshape(self.h5_raw.shape[0], self.h5_raw.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
518
519
                
        # Write to the h5 dataset:
Somnath, Suhas's avatar
Somnath, Suhas committed
520
521
522
        self.mean_resp = np.mean(raw_mat, axis=0)
        self.max_resp = np.amax(np.abs(raw_mat), axis=0)
        self.min_resp = np.amin(np.abs(raw_mat), axis=0)
523
        self.h5_raw[:, :] = np.complex64(raw_mat)
Somnath, Suhas's avatar
Somnath, Suhas committed
524
525
526
527
        self.hdf.file.flush()

        print('---- Finished reading files -----')       
        
528
    def _parse_file_path(self, data_filepath):
Somnath, Suhas's avatar
Somnath, Suhas committed
529
530
531
532
533
534
535
        """
        Returns the basename and a dictionary containing the absolute file paths for the
        real and imaginary data files, text and mat parameter files in a dictionary
        
        Parameters 
        --------------------
        data_filepath: String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
536
            Absolute path of any file in the same directory as the .dat files
Somnath, Suhas's avatar
Somnath, Suhas committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        
        Returns 
        --------------------
        basename : String / Unicode
            Basename of the dataset      
        path_dict : Dictionary
            Dictionary containing absolute paths of all necessary data and parameter files
        """
        (folder_path, basename) = path.split(data_filepath)
        (super_folder, basename) = path.split(folder_path) 

        if basename.endswith('_d'):
            # Old old data format where the folder ended with a _d for some reason
            basename = basename[:-2]
        """
        A single pair of real and imaginary files are / were generated for:
            BE-Line and BEPS (compiled version only generated out-of-field or 'read')
        Two pairs of real and imaginary files were generated for later BEPS datasets
            These have 'read' and 'write' prefixes to denote out or in field respectively
        """
        path_dict = dict()
        
        for file_name in listdir(folder_path):
Chris Smith's avatar
Chris Smith committed
560
            abs_path = path.join(folder_path, file_name)
Somnath, Suhas's avatar
Somnath, Suhas committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
            if file_name.endswith('.txt') and file_name.find('parm') > 0:
                path_dict['parm_txt'] = abs_path
            elif file_name.find('.mat') > 0:
                if file_name.find('more_parms') > 0:
                    path_dict['parm_mat'] = abs_path
                elif file_name == (basename + '.mat'):                   
                    path_dict['old_mat_parms'] = abs_path
            elif file_name.endswith('.dat'):
                # Need to account for the second AI channel here
                file_tag = 'read'
                if file_name.find('write') > 0:
                    file_tag = 'write'
                if file_name.find('real') > 0:
                    file_tag += '_real'
                elif file_name.find('imag') > 0:
                    file_tag += '_imag'
                path_dict[file_tag] = abs_path

Chris Smith's avatar
Chris Smith committed
579
        return basename, path_dict
Somnath, Suhas's avatar
Somnath, Suhas committed
580
581
582

    @staticmethod
    def __read_old_mat_be_vecs(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        """
        Returns information about the excitation BE waveform present in the 
        more parms.mat file
        
        Parameters 
        --------------------
        filepath : String or unicode
            Absolute filepath of the .mat parameter file
        
        Returns 
        --------------------
        bin_inds : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        bin_w : 1D numpy float array
            Excitation bin Frequencies
        bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        BE_wave : 1D numpy float array
            Band Excitation waveform
        dc_amp_vec_full : 1D numpy float array
            spectroscopic waveform. 
            This information will be necessary for fixing the UDVS for AC modulation for example
        """
        matread = loadmat(file_path, squeeze_me=True)    
        BE_wave = matread['BE_wave']
Somnath, Suhas's avatar
Somnath, Suhas committed
608
        bin_inds = matread['bin_ind'] -1  # Python base 0
Somnath, Suhas's avatar
Somnath, Suhas committed
609
610
611
        bin_w = matread['bin_w']
        dc_amp_vec_full = matread['dc_amp_vec_full']
        FFT_full = np.fft.fftshift(np.fft.fft(BE_wave))
Somnath, Suhas's avatar
Somnath, Suhas committed
612
613
        bin_FFT = np.conjugate(FFT_full[bin_inds])
        return bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full
Somnath, Suhas's avatar
Somnath, Suhas committed
614
        
Somnath, Suhas's avatar
Somnath, Suhas committed
615
616
    @staticmethod
    def __get_parms_from_old_mat(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
        """
        Formats parameters found in the old parameters .mat file into a dictionary
        as though the dataset had a parms.txt describing it
        
        Parameters 
        --------------------
        file_path : Unicode / String
            absolute filepath of the .mat file containing the parameters
            
        Returns 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        """
        parm_dict = dict()
        matread = loadmat(file_path, squeeze_me=True)
        
        parm_dict['IO_rate'] = str(int(matread['AO_rate']/1E+6)) + ' MHz'
        
        position_vec = matread['position_vec']
        parm_dict['grid_current_row'] = position_vec[0]
        parm_dict['grid_current_col'] = position_vec[1]
        parm_dict['grid_num_rows'] = position_vec[2]
        parm_dict['grid_num_cols'] = position_vec[3]
        
        if position_vec[0] != position_vec[1] or position_vec[2] != position_vec[3]:
            warn('WARNING: Incomplete dataset. Translation not guaranteed!')
Somnath, Suhas's avatar
Somnath, Suhas committed
644
            parm_dict['grid_num_rows'] = position_vec[0]  # set to number of present cols and rows
Somnath, Suhas's avatar
Somnath, Suhas committed
645
646
647
648
649
650
651
652
653
654
655
            parm_dict['grid_num_cols'] = position_vec[1]
    
        BE_parm_vec_1 = matread['BE_parm_vec_1']
        # Not required for translation but necessary to have
        if BE_parm_vec_1[0] == 3:
            parm_dict['BE_phase_content'] = 'chirp-sinc hybrid'
        else:
            parm_dict['BE_phase_content'] = 'Unknown'
        parm_dict['BE_center_frequency_[Hz]'] = BE_parm_vec_1[1]
        parm_dict['BE_band_width_[Hz]'] = BE_parm_vec_1[2]
        parm_dict['BE_amplitude_[V]'] = BE_parm_vec_1[3]
Somnath, Suhas's avatar
Somnath, Suhas committed
656
657
        parm_dict['BE_band_edge_smoothing_[s]'] = BE_parm_vec_1[4]  # 150 most likely
        parm_dict['BE_phase_variation'] = BE_parm_vec_1[5]  # 0.01 most likely
Somnath, Suhas's avatar
Somnath, Suhas committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
        parm_dict['BE_window_adjustment'] = BE_parm_vec_1[6] 
        parm_dict['BE_points_per_step'] = 2**int(BE_parm_vec_1[7])
        parm_dict['BE_repeats'] = 2**int(BE_parm_vec_1[8])
        try:
            parm_dict['BE_bins_per_read'] = matread['bins_per_band_s']
        except KeyError:
            parm_dict['BE_bins_per_read'] = len(matread['bin_w'])
    
        assembly_parm_vec = matread['assembly_parm_vec']
        
        if assembly_parm_vec[2] == 0:
            parm_dict['VS_measure_in_field_loops'] = 'out-of-field'
        elif assembly_parm_vec[2] == 1:
            parm_dict['VS_measure_in_field_loops'] = 'in and out-of-field'
        else:
            parm_dict['VS_measure_in_field_loops'] = 'in-field'
        
        parm_dict['IO_Analog_Input_1'] = '+/- 10V, FFT'
        if assembly_parm_vec[3] == 0:
            parm_dict['IO_Analog_Input_2'] = 'off'
        else:
            parm_dict['IO_Analog_Input_2'] = '+/- 10V, FFT'
            
Somnath, Suhas's avatar
Somnath, Suhas committed
681
682
        # num_driving_bands = assembly_parm_vec[0]  # 0 = 1, 1 = 2 bands
        # band_combination_order = assembly_parm_vec[1]  # 0 parallel 1 series
Somnath, Suhas's avatar
Somnath, Suhas committed
683
684
685
686
687
688
689
        
        VS_parms = matread['SS_parm_vec']
        dc_amp_vec_full = matread['dc_amp_vec_full']
           
        VS_start_V = VS_parms[4] 
        VS_start_loop_amp = VS_parms[5] 
        VS_final_loop_amp = VS_parms[6] 
Somnath, Suhas's avatar
Somnath, Suhas committed
690
        # VS_read_write_ratio = VS_parms[8]  # 1 <- SS_read_write_ratio
Somnath, Suhas's avatar
Somnath, Suhas committed
691
        
Somnath, Suhas's avatar
Somnath, Suhas committed
692
        parm_dict['VS_set_pulse_amplitude_[V]'] = VS_parms[9]  # 0 <- SS_set_pulse_amp
Somnath, Suhas's avatar
Somnath, Suhas committed
693
694
695
696
697
        parm_dict['VS_read_voltage_[V]'] = VS_parms[3] 
        parm_dict['VS_steps_per_full_cycle'] = VS_parms[7]
        parm_dict['VS_cycle_fraction'] = 'full'
        parm_dict['VS_cycle_phase_shift'] = 0 
        parm_dict['VS_number_of_cycles'] = VS_parms[2]
Somnath, Suhas's avatar
Somnath, Suhas committed
698
699
700
701
702
        parm_dict['FORC_num_of_FORC_cycles'] = 1
        parm_dict['FORC_V_high1_[V]'] = 0
        parm_dict['FORC_V_high2_[V]'] = 0
        parm_dict['FORC_V_low1_[V]'] = 0
        parm_dict['FORC_V_low2_[V]'] = 0
Somnath, Suhas's avatar
Somnath, Suhas committed
703
704
705
        
        if VS_parms[0] == 0:
            parm_dict['VS_mode'] = 'DC modulation mode'
Somnath, Suhas's avatar
Somnath, Suhas committed
706
            parm_dict['VS_amplitude_[V]'] = 0.5*(max(dc_amp_vec_full) - min(dc_amp_vec_full))  # VS_parms[1] # SS_max_offset_amplitude
Somnath, Suhas's avatar
Somnath, Suhas committed
707
708
709
710
            parm_dict['VS_offset_[V]'] = max(dc_amp_vec_full) + min(dc_amp_vec_full)     
        elif VS_parms[0] == 1:
            # FORC
            parm_dict['VS_mode'] = 'DC modulation mode'
Somnath, Suhas's avatar
Somnath, Suhas committed
711
            parm_dict['VS_amplitude_[V]'] = 1  # VS_parms[1] # SS_max_offset_amplitude
Somnath, Suhas's avatar
Somnath, Suhas committed
712
713
            parm_dict['VS_offset_[V]'] = 0
            parm_dict['VS_number_of_cycles'] = 1                             
Somnath, Suhas's avatar
Somnath, Suhas committed
714
715
716
717
718
            parm_dict['FORC_num_of_FORC_cycles'] = VS_parms[2]
            parm_dict['FORC_V_high1_[V]'] = VS_start_V
            parm_dict['FORC_V_high2_[V]'] = VS_start_V
            parm_dict['FORC_V_low1_[V]'] = VS_start_V - VS_start_loop_amp
            parm_dict['FORC_V_low2_[V]'] = VS_start_V - VS_final_loop_amp
Somnath, Suhas's avatar
Somnath, Suhas committed
719
720
721
        elif VS_parms[0] == 2:
            # AC mode 
            parm_dict['VS_mode'] = 'AC modulation mode with time reversal'
Somnath, Suhas's avatar
Somnath, Suhas committed
722
723
            parm_dict['VS_amplitude_[V]'] = 0.5 * VS_final_loop_amp
            parm_dict['VS_offset_[V]'] = 0  # this is not correct. Fix manually when it comes to UDVS generation?
Somnath, Suhas's avatar
Somnath, Suhas committed
724
725
726
727
728
        else:
            parm_dict['VS_mode'] = 'Custom'
    
        return parm_dict
        
Somnath, Suhas's avatar
Somnath, Suhas committed
729
730
    @staticmethod
    def __read_parms_mat(file_path, is_beps):
Somnath, Suhas's avatar
Somnath, Suhas committed
731
732
733
734
735
        """
        Returns information about the excitation BE waveform present in the more parms.mat file
        
        Parameters 
        --------------------
Somnath, Suhas's avatar
Somnath, Suhas committed
736
        file_path : String / Unicode
Somnath, Suhas's avatar
Somnath, Suhas committed
737
            Absolute filepath of the .mat parameter file
Somnath, Suhas's avatar
Somnath, Suhas committed
738
        is_beps : Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
739
740
741
742
743
744
745
746
747
748
749
750
751
            Whether or not this is BEPS or BE-Line
        
        Returns 
        --------------------
        BE_bin_ind : 1D numpy unsigned int array
            Indices of the excited and measured frequency bins
        BE_bin_w : 1D numpy float array
            Excitation bin Frequencies
        BE_bin_FFT : 1D numpy complex array
            FFT of the BE waveform for the excited bins
        ex_wfm : 1D numpy float array
            Band Excitation waveform
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
752
        if not path.exists(file_path):
Somnath, Suhas's avatar
Somnath, Suhas committed
753
754
            warn('BEodfTranslator - NO More parms file found')
            return None
Somnath, Suhas's avatar
Somnath, Suhas committed
755
        if is_beps:
Somnath, Suhas's avatar
Somnath, Suhas committed
756
757
758
            fft_name = 'FFT_BE_wave'
        else:
            fft_name = 'FFT_BE_rev_wave'
Somnath, Suhas's avatar
Somnath, Suhas committed
759
760
761
762
        matread = loadmat(file_path, variable_names=['BE_bin_ind', 'BE_bin_w', fft_name])
        BE_bin_ind = np.squeeze(matread['BE_bin_ind']) - 1   # From Matlab (base 1) to Python (base 0)
        BE_bin_w = np.squeeze(matread['BE_bin_w'])
        FFT_full = np.complex64(np.squeeze(matread[fft_name]))
Somnath, Suhas's avatar
Somnath, Suhas committed
763
        # For whatever weird reason, the sign of the imaginary portion is flipped. Correct it:
Somnath, Suhas's avatar
Somnath, Suhas committed
764
765
766
767
        #BE_bin_FFT = np.conjugate(FFT_full[BE_bin_ind])
        BE_bin_FFT = np.zeros(len(BE_bin_ind), dtype=np.complex64)
        BE_bin_FFT.real = np.real(FFT_full[BE_bin_ind])
        BE_bin_FFT.imag = -1*np.imag(FFT_full[BE_bin_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
768
769
        
        ex_wfm = np.real(np.fft.ifft(np.fft.ifftshift(FFT_full)))
Somnath, Suhas's avatar
Somnath, Suhas committed
770
771

        return BE_bin_ind, BE_bin_w, BE_bin_FFT, ex_wfm
Somnath, Suhas's avatar
Somnath, Suhas committed
772
        
Somnath, Suhas's avatar
Somnath, Suhas committed
773
    def __build_udvs_table(self, parm_dict):
Somnath, Suhas's avatar
Somnath, Suhas committed
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
        """
        Generates the UDVS table using the parameters
        
        Parameters 
        --------------------
        parm_dict : dictionary
            Parameters describing experiment
        
        Returns 
        --------------------      
        UD_VS_table_label : List of strings
            Labels for columns in the UDVS table
        UD_VS_table_unit : List of strings
            Units for the columns in the UDVS table
        UD_VS_table : 2D numpy float array
            UDVS data table
        """
    
Somnath, Suhas's avatar
Somnath, Suhas committed
792
        def translate_val(target, strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
793
794
            """
            Internal function - Interprets the provided value using the provided lookup table
Somnath, Suhas's avatar
Somnath, Suhas committed
795
796
797
798
799
800
801
802
803

            Parameters
            ----------
            target : String
                Item we are looking for in the strvals list
            strvals : list of strings
                List of source values
            numvals : list of numbers
                List of results
Somnath, Suhas's avatar
Somnath, Suhas committed
804
805
806
807
            """
        
            if len(strvals) is not len(numvals):
                return None    
Somnath, Suhas's avatar
Somnath, Suhas committed
808
            for strval, fltval in zip(strvals, numvals):
Somnath, Suhas's avatar
Somnath, Suhas committed
809
810
                if target == strval:
                    return fltval
Somnath, Suhas's avatar
Somnath, Suhas committed
811
            return None  # not found in list
Somnath, Suhas's avatar
Somnath, Suhas committed
812
813
            
        #% Extract values from parm text file    
Somnath, Suhas's avatar
Somnath, Suhas committed
814
        BE_signal_type = translate_val(parm_dict['BE_phase_content'], ['chirp-sinc hybrid','1/2 harmonic excitation','1/3 harmonic excitation','pure sine'],[1,2,3,4])
Somnath, Suhas's avatar
Somnath, Suhas committed
815
816
817
818
819
820
821
822
823
824
825
826
        # This is necessary when normalzing the AI by the AO
        self.harmonic = BE_signal_type
        self.signal_type = BE_signal_type
        if BE_signal_type is 4:
            self.harmonic = 1
        BE_amp = parm_dict['BE_amplitude_[V]']
        
        VS_amp = parm_dict['VS_amplitude_[V]']
        VS_offset = parm_dict['VS_offset_[V]']
        #VS_read_voltage = parm_dict['VS_read_voltage_[V]']
        VS_steps = parm_dict['VS_steps_per_full_cycle']
        VS_cycles = parm_dict['VS_number_of_cycles']
Somnath, Suhas's avatar
Somnath, Suhas committed
827
828
829
        VS_fraction = translate_val(parm_dict['VS_cycle_fraction'],
                                    ['full', '1/2', '1/4', '3/4'],
                                    [1., 0.5, 0.25, 0.75])
Somnath, Suhas's avatar
Somnath, Suhas committed
830
831
        VS_shift = parm_dict['VS_cycle_phase_shift']
        if VS_shift is not 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
832
833
834
835
836
837
838
            VS_shift = translate_val(VS_shift, ['1/4', '1/2', '3/4'], [0.25, 0.5, 0.75])
        VS_in_out_cond = translate_val(parm_dict['VS_measure_in_field_loops'],
                                       ['out-of-field', 'in-field', 'in and out-of-field'], [0, 1, 2])
        VS_ACDC_cond = translate_val(parm_dict['VS_mode'],
                                     ['DC modulation mode', 'AC modulation mode with time reversal',
                                      'load user defined VS Wave from file', 'current mode'],
                                     [0, 2, 3, 4])
Somnath, Suhas's avatar
Somnath, Suhas committed
839
840
841
842
843
844
845
846
847
848
        self.expt_type = VS_ACDC_cond
        FORC_cycles = parm_dict['FORC_num_of_FORC_cycles']
        FORC_A1 = parm_dict['FORC_V_high1_[V]']
        FORC_A2 = parm_dict['FORC_V_high2_[V]']
        #FORC_repeats = parm_dict['# of FORC repeats']
        FORC_B1 = parm_dict['FORC_V_low1_[V]']
        FORC_B2 = parm_dict['FORC_V_low2_[V]']
            
        #% build vector of voltage spectroscopy values
        
Somnath, Suhas's avatar
Somnath, Suhas committed
849
850
        if VS_ACDC_cond == 0 or VS_ACDC_cond == 4:  # DC voltage spectroscopy or current mode
            VS_amp_vec_1 = np.arange(0, 1+1/(VS_steps/4), 1/(VS_steps/4))
Somnath, Suhas's avatar
Somnath, Suhas committed
851
852
853
            VS_amp_vec_2 = np.flipud(VS_amp_vec_1[:-1])
            VS_amp_vec_3 = -VS_amp_vec_1[1:]
            VS_amp_vec_4 =  VS_amp_vec_1[1:-1]-1
Somnath, Suhas's avatar
Somnath, Suhas committed
854
855
856
857
858
859
860
861
862
863
864
865
866
            vs_amp_vec = VS_amp*(np.hstack((VS_amp_vec_1, VS_amp_vec_2,  VS_amp_vec_3, VS_amp_vec_4)))
            vs_amp_vec = np.roll(vs_amp_vec, int(np.floor(VS_steps/VS_fraction*VS_shift)))  # apply phase shift to VS wave
            vs_amp_vec = vs_amp_vec[:int(np.floor(VS_steps*VS_fraction))]  # cut VS waveform
            vs_amp_vec = np.tile(vs_amp_vec, VS_cycles)  # repeat VS waveform
            vs_amp_vec = vs_amp_vec+VS_offset
            
        elif VS_ACDC_cond == 2:  # AC voltage spectroscopy with time reversal
            vs_amp_vec = VS_amp * np.arange(1/(VS_steps/2/VS_fraction), 1 + 1/(VS_steps/2/VS_fraction),
                                            1/(VS_steps/2/VS_fraction))
            vs_amp_vec = np.roll(vs_amp_vec,
                                 int(np.floor(VS_steps/VS_fraction*VS_shift)))  # apply phase shift to VS wave
            vs_amp_vec = vs_amp_vec[:int(np.floor(VS_steps*VS_fraction/2))]  # cut VS waveform
            vs_amp_vec = np.tile(vs_amp_vec, VS_cycles * 2)  # repeat VS waveform
Somnath, Suhas's avatar
Somnath, Suhas committed
867
868
            
        if FORC_cycles > 1:
Somnath, Suhas's avatar
Somnath, Suhas committed
869
            vs_amp_vec = vs_amp_vec/np.max(np.abs(vs_amp_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
870
871
872
873
874
875
            FORC_cycle_vec = np.arange(0, FORC_cycles+1, FORC_cycles/(FORC_cycles-1))
            FORC_A_vec = FORC_cycle_vec*(FORC_A2-FORC_A1)/FORC_cycles + FORC_A1
            FORC_B_vec = FORC_cycle_vec*(FORC_B2-FORC_B1)/FORC_cycles + FORC_B1
            FORC_amp_vec = (FORC_A_vec-FORC_B_vec)/2
            FORC_off_vec = (FORC_A_vec+FORC_B_vec)/2
            
Somnath, Suhas's avatar
Somnath, Suhas committed
876
877
878
            VS_amp_mat = np.tile(vs_amp_vec, [FORC_cycles, 1])
            FORC_amp_mat = np.tile(FORC_amp_vec, [len(vs_amp_vec), 1]).transpose()
            FORC_off_mat = np.tile(FORC_off_vec, [len(vs_amp_vec), 1]).transpose()
Somnath, Suhas's avatar
Somnath, Suhas committed
879
            VS_amp_mat = VS_amp_mat*FORC_amp_mat + FORC_off_mat
Somnath, Suhas's avatar
Somnath, Suhas committed
880
            vs_amp_vec = VS_amp_mat.reshape(int(FORC_cycles*VS_cycles*VS_fraction*VS_steps))
Somnath, Suhas's avatar
Somnath, Suhas committed
881
            
Somnath, Suhas's avatar
Somnath, Suhas committed
882
883
        # Build UDVS table:
        if VS_ACDC_cond is 0 or VS_ACDC_cond is 4:  # DC voltage spectroscopy or current mode
Somnath, Suhas's avatar
Somnath, Suhas committed
884
885
            
            if VS_ACDC_cond is 0:
Somnath, Suhas's avatar
Somnath, Suhas committed
886
                UD_dc_vec = np.vstack((vs_amp_vec, np.zeros(len(vs_amp_vec))))
Somnath, Suhas's avatar
Somnath, Suhas committed
887
            if VS_ACDC_cond is 4:
Somnath, Suhas's avatar
Somnath, Suhas committed
888
                UD_dc_vec = np.vstack((vs_amp_vec, vs_amp_vec))
Somnath, Suhas's avatar
Somnath, Suhas committed
889
        
Somnath, Suhas's avatar
Somnath, Suhas committed
890
            UD_dc_vec = UD_dc_vec.transpose().reshape(UD_dc_vec.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
891
892
            num_VS_steps = UD_dc_vec.size
                        
Somnath, Suhas's avatar
Somnath, Suhas committed
893
            UD_VS_table_label = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'in-field', 'out-of-field']
Somnath, Suhas's avatar
Somnath, Suhas committed
894
            UD_VS_table_unit = ['', 'V', 'A', '', '', 'V', 'V']
Somnath, Suhas's avatar
Somnath, Suhas committed
895
            udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
Somnath, Suhas's avatar
Somnath, Suhas committed
896
            
Somnath, Suhas's avatar
Somnath, Suhas committed
897
898
            udvs_table[:, 0] = np.arange(0, num_VS_steps)  # Python base 0
            udvs_table[:, 1] = UD_dc_vec
Somnath, Suhas's avatar
Somnath, Suhas committed
899
            
Somnath, Suhas's avatar
Somnath, Suhas committed
900
901
            BE_IF_switch = np.abs(np.imag(np.exp(1j*np.pi/2*np.arange(1, num_VS_steps+1))))
            BE_OF_switch = np.abs(np.real(np.exp(1j*np.pi/2*np.arange(1, num_VS_steps+1))))
Somnath, Suhas's avatar
Somnath, Suhas committed
902
            
Somnath, Suhas's avatar
Somnath, Suhas committed
903
904
905
906
907
908
            if VS_in_out_cond is 0:  # out of field only
                udvs_table[:, 2] = BE_amp * BE_OF_switch
            elif VS_in_out_cond is 1:  # in field only
                udvs_table[:, 2] = BE_amp * BE_IF_switch
            elif VS_in_out_cond is 2:  # both in and out of field
                udvs_table[:, 2] = BE_amp * np.ones(num_VS_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
909
            
Somnath, Suhas's avatar
Somnath, Suhas committed
910
911
            udvs_table[:, 3] = np.ones(num_VS_steps)  # wave type
            udvs_table[:, 4] = np.ones(num_VS_steps) * BE_signal_type  # wave mod
Somnath, Suhas's avatar
Somnath, Suhas committed
912
            
Somnath, Suhas's avatar
Somnath, Suhas committed
913
914
            udvs_table[:, 5] = float('NaN')*np.ones(num_VS_steps)
            udvs_table[:, 6] = float('NaN')*np.ones(num_VS_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
915
                            
Somnath, Suhas's avatar
Somnath, Suhas committed
916
917
            udvs_table[BE_IF_switch == 1, 5] = udvs_table[BE_IF_switch == 1, 1]
            udvs_table[BE_OF_switch == 1, 6] = udvs_table[BE_IF_switch == 1, 1]
Somnath, Suhas's avatar
Somnath, Suhas committed
918
            
Somnath, Suhas's avatar
Somnath, Suhas committed
919
        elif VS_ACDC_cond is 2:  # AC voltage spectroscopy
Somnath, Suhas's avatar
Somnath, Suhas committed
920
        
Somnath, Suhas's avatar
Somnath, Suhas committed
921
            num_VS_steps = vs_amp_vec.size
Somnath, Suhas's avatar
Somnath, Suhas committed
922
923
924
925
926
927
928
            half = int(0.5*num_VS_steps)
            
            if num_VS_steps is not half * 2:
                warn('Odd number of UDVS steps found. Exiting!')
                return
                
            UD_dc_vec = VS_offset*np.ones(num_VS_steps)
Somnath, Suhas's avatar
Somnath, Suhas committed
929
            UD_VS_table_label = ['step_num', 'dc_offset', 'ac_amp', 'wave_type', 'wave_mod', 'forward', 'reverse']
Somnath, Suhas's avatar
Somnath, Suhas committed
930
            UD_VS_table_unit = ['', 'V', 'A', '', '', 'A', 'A']
Somnath, Suhas's avatar
Somnath, Suhas committed
931
932
933
934
935
936
937
938
939
940
941
942
943
944
            udvs_table = np.zeros(shape=(num_VS_steps, 7), dtype=np.float32)
            udvs_table[:, 0] = np.arange(1, num_VS_steps+1)
            udvs_table[:, 1] = UD_dc_vec
            udvs_table[:, 2] = vs_amp_vec
            udvs_table[:, 3] = np.ones(num_VS_steps)
            udvs_table[:half, 4] = BE_signal_type*np.ones(half)
            udvs_table[half:, 4] = -1*BE_signal_type*np.ones(half)
            udvs_table[:, 5] = float('NaN')*np.ones(num_VS_steps)
            udvs_table[:, 6] = float('NaN')*np.ones(num_VS_steps)
            udvs_table[:half, 5] = vs_amp_vec[:half]
            udvs_table[half:, 6] = vs_amp_vec[half:]
            
        return UD_VS_table_label, UD_VS_table_unit, udvs_table

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
    @staticmethod
    def __get_random_spectra(parsers, num_pixels, num_udvs_steps, num_bins, num_spectra=100, verbose=False):
        """
        Parameters
        ----------
        parsers : list of BEodfParser objects
            parsers to seek into files to grab spectra
        num_pixels : unsigned int
            Number of spatial positions in the image
        num_udvs_steps : unsigned int
            Number of UDVS steps
        num_bins : unsigned int
            Number of frequency bins in every UDVS step
        num_spectra : unsigned int
            Total number of spectra to be extracted
        verbose : Boolean, optional
            Whether or not to print debugging statements

        Returns
        -------
        chosen_spectra : 2D complex numpy array
            spectrogram or spectra arranged as [instance, spectrum]
        """
        num_pixels = int(num_pixels)
        num_udvs_steps = int(num_udvs_steps)
        num_bins = int(num_bins)

        num_spectra = min(num_spectra, len(parsers) * num_pixels * num_udvs_steps)
        selected_pixels = np.random.randint(0, num_pixels, size=num_spectra)
        selected_steps = np.random.randint(0, num_udvs_steps, size=num_spectra)
        selected_parsers = np.random.randint(0, len(parsers), size=num_spectra)

        if verbose:
            print('Selecting the following random pixels, UDVS steps, parsers')
            print(np.vstack((selected_pixels, selected_steps, selected_parsers)))

        chosen_spectra = np.zeros(shape=(num_spectra, num_bins), dtype=np.complex64)

        for spectra_index in range(num_spectra):
            prsr = parsers[selected_parsers[spectra_index]]
            prsr.seek_to_pixel(selected_pixels[spectra_index])
            raw_vec = prsr.read_pixel()
            spectrogram = raw_vec.reshape(num_udvs_steps, -1)
            chosen_spectra[spectra_index] = spectrogram[selected_steps[spectra_index]]

        for prsr in parsers:
            prsr.reset()

        return chosen_spectra
Somnath, Suhas's avatar
Somnath, Suhas committed
994

995

Somnath, Suhas's avatar
Somnath, Suhas committed
996
class BEodfParser(object):
997

998
    def __init__(self, real_path, imag_path, num_pix, bytes_per_pix):
Somnath, Suhas's avatar
Somnath, Suhas committed
999
1000
        """
        This object reads the two binary data files (real and imaginary data).