plot_utils.py 53.7 KB
Newer Older
Somnath, Suhas's avatar
Somnath, Suhas committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-
"""
Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath
"""
Chris Smith's avatar
Chris Smith committed
7
# TODO: All general plotting functions should support data with 1, 2, or 3 spatial dimensions.
Chris Smith's avatar
Chris Smith committed
8

9
from __future__ import division, print_function, absolute_import, unicode_literals
10
11

import inspect
12
from warnings import warn
Unknown's avatar
Unknown committed
13
import os
14
import sys
Chris Smith's avatar
merged    
Chris Smith committed
15
import h5py
16
import matplotlib.pyplot as plt
17
18
import numpy as np
import scipy
19
from scipy.signal import blackman
Unknown's avatar
Unknown committed
20
import ipywidgets as widgets
21
from matplotlib.colors import LinearSegmentedColormap
Unknown's avatar
Unknown committed
22
from mpl_toolkits.axes_grid1 import ImageGrid, make_axes_locatable
23
from ..io.hdf_utils import reshape_to_Ndims, get_formatted_labels, get_data_descriptor
24

25
26
if sys.version_info.major == 3:
    unicode = str
Somnath, Suhas's avatar
Somnath, Suhas committed
27

Somnath, Suhas's avatar
Somnath, Suhas committed
28
default_cmap = plt.cm.viridis
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


def get_cmap_object(cmap):
    """
    Get the matplotlib.colors.LinearSegmentedColormap object regardless of the input

    Parameters
    ----------
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
    Returns
    -------
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Requested / Default colormap object
    """
    if cmap is None:
        return default_cmap
    elif isinstance(cmap, str):
Unknown's avatar
Unknown committed
47
        return plt.get_cmap(cmap)
48
49
50
    return cmap


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def set_tick_font_size(axes, font_size):
    """
    Sets the font size of the ticks in the provided axes

    Parameters
    ----------
    axes : matplotlib.pyplot.axis object or list of axis objects
        axes to set font sizes
    font_size : unigned int
        Font size
    """

    def __set_axis_tick(axis):
        """
        Sets the font sizes to the x and y axis in the given axis object

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object
            axis to set font sizes
        """
        for tick in axis.xaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)
        for tick in axis.yaxis.get_major_ticks():
            tick.label.set_fontsize(font_size)

    if hasattr(axes, '__iter__'):
        for axis in axes:
            __set_axis_tick(axis)
    else:
        __set_axis_tick(axes)

Somnath, Suhas's avatar
Somnath, Suhas committed
83

84
85
86
87
88
89
90
def cmap_jet_white_center():
    """
    Generates the jet colormap with a white center

    Returns
    -------
    white_jet : matplotlib.colors.LinearSegmentedColormap object
91
        color map object that can be used in place of the default colormap
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    """
    # For red - central column is like brightness
    # For blue - last column is like brightness
    cdict = {'red': ((0.00, 0.0, 0.0),
                     (0.30, 0.0, 0.0),
                     (0.50, 1.0, 1.0),
                     (0.90, 1.0, 1.0),
                     (1.00, 0.5, 1.0)),
             'green': ((0.00, 0.0, 0.0),
                       (0.10, 0.0, 0.0),
                       (0.42, 1.0, 1.0),
                       (0.58, 1.0, 1.0),
                       (0.90, 0.0, 0.0),
                       (1.00, 0.0, 0.0)),
             'blue': ((0.00, 0.0, 0.5),
                      (0.10, 1.0, 1.0),
                      (0.50, 1.0, 1.0),
                      (0.70, 0.0, 0.0),
                      (1.00, 0.0, 0.0))
             }
    return LinearSegmentedColormap('white_jet', cdict)
113

Chris Smith's avatar
Chris Smith committed
114

Somnath, Suhas's avatar
Somnath, Suhas committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def cmap_from_rgba(name, interp_vals, normalization_val):
    """
    Generates a colormap given a matlab-style interpolation table

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    interp_vals : List of tuples
        Interpolation table that describes the desired color map. Each entry in the table should be described as:
        (position in the colorbar, (red, green, blue, alpha))
        The position in the color bar, red, green, blue, and alpha vary from 0 to the normalization value
    normalization_val : number
        The common maximum value for the position in the color bar, red, green, blue, and alpha

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        desired color map
    """

    normalization_val = np.round(1.0 * normalization_val)

    cdict = {'red': tuple([(dist / normalization_val, colors[0] / normalization_val, colors[0] / normalization_val)
                           for (dist, colors) in interp_vals][::-1]),
             'green': tuple([(dist / normalization_val, colors[1] / normalization_val, colors[1] / normalization_val)
                             for (dist, colors) in interp_vals][::-1]),
             'blue': tuple([(dist / normalization_val, colors[2] / normalization_val, colors[2] / normalization_val)
                            for (dist, colors) in interp_vals][::-1]),
             'alpha': tuple([(dist / normalization_val, colors[3] / normalization_val, colors[3] / normalization_val)
Unknown's avatar
Unknown committed
145
                             for (dist, colors) in interp_vals][::-1])}
Somnath, Suhas's avatar
Somnath, Suhas committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    return LinearSegmentedColormap(name, cdict)


def make_linear_alpha_cmap(name, solid_color, normalization_val, min_alpha=0, max_alpha=1):
    """
    Generates a transparent to opaque color map based on a single solid color

    Parameters
    ----------
    name : String / Unicode
        Name of the desired colormap
    solid_color : List of numbers
        red, green, blue, and alpha values for a specific color
    normalization_val : number
        The common maximum value for the red, green, blue, and alpha values. This is 1 in matplotlib
    min_alpha : float (optional. Default = 0 : ie- transparent)
        Lowest alpha value for the bottom of the color bar
    max_alpha : float (optional. Default = 1 : ie- opaque)
        Highest alpha value for the top of the color bar

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        transparent to opaque color map based on the provided color
    """
    solid_color = np.array(solid_color) / normalization_val * 1.0
    interp_table = [(1.0, (solid_color[0], solid_color[1], solid_color[2], max_alpha)),
                    (0, (solid_color[0], solid_color[1], solid_color[2], min_alpha))]
    return cmap_from_rgba(name, interp_table, 1)
Chris Smith's avatar
Chris Smith committed
176
177


Somnath, Suhas's avatar
Somnath, Suhas committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def cmap_hot_desaturated():
    """
    Returns a desaturated color map based on the hot colormap

    Returns
    -------
    new_cmap : matplotlib.colors.LinearSegmentedColormap object
        Desaturated version of the hot color map
    """
    hot_desaturated = [(255.0, (255, 76, 76, 255)),
                       (218.5, (107, 0, 0, 255)),
                       (182.1, (255, 96, 0, 255)),
                       (145.6, (255, 255, 0, 255)),
                       (109.4, (0, 127, 0, 255)),
                       (72.675, (0, 255, 255, 255)),
                       (36.5, (0, 0, 91, 255)),
                       (0, (71, 71, 219, 255))]

    return cmap_from_rgba('hot_desaturated', hot_desaturated, 255)
Chris Smith's avatar
Chris Smith committed
197
198


199
def discrete_cmap(num_bins, base_cmap=default_cmap):
200
201
202
203
204
205
206
207
208
209
210
211
    """
    Create an N-bin discrete colormap from the specified input map

    Parameters
    ----------
    num_bins : unsigned int
        Number of discrete bins
    base_cmap : matplotlib.colors.LinearSegmentedColormap object
        Base color map to discretize

    Returns
    -------
212
    new_cmap : String or matplotlib.colors.LinearSegmentedColormap object
213
214
        Discretized color map

Chris Smith's avatar
Chris Smith committed
215
216
217
218
219
    Notes
    -----
    Jake VanderPlas License: BSD-style
    https://gist.github.com/jakevdp/91077b0cae40f8f8244a

220
    """
221
    if base_cmap is None:
222
        base_cmap = default_cmap.name
223

224
    elif isinstance(base_cmap, type(default_cmap)):
225
        base_cmap = base_cmap.name
226

227
228
229
230
    if type(base_cmap) == str:
        return plt.get_cmap(base_cmap, num_bins)

    return base_cmap
231

232

Chris Smith's avatar
Chris Smith committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def _add_loop_parameters(axes, switching_coef_vec):
    """
    Add the loop parameters for the given loop to a list of axes

    Parameters
    ----------
    axes : list of matplotlib.pyplo.axes
        Plot axes to add the coeffients to
    switching_coef_vec : 1D numpy.ndarray
        Array of loop parameters arranged by position

    Returns
    -------
    axes : list of matplotlib.pyplo.axes
    """
    positions = np.linspace(0, switching_coef_vec.shape[0] - 1, len(axes.flat), dtype=np.int)

    for ax, pos in zip(axes.flat, positions):
        ax.axvline(switching_coef_vec[pos]['V+'], c='k', label='V+')
        ax.axvline(switching_coef_vec[pos]['V-'], c='r', label='V-')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 1'], c='k', ls=':', label='Nucleation Bias 1')
        ax.axvline(switching_coef_vec[pos]['Nucleation Bias 2'], c='r', ls=':', label='Nucleation Bias 2')
        ax.axhline(switching_coef_vec[pos]['R+'], c='k', ls='-.', label='R+')
        ax.axhline(switching_coef_vec[pos]['R-'], c='r', ls='-.', label='R-')

    return axes
259

260
261

def rainbow_plot(ax, ao_vec, ai_vec, num_steps=32, cmap=default_cmap, **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
262
263
264
265
    """
    Plots the input against the output waveform (typically loops).
    The color of the curve changes as a function of time using the jet colorscheme

266
267
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
268
269
270
271
272
273
274
275
    ax : axis handle
        Axis to plot the curve
    ao_vec : 1D float numpy array
        vector that forms the X axis
    ai_vec : 1D float numpy array
        vector that forms the Y axis
    num_steps : unsigned int (Optional)
        Number of discrete color steps
276
277
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
Somnath, Suhas's avatar
Somnath, Suhas committed
278
    """
279
280
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
281
    pts_per_step = int(len(ai_vec) / num_steps)
282
    for step in range(num_steps - 1):
Somnath, Suhas's avatar
Somnath, Suhas committed
283
284
        ax.plot(ao_vec[step * pts_per_step:(step + 1) * pts_per_step],
                ai_vec[step * pts_per_step:(step + 1) * pts_per_step],
285
                color=cmap(255 * step / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
286
287
288
    # plot the remainder:
    ax.plot(ao_vec[(num_steps - 1) * pts_per_step:],
            ai_vec[(num_steps - 1) * pts_per_step:],
289
            color=cmap(255 * num_steps / num_steps), **kwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
290
    """
291
    CS3=plt.contourf([[0,0],[0,0]], range(0,310),cmap=plt.cm.viridis)
Somnath, Suhas's avatar
Somnath, Suhas committed
292
293
294
    fig.colorbar(CS3)"""


295
def plot_line_family(axis, x_axis, line_family, line_names=None, label_prefix='Line', label_suffix='',
296
                     cmap=default_cmap, y_offset=0, **kwargs):
297
298
299
300
301
    """
    Plots a family of lines with a sequence of colors

    Parameters
    ----------
302
    axis : axis handle
303
304
305
306
307
308
309
310
311
312
313
314
315
        Axis to plot the curve
    x_axis : array-like
        Values to plot against
    line_family : 2D numpy array
        family of curves arranged as [curve_index, features]
    line_names : array-like
        array of string or numbers that represent the identity of each curve in the family
    label_prefix : string / unicode
        prefix for the legend (before the index of the curve)
    label_suffix : string / unicode
        suffix for the legend (after the index of the curve)
    cmap : matplotlib.colors.LinearSegmentedColormap object
        Colormap to be used
316
317
    y_offset : (optional) number
        quantity by which the lines are offset from each other vertically (useful for spectra)
318
    """
319
320
    cmap = get_cmap_object(cmap)

321
322
323
324
325
326
327
328
329
    num_lines = line_family.shape[0]

    if line_names is None:
        line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]
    else:
        if len(line_names) != num_lines:
            warn('Line names of different length compared to provided dataset')
            line_names = ['{} {} {}'.format(label_prefix, line_ind, label_suffix) for line_ind in range(num_lines)]

330
    for line_ind in range(num_lines):
Unknown's avatar
Unknown committed
331
        axis.plot(x_axis, line_family[line_ind] + line_ind * y_offset,
332
333
                  label=line_names[line_ind],
                  color=cmap(int(255 * line_ind / (num_lines - 1))), **kwargs)
334
335


Chris Smith's avatar
Chris Smith committed
336
def plot_map(axis, data, stdevs=2, origin='lower', **kwargs):
337
338
339
340
341
342
343
344
345
346
347
348
    """
    Plots a 2d map with a tight z axis, with or without color bars.
    Note that the direction of the y axis is flipped if the color bar is required

    Parameters
    ----------
    axis : matplotlib.pyplot.axis object
        Axis to plot this map onto
    data : 2D real numpy array
        Data to be plotted
    stdevs : unsigned int (Optional. Default = 2)
        Number of standard deviations to consider for plotting
Chris Smith's avatar
Chris Smith committed
349
350
351
352
    origin : str
        Where should the origin of the image data be located.  'lower' sets the origin to the
        bottom left, 'upper' sets it to the upper left.
        Default 'lower'
353

354
355
356
357
358
    Returns
    -------
    """
    data_mean = np.mean(data)
    data_std = np.std(data)
359
360
361
    im = axis.imshow(data, interpolation='none',
                     vmin=data_mean - stdevs * data_std,
                     vmax=data_mean + stdevs * data_std,
362
                     origin=origin,
363
                     **kwargs)
Unknown's avatar
Unknown committed
364
    # axis.set_aspect('auto')
365

366
    return im
367

368

Unknown's avatar
Unknown committed
369
def single_img_cbar_plot(fig, axis, img, show_xy_ticks=None, show_cbar=True,
370
371
372
373
374
375
376
377
378
379
380
381
382
383
                         x_size=1, y_size=1, num_ticks=4, cbar_label=None,
                         tick_font_size=14, **kwargs):
    """
    Plots an image within the given axis with a color bar + label and appropriate X, Y tick labels.
    This is particularly useful to get readily interpretable plots for papers

    Parameters
    ----------
    fig : matplotlib.figure object
        Handle to figure
    axis : matplotlib.axis object
        Axis to plot this image onto
    img : 2D numpy array with real values
        Data for the image plot
Unknown's avatar
Unknown committed
384
    show_xy_ticks : bool, Optional, default = None, shown unedited
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        Whether or not to show X, Y ticks
    show_cbar : bool, optional, default = True
        Whether or not to show the colorbar
    x_size : float, optional, default = 1
        Extent of tick marks in the X axis. This could be something like 1.5 for 1.5 microns
    y_size : float, optional, default = 1
        Extent of tick marks in y axis
    num_ticks : unsigned int, optional, default = 4
        Number of tick marks on the X and Y axes
    cbar_label : str, optional, default = None
        Labels for the colorbar. Use this for something like quantity (units)
    tick_font_size : unsigned int, optional, default = 14
        Font size to apply to x, y, colorbar ticks and colorbar label
    kwargs : dictionary
        Anything else that will be passed on to plot_map or imshow

    Returns
    -------
    im_handle : handle to image plot
        handle to image plot
    cbar : handle to color bar
        handle to color bar
    """
    if 'clim' not in kwargs:
Unknown's avatar
Unknown committed
409
        im_handle = plot_map(axis, img, **kwargs)
410
411
412
    else:
        im_handle = axis.imshow(img, origin='lower', **kwargs)

Unknown's avatar
Unknown committed
413
    if show_xy_ticks is True:
414
415
416
417
418
419
420
        x_ticks = np.linspace(0, img.shape[1] - 1, num_ticks, dtype=int)
        y_ticks = np.linspace(0, img.shape[0] - 1, num_ticks, dtype=int)
        axis.set_xticks(x_ticks)
        axis.set_yticks(y_ticks)
        axis.set_xticklabels([str(np.round(ind * x_size / (img.shape[1] - 1), 2)) for ind in x_ticks])
        axis.set_yticklabels([str(np.round(ind * y_size / (img.shape[0] - 1), 2)) for ind in y_ticks])
        set_tick_font_size(axis, tick_font_size)
Unknown's avatar
Unknown committed
421
    elif show_xy_ticks is False:
422
423
        axis.set_xticks([])
        axis.set_yticks([])
Unknown's avatar
Unknown committed
424
425
    else:
        set_tick_font_size(axis, tick_font_size)
426
427

    if show_cbar:
Unknown's avatar
Unknown committed
428
429
430
431
432
433
        # cbar = fig.colorbar(im_handle, ax=axis)
        # divider = make_axes_locatable(axis)
        # cax = divider.append_axes('right', size='5%', pad=0.05)
        # cbar = plt.colorbar(im_handle, cax=cax)
        cbar = plt.colorbar(im_handle, ax=axis, orientation='vertical',
                            fraction=0.046, pad=0.04, use_gridspec=True)
434
435
436
437
438
439
440
441
442
443
        if cbar_label is not None:
            cbar.set_label(cbar_label, fontsize=tick_font_size)
        """
        z_lims = cbar.get_clim()
        cbar.set_ticks(np.linspace(z_lims[0],z_lims[1], num_ticks))
        """
        cbar.ax.tick_params(labelsize=tick_font_size)
    return im_handle, cbar


Unknown's avatar
Unknown committed
444
445
446
def plot_loops(excit_wfm, datasets, line_colors=[], dataset_names=[], evenly_spaced=True,
               plots_on_side=5, x_label='', y_label='', subtitles='Position', title='',
               central_resp_size=None, use_rainbow_plots=False, h5_pos=None):
447
    # TODO: Allow multiple excitation waveforms
Somnath, Suhas's avatar
Somnath, Suhas committed
448
    """
449
    Plots loops from multiple datasets from up to 25 evenly spaced positions
Somnath, Suhas's avatar
Somnath, Suhas committed
450
451
452
453
454

    Parameters
    -----------
    excit_wfm : 1D numpy float array
        Excitation waveform in the time domain
455
456
457
458
459
460
    datasets : list of 2D numpy arrays or 2D hyp5.Dataset objects
        Datasets containing data arranged as (pixel, time)
    line_colors : list of strings
        Colors to be used for each of the datasets
    dataset_names : (Optional) list of strings
        Names of the different datasets to be compared
Somnath, Suhas's avatar
Somnath, Suhas committed
461
462
463
464
465
466
467
468
    h5_pos : HDF5 dataset reference or 2D numpy array
        Dataset containing position indices
    central_resp_size : (optional) unsigned integer
        Number of responce sample points from the center of the waveform to show in plots. Useful for SPORC
    evenly_spaced : boolean
        Evenly spaced positions or first N positions
    plots_on_side : unsigned int
        Number of plots on each side
469
    use_rainbow_plots : (optional) Boolean
Somnath, Suhas's avatar
Somnath, Suhas committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        Plot the lines as a function of spectral index (eg. time)
    x_label : (optional) String
        X Label for all plots
    y_label : (optional) String
        Y label for all plots
    subtitles : (optional) String
        prefix for title over each plot
    title : (optional) String
        Main plot title

    Returns
    ---------
    fig, axes
    """
484
    if type(datasets) in [h5py.Dataset, np.ndarray]:
485
486
487
        # can be numpy array or h5py.dataset
        num_pos = datasets.shape[0]
        num_points = datasets.shape[1]
Somnath, Suhas's avatar
Somnath, Suhas committed
488
        datasets = [datasets]
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        line_colors = ['b']
        dataset_names = ['Default']
    else:
        # First check if the datasets are correctly shaped:
        num_pos_es = list()
        num_points_es = list()
        for dataset in datasets:
            num_pos_es.append(dataset.shape[0])
            num_points_es.append(dataset.shape[1])
        num_pos_es = np.array(num_pos_es)
        num_points_es = np.array(num_points_es)
        if np.unique(num_pos_es).size > 1 or np.unique(num_points_es).size > 1:
            warn('Datasets of incompatible sizes')
            return
        num_pos = np.unique(num_pos_es)[0]
        num_points = np.unique(num_points_es)[0]

        # Next the identification of datasets:
        if len(dataset_names) > len(datasets):
            # remove additional titles
            dataset_names = dataset_names[:len(datasets)]
        elif len(dataset_names) < len(datasets):
            # add titles
            dataset_names = dataset_names + ['Dataset' + ' ' + str(x) for x in range(len(dataset_names), len(datasets))]
        if len(line_colors) != len(datasets):
            color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
            if len(datasets) < len(color_list):
                remaining_colors = [x for x in color_list if x not in line_colors]
                line_colors += remaining_colors[:len(datasets) - len(color_list)]
            else:
                warn('Insufficient number of line colors provided')
                return

    if excit_wfm.size != num_points:
        warn('Length of excitation waveform not compatible with second axis of datasets')
        return
Somnath, Suhas's avatar
Somnath, Suhas committed
525
526

    plots_on_side = min(abs(plots_on_side), 5)
527

Somnath, Suhas's avatar
Somnath, Suhas committed
528
529
530
531
532
533
    sq_num_plots = min(plots_on_side, int(round(num_pos ** 0.5)))
    if evenly_spaced:
        chosen_pos = np.linspace(0, num_pos - 1, sq_num_plots ** 2, dtype=int)
    else:
        chosen_pos = np.arange(sq_num_plots ** 2, dtype=int)

534
    fig, axes = plt.subplots(nrows=sq_num_plots, ncols=sq_num_plots, sharex=True, figsize=(12, 12))
535
    axes_lin = axes.flatten()
Somnath, Suhas's avatar
Somnath, Suhas committed
536

537
    cent_ind = int(0.5 * excit_wfm.size)
Somnath, Suhas's avatar
Somnath, Suhas committed
538
539
540
541
542
543
    if central_resp_size:
        sz = int(0.5 * central_resp_size)
        l_resp_ind = cent_ind - sz
        r_resp_ind = cent_ind + sz
    else:
        l_resp_ind = 0
544
        r_resp_ind = excit_wfm.size
Somnath, Suhas's avatar
Somnath, Suhas committed
545
546

    for count, posn in enumerate(chosen_pos):
547
548
        if use_rainbow_plots and len(datasets) == 1:
            rainbow_plot(axes_lin[count], excit_wfm[l_resp_ind:r_resp_ind], datasets[0][posn, l_resp_ind:r_resp_ind])
Somnath, Suhas's avatar
Somnath, Suhas committed
549
        else:
550
            for dataset, col_val in zip(datasets, line_colors):
Unknown's avatar
Unknown committed
551
552
                axes_lin[count].plot(excit_wfm[l_resp_ind:r_resp_ind], dataset[posn, l_resp_ind:r_resp_ind],
                                     color=col_val)
553
        if h5_pos is not None:
554
            # print('Row ' + str(h5_pos[posn,1]) + ' Col ' + str(h5_pos[posn,0]))
Somnath, Suhas's avatar
Somnath, Suhas committed
555
556
557
558
559
560
561
562
563
564
565
            axes_lin[count].set_title('Row ' + str(h5_pos[posn, 1]) + ' Col ' + str(h5_pos[posn, 0]), fontsize=12)
        else:
            axes_lin[count].set_title(subtitles + ' ' + str(posn), fontsize=12)

        if count % sq_num_plots == 0:
            axes_lin[count].set_ylabel(y_label, fontsize=12)
        if count >= (sq_num_plots - 1) * sq_num_plots:
            axes_lin[count].set_xlabel(x_label, fontsize=12)
        axes_lin[count].axis('tight')
        axes_lin[count].set_aspect('auto')
        axes_lin[count].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
566
567
    if len(datasets) > 1:
        axes_lin[count].legend(dataset_names, loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
568
569
570
571
    if title:
        fig.suptitle(title, fontsize=14)
    plt.tight_layout()
    return fig, axes
Chris Smith's avatar
merged    
Chris Smith committed
572

Unknown's avatar
Unknown committed
573

Somnath, Suhas's avatar
Somnath, Suhas committed
574
575
###############################################################################

576

577
578
def plot_complex_map_stack(map_stack, num_comps=4, title='Eigenvectors', xlabel='UDVS Step', stdevs=2,
                           cmap=default_cmap):
Somnath, Suhas's avatar
Somnath, Suhas committed
579
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
580
581
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
582
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
583
    -------------
584
    map_stack : 3D numpy complex matrices
Somnath, Suhas's avatar
Somnath, Suhas committed
585
586
587
588
589
590
591
592
593
        Eigenvectors rearranged as - [row, col, component]
    num_comps : int
        Number of components to plot
    title : String
        Title to plot above everything else
    xlabel : String
        Label for x axis
    stdevs : int
        Number of standard deviations to consider for plotting
594
595
    cmap : String, or matplotlib.colors.LinearSegmentedColormap object (Optional)
        Requested color map
Somnath, Suhas's avatar
Somnath, Suhas committed
596

Chris Smith's avatar
Chris Smith committed
597
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
598
599
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
600
    """
601
602
    cmap = get_cmap_object(cmap)

Somnath, Suhas's avatar
Somnath, Suhas committed
603
604
605
606
    fig201, axes201 = plt.subplots(2, num_comps, figsize=(4 * num_comps, 8))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
    fig201.canvas.set_window_title(title)

607
    for index in range(num_comps):
608
        cur_map = np.transpose(map_stack[index, :, :])
Somnath, Suhas's avatar
Somnath, Suhas committed
609
610
611
612
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        funcs = [np.abs, np.angle]
        labels = ['Amplitude', 'Phase']
        for func, lab, ax in zip(funcs, labels, axes):
613
614
            amp_mean = np.mean(func(cur_map))
            amp_std = np.std(func(cur_map))
615
            ax.imshow(func(cur_map), cmap=cmap,
Somnath, Suhas's avatar
Somnath, Suhas committed
616
617
618
619
620
621
622
623
624
625
626
                      vmin=amp_mean - stdevs * amp_std,
                      vmax=amp_mean + stdevs * amp_std)
            ax.set_title('Eigenvector: %d - %s' % (index + 1, lab))
            ax.set_aspect('auto')
        ax.set_xlabel(xlabel)

    return fig201, axes201


###############################################################################

627
def plot_complex_loop_stack(loop_stack, x_axis, heading='BE Loops', subtitle='Eigenvector', num_comps=4, x_label=''):
Somnath, Suhas's avatar
Somnath, Suhas committed
628
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
629
630
    Plots the provided spectrograms from SVD V vector

Chris Smith's avatar
Chris Smith committed
631
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
632
    -------------
633
634
635
    loop_stack : 3D numpy complex matrices
        Loops rearranged as - [component, points]
    x_axis : 1D real numpy array
Somnath, Suhas's avatar
Somnath, Suhas committed
636
        The vector to plot against
Unknown's avatar
Unknown committed
637
638
639
640
    heading : str
        Title to plot above everything else
    subtitle : str
        Subtile to of Figure
Somnath, Suhas's avatar
Somnath, Suhas committed
641
642
    num_comps : int
        Number of components to plot
Unknown's avatar
Unknown committed
643
    x_label : str
Somnath, Suhas's avatar
Somnath, Suhas committed
644
645
        Label for x axis

Chris Smith's avatar
Chris Smith committed
646
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
647
648
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
649
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
650
651
652
653
654
    funcs = [np.abs, np.angle]
    labels = ['Amplitude', 'Phase']

    fig201, axes201 = plt.subplots(len(funcs), num_comps, figsize=(num_comps * 4, 4 * len(funcs)))
    fig201.subplots_adjust(hspace=0.4, wspace=0.4)
655
    fig201.canvas.set_window_title(heading)
Somnath, Suhas's avatar
Somnath, Suhas committed
656

657
    for index in range(num_comps):
658
        cur_map = loop_stack[index, :]
Somnath, Suhas's avatar
Somnath, Suhas committed
659
660
        axes = [axes201.flat[index], axes201.flat[index + num_comps]]
        for func, lab, ax in zip(funcs, labels, axes):
661
662
663
            ax.plot(x_axis, func(cur_map))
            ax.set_title('%s: %d - %s' % (subtitle, index + 1, lab))
        ax.set_xlabel(x_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
664
665
666
667
    fig201.tight_layout()

    return fig201, axes201

Unknown's avatar
Unknown committed
668

Somnath, Suhas's avatar
Somnath, Suhas committed
669
670
671
###############################################################################


672
def plotScree(scree, title='Scree'):
Somnath, Suhas's avatar
Somnath, Suhas committed
673
    """
674
    Plots the scree or scree
Somnath, Suhas's avatar
Somnath, Suhas committed
675

Chris Smith's avatar
Chris Smith committed
676
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
677
    -------------
678
679
    scree : 1D real numpy array
        The scree vector from SVD
Unknown's avatar
Unknown committed
680
681
    title : str
        Figure title.  Default Scree
Somnath, Suhas's avatar
Somnath, Suhas committed
682

Chris Smith's avatar
Chris Smith committed
683
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
684
685
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
686
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
687
688
    fig203 = plt.figure(figsize=(6.5, 6))
    axes203 = fig203.add_axes([0.1, 0.1, .8, .8])  # left, bottom, width, height (range 0 to 1)
689
    axes203.loglog(np.arange(len(scree)) + 1, scree, 'b', marker='*')
Somnath, Suhas's avatar
Somnath, Suhas committed
690
691
692
    axes203.set_xlabel('Principal Component')
    axes203.set_ylabel('Variance')
    axes203.set_title(title)
693
694
    axes203.set_xlim(left=1, right=len(scree))
    axes203.set_ylim(bottom=np.min(scree), top=np.max(scree))
Somnath, Suhas's avatar
Somnath, Suhas committed
695
696
697
698
699
    fig203.canvas.set_window_title("Scree")

    return fig203, axes203


700
701
702
# ###############################################################################


703
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False, reverse_dims=True,
Unknown's avatar
Unknown committed
704
705
                   title='Component', heading='Map Stack', colorbar_label='', fig_mult=(5, 5), pad_mult=(0.1, 0.07),
                   **kwargs):
Somnath, Suhas's avatar
Somnath, Suhas committed
706
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
707
    Plots the provided stack of maps
Somnath, Suhas's avatar
Somnath, Suhas committed
708

Chris Smith's avatar
Chris Smith committed
709
    Parameters
Somnath, Suhas's avatar
Somnath, Suhas committed
710
    -------------
Somnath, Suhas's avatar
Somnath, Suhas committed
711
    map_stack : 3D real numpy array
712
        structured as [component, rows, cols]
713
    num_comps : unsigned int
Somnath, Suhas's avatar
Somnath, Suhas committed
714
715
716
        Number of components to plot
    stdevs : int
        Number of standard deviations to consider for plotting
717
    color_bar_mode : String, Optional
718
        Options are None, single or each. Default None
Unknown's avatar
Unknown committed
719
720
721
722
    evenly_spaced : bool
        Default False
    reverse_dims : Boolean (Optional)
        Set this to False to accept data structured as [component, rows, cols]
723
724
725
726
    title : String or list of strings
        The titles for each of the plots.
        If a single string is provided, the plot titles become ['title 01', title 02', ...].
        if a list of strings (equal to the number of components) are provided, these are used instead.
727
728
    heading : String
        ###Insert description here### Default 'Map Stack'
729
730
    colorbar_label : String
        label for colorbar. Default is an empty string.
731
732
733
    fig_mult : length 2 array_like of uints
        Size multipliers for the figure.  Figure size is calculated as (num_rows*`fig_mult[0]`, num_cols*`fig_mult[1]`).
        Default (4, 4)
Chris Smith's avatar
Chris Smith committed
734
735
736
737
738
739
740
    pad_mult : length 2 array_like of floats
        Multipliers for the axis padding between plots in the stack.  Padding is calculated as
        (pad_mult[0]*fig_mult[1], pad_mult[1]*fig_mult[0]) for the width and height padding respectively.
        Default (0.1, 0.07)
    kwargs : dictionary
        Keyword arguments to be passed to either matplotlib.pyplot.figure, mpl_toolkits.axes_grid1.ImageGrid, or
        pycroscopy.vis.plot_utils.plot_map.  See specific function documentation for the relavent options.
Somnath, Suhas's avatar
Somnath, Suhas committed
741

Chris Smith's avatar
Chris Smith committed
742
    Returns
Somnath, Suhas's avatar
Somnath, Suhas committed
743
744
    ---------
    fig, axes
Somnath, Suhas's avatar
Somnath, Suhas committed
745
    """
746
747
748
    if reverse_dims:
        map_stack = np.transpose(map_stack, (2, 0, 1))

749
    num_comps = abs(num_comps)
750
    num_comps = min(num_comps, map_stack.shape[0])
751
752

    if evenly_spaced:
753
        chosen_pos = np.linspace(0, map_stack.shape[0] - 1, num_comps, dtype=int)
754
755
756
    else:
        chosen_pos = np.arange(num_comps, dtype=int)

757
758
759
760
761
762
    if isinstance(title, list):
        if len(title) > num_comps:
            # remove additional titles
            title = title[:num_comps]
        elif len(title) < num_comps:
            # add titles
763
            title += ['Component' + ' ' + str(x) for x in range(len(title), num_comps)]
764
765
766
    else:
        if not isinstance(title, str):
            title = 'Component'
767
        title = [title + ' ' + str(x) for x in chosen_pos]
768

769
    fig_h, fig_w = fig_mult
770
771
    p_rows = int(np.floor(np.sqrt(num_comps)))
    p_cols = int(np.ceil(num_comps / p_rows))
772
    if p_rows * p_cols < num_comps:
773
        p_cols += 1
Chris Smith's avatar
Chris Smith committed
774
775
776
777
778
779
780

    pad_w, pad_h = pad_mult

    '''
    Set defaults for kwargs to the figure creation and extract any non-default values from current kwargs
    '''
    figkwargs = dict()
781
782
783
784

    if sys.version_info.major == 3:
        inspec_func = inspect.getfullargspec
    else:
Unknown's avatar
Unknown committed
785
        inspec_func = inspect.signature
786
787

    for key in inspec_func(plt.figure).args:
Chris Smith's avatar
Chris Smith committed
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        if key in kwargs:
            figkwargs.update({key: kwargs.pop(key)})

    fig202 = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h), **figkwargs)

    '''
    Set defaults for kwargs to the ImageGrid and extract any non-default values from current kwargs
    '''
    igkwargs = {'cbar_pad': '1%',
                'cbar_size': '5%',
                'cbar_location': 'right',
                'direction': 'row',
                'add_all': True,
                'share_all': False,
                'aspect': True,
                'label_mode': 'L'}
Somnath, Suhas's avatar
Somnath, Suhas committed
804
    for key in igkwargs.keys():
Chris Smith's avatar
Chris Smith committed
805
806
807
        if key in kwargs:
            igkwargs.update({key: kwargs.pop(key)})

808
809
    axes202 = ImageGrid(fig202, 111, nrows_ncols=(p_rows, p_cols),
                        cbar_mode=color_bar_mode,
810
                        axes_pad=(pad_w * fig_w, pad_h * fig_h),
Chris Smith's avatar
Chris Smith committed
811
                        **igkwargs)
Somnath, Suhas's avatar
Somnath, Suhas committed
812
813
    fig202.canvas.set_window_title(heading)
    fig202.suptitle(heading, fontsize=16)
Somnath, Suhas's avatar
Somnath, Suhas committed
814

815
816
    for count, index, subtitle in zip(range(chosen_pos.size), chosen_pos, title):
        im = plot_map(axes202[count],
817
                      map_stack[index],
818
819
                      stdevs=stdevs, **kwargs)
        axes202[count].set_title(subtitle)
820
        if color_bar_mode is 'each':
821
822
            cb = axes202.cbar_axes[count].colorbar(im)
            cb.set_label_text(colorbar_label)
823
    if color_bar_mode is 'single':
824
825
        cb = axes202.cbar_axes[0].colorbar(im)
        cb.set_label_text(colorbar_label)
Somnath, Suhas's avatar
Somnath, Suhas committed
826
827
    return fig202, axes202

828

829
def plot_cluster_h5_group(h5_group, centroids_together=True, cmap=default_cmap):
830
    """
Chris Smith's avatar
Chris Smith committed
831
    Plots the cluster labels and mean response for each cluster
832

Chris Smith's avatar
Chris Smith committed
833
834
835
836
837
838
    Parameters
    ----------
    h5_group : h5py.Datagroup object
        H5 group containing the labels and mean response
    centroids_together : Boolean, optional - default = True
        Whether or nor to plot all centroids together on the same plot
839
840
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
Chris Smith's avatar
Chris Smith committed
841
842
843
844
845
846
847
848

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
    """
849

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
    h5_labels = h5_group['Labels']
    try:
        h5_mean_resp = h5_group['Mean_Response']
    except KeyError:
        # old PySPM format:
        h5_mean_resp = h5_group['Centroids']

    # Reshape the mean response to N dimensions
    mean_response, success = reshape_to_Ndims(h5_mean_resp)

    # unfortunately, we cannot use the above function for the labels
    # However, we will assume that the position values are linked to the labels:
    h5_pos_vals = h5_labels.file[h5_labels.attrs['Position_Values']]
    h5_pos_inds = h5_labels.file[h5_labels.attrs['Position_Indices']]

    # Reshape the labels correctly:
    pos_dims = []
    for col in range(h5_pos_inds.shape[1]):
        pos_dims.append(np.unique(h5_pos_inds[:, col]).size)

Unknown's avatar
Unknown committed
870
    pos_ticks = [h5_pos_vals[:pos_dims[0], 0], h5_pos_vals[slice(0, None, pos_dims[0]), 1]]
871
872
873
874
875
876
877
878
879
880
881
882
    # prepare the axes ticks for the map

    pos_dims.reverse()  # go from slowest to fastest
    pos_dims = tuple(pos_dims)
    label_mat = np.reshape(h5_labels.value, pos_dims)

    # Figure out the correct units and labels for mean response:
    h5_spec_vals = h5_mean_resp.file[h5_mean_resp.attrs['Spectroscopic_Values']]
    x_spec_label = get_formatted_labels(h5_spec_vals)[0]

    # Figure out the correct axes labels for label map:
    pos_labels = get_formatted_labels(h5_pos_vals)
883
884

    y_spec_label = get_data_descriptor(h5_mean_resp)
885
    # TODO: cleaner x and y axes labels instead of 0.0000125 etc.
886

887
888
889
    if centroids_together:
        return plot_cluster_results_together(label_mat, mean_response, spec_val=np.squeeze(h5_spec_vals[0]),
                                             spec_label=x_spec_label, resp_label=y_spec_label,
890
                                             pos_labels=pos_labels, pos_ticks=pos_ticks, cmap=cmap)
891
892
    else:
        return plot_cluster_results_separate(label_mat, mean_response, max_centroids=4, x_label=x_spec_label,
893
                                             spec_val=np.squeeze(h5_spec_vals[0]), y_label=y_spec_label, cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
894

Unknown's avatar
Unknown committed
895

Somnath, Suhas's avatar
Somnath, Suhas committed
896
###############################################################################
897
898


899
def plot_cluster_results_together(label_mat, mean_response, spec_val=None, cmap=default_cmap,
900
901
                                  spec_label='Spectroscopic Value', resp_label='Response',
                                  pos_labels=('X', 'Y'), pos_ticks=None):
Somnath, Suhas's avatar
Somnath, Suhas committed
902
    """
903
    Plot the cluster labels and mean response for each cluster in separate plots
Chris Smith's avatar
Chris Smith committed
904
905
906
907
908

    Parameters
    ----------
    label_mat : 2D ndarray or h5py.Dataset of ints
        Spatial map of cluster labels structured as [rows, cols]
909
    mean_response : 2D array or h5py.Dataset
Chris Smith's avatar
Chris Smith committed
910
911
        Mean value of each cluster over all samples 
        arranged as [cluster number, features]
912
    spec_val :  1D array or h5py.Dataset of floats, optional
Chris Smith's avatar
Chris Smith committed
913
914
915
916
917
918
919
920
921
922
923
924
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroid.
        Advised to pick a map where the centroid plots show clearly.
        Default = matplotlib.pyplot.cm.jet
    spec_label : str, optional
        Label to use for X axis on cluster centroid plot
        Default = 'Spectroscopic Value'
    resp_label : str, optional
        Label to use for Y axis on cluster centroid plot
         Default = 'Response'
Chris Smith's avatar
Chris Smith committed
925
926
927
928
    pos_labels : array_like of str, optional
        Labels to use for the X and Y axes on the Label map
        Default = ('X', 'Y')
    pos_ticks : array_like of int
Chris Smith's avatar
Chris Smith committed
929
930
931
932
933
934
935

    Returns
    -------
    fig : Figure
        Figure containing the plots
    axes : 1D array_like of axes objects
        Axes of the individual plots within `fig`
Somnath, Suhas's avatar
Somnath, Suhas committed
936
    """
937
    cmap = get_cmap_object(cmap)
938
939
940

    if isinstance(cmap, str):
        cmap = plt.get_cmap(cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
941

942
    def __plot_centroids(centroids, ax, spec_val, spec_label, y_label, cmap, title=None):
943
        plot_line_family(ax, spec_val, centroids, label_prefix='Cluster', cmap=cmap)
Somnath, Suhas's avatar
Somnath, Suhas committed
944
        ax.set_ylabel(y_label)
Chris Smith's avatar
Chris Smith committed
945
        # ax.legend(loc='best')
Somnath, Suhas's avatar
Somnath, Suhas committed
946
947
948
949
        if title:
            ax.set_title(title)
            ax.set_xlabel(spec_label)

Unknown's avatar
Unknown committed
950
    if spec_val is None:
Chris Smith's avatar
Chris Smith committed
951
        spec_val = np.arange(mean_response.shape[1])
Somnath, Suhas's avatar
Somnath, Suhas committed
952

Chris Smith's avatar
Chris Smith committed
953
    if mean_response.dtype in [np.complex64, np.complex128, np.complex]:
Somnath, Suhas's avatar
Somnath, Suhas committed
954
        fig = plt.figure(figsize=(12, 8))
Chris Smith's avatar
Chris Smith committed
955
956
957
        ax_map = plt.subplot2grid((2, 12), (0, 0), colspan=6, rowspan=2)
        ax_amp = plt.subplot2grid((2, 12), (0, 6), colspan=4)
        ax_phase = plt.subplot2grid((2, 12), (1, 6), colspan=4)
Somnath, Suhas's avatar
Somnath, Suhas committed
958
959
        axes = [ax_map, ax_amp, ax_phase]

960
        __plot_centroids(np.abs(mean_response), ax_amp, spec_val, spec_label,
961
                         resp_label + ' - Amplitude', cmap, 'Mean Response')
962
        __plot_centroids(np.angle(mean_response), ax_phase, spec_val, spec_label,
963
                         resp_label + ' - Phase', cmap)
Chris Smith's avatar
Chris Smith committed
964
965
        plot_handles, plot_labels = ax_amp.get_legend_handles_labels()

Somnath, Suhas's avatar
Somnath, Suhas committed
966
    else:
Chris Smith's avatar
Chris Smith committed
967
968
969
970
        fig = plt.figure(figsize=(12, 8))
        ax_map = plt.subplot2grid((1, 12), (0, 0), colspan=6)
        ax_resp = plt.subplot2grid((1, 12), (0, 6), colspan=4)
        axes = [ax_map, ax_resp]
971
        __plot_centroids(mean_response, ax_resp, spec_val, spec_label,
972
                         resp_label, cmap, 'Mean Response')
Chris Smith's avatar
Chris Smith committed
973
974
975
976
977
        plot_handles, plot_labels = ax_resp.get_legend_handles_labels()

    fleg = plt.figlegend(plot_handles, plot_labels, loc='center right',
                         borderaxespad=0.0)
    num_clusters = mean_response.shape[0]
Somnath, Suhas's avatar
Somnath, Suhas committed
978
979

    if isinstance(label_mat, h5py.Dataset):
Somnath, Suhas's avatar
Somnath, Suhas committed
980
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
981
        Reshape label_mat based on linked positions
Somnath, Suhas's avatar
Somnath, Suhas committed
982
        """
Somnath, Suhas's avatar
Somnath, Suhas committed
983
984
985
986
        pos = label_mat.file[label_mat.attrs['Position_Indices']]
        nx = len(np.unique(pos[:, 0]))
        ny = len(np.unique(pos[:, 1]))
        label_mat = label_mat[()].reshape(nx, ny)
987

Chris Smith's avatar
Chris Smith committed
988
    # im = ax_map.imshow(label_mat, interpolation='none')
989
990
991
992
993
994
995
996
997
998
999
    ax_map.set_xlabel(pos_labels[0])
    ax_map.set_ylabel(pos_labels[1])

    if pos_ticks is not None:
        x_ticks = np.linspace(0, label_mat.shape[1] - 1, 5, dtype=np.uint16)
        y_ticks = np.linspace(0, label_mat.shape[0] - 1, 5, dtype=np.uint16)
        ax_map.set_xticks(x_ticks)
        ax_map.set_yticks(y_ticks)
        ax_map.set_xticklabels(pos_ticks[0][x_ticks])
        ax_map.set_yticklabels(pos_ticks[1][y_ticks])

1000
    """divider = make_axes_locatable(ax_map)
Somnath, Suhas's avatar
Somnath, Suhas committed
1001
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
1002
    fig.colorbar(im, cax=cax, ticks=np.arange(num_clusters),
1003
                 cmap=discrete_cmap(num_clusters, base_cmap=plt.cm.viridis))
1004
    ax_map.axis('tight')"""
1005
    pcol0 = ax_map.pcolor(label_mat, cmap=discrete_cmap(num_clusters, base_cmap=cmap))
1006
    fig.colorbar(pcol0, ax=ax_map, ticks=np.arange(num_clusters))
Somnath, Suhas's avatar
Somnath, Suhas committed
1007
    ax_map.axis('tight')
1008
    ax_map.set_aspect('auto')
Somnath, Suhas's avatar
Somnath, Suhas committed
1009
1010
1011
    ax_map.set_title('Cluster Label Map')

    fig.tight_layout()
Chris Smith's avatar
Chris Smith committed
1012
    fig.canvas.set_window_title('Cluster results')
Somnath, Suhas's avatar
Somnath, Suhas committed
1013
1014
1015

    return fig, axes

Unknown's avatar
Unknown committed
1016

Somnath, Suhas's avatar
Somnath, Suhas committed
1017
1018
###############################################################################

1019

1020
def plot_cluster_results_separate(label_mat, cluster_centroids, max_centroids=4, cmap=default_cmap,
1021
                                  spec_val=None, x_label='Excitation (a.u.)', y_label='Response (a.u.)'):
Somnath, Suhas's avatar
Somnath, Suhas committed
1022
    """
1023
    Plots the provided labels mat and centroids from clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
1024

1025
1026
    Parameters
    ----------
Somnath, Suhas's avatar
Somnath, Suhas committed
1027
1028
1029
1030
    label_mat : 2D int numpy array
                structured as [rows, cols]
    cluster_centroids: 2D real numpy array
                       structured as [cluster,features]
1031
1032
    max_centroids : unsigned int
                    Number of centroids to plot
1033
1034
    cmap : plt.cm object or str, optional
        Colormap to use for the labels map and the centroids
1035
1036
1037
    spec_val :  array-like
        X axis to plot the centroids against
        If no value is specified, the data is plotted against the index
1038
1039
1040
1041
    x_label : String / unicode
              X label for centroid plots
    y_label : String / unicode
              Y label for centroid plots
Somnath, Suhas's avatar
Somnath, Suhas committed
1042

1043
1044
    Returns
    -------
Somnath, Suhas's avatar
Somnath, Suhas committed
1045
    fig
Somnath, Suhas's avatar
Somnath, Suhas committed
1046
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1047

1048
    cmap = get_cmap_object(cmap)
1049

1050
    if max_centroids < 5:
Somnath, Suhas's avatar
Somnath, Suhas committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

        fig501 = plt.figure(figsize=(20, 10))
        fax1 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        fax2 = plt.subplot2grid((2, 4), (0, 2))
        fax3 = plt.subplot2grid((2, 4), (0, 3))
        fax4 = plt.subplot2grid((2, 4), (1, 2))
        fax5 = plt.subplot2grid((2, 4), (1, 3))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5]

    else:
        fig501 = plt.figure(figsize=(20, 10))
        # make subplot for cluster map
        fax1 = plt.subplot2grid((3, 6), (0, 0), colspan=3, rowspan=3)  # For cluster map
        fax1.set_xmargin(0.50)
        # make subplot for cluster centers
        fax2 = plt.subplot2grid((3, 6), (0, 3))
        fax3 = plt.subplot2grid((3, 6), (0, 4))
        fax4 = plt.subplot2grid((3, 6), (0, 5))
        fax5 = plt.subplot2grid((3, 6), (1, 3))
        fax6 = plt.subplot2grid((3, 6), (1, 4))
        fax7 = plt.subplot2grid((3, 6), (1, 5))
        fax8 = plt.subplot2grid((3, 6), (2, 3))
        fax9 = plt.subplot2grid((3, 6), (2, 4))
        fax10 = plt.subplot2grid((3, 6), (2, 5))
        fig501.tight_layout()
        axes_handles = [fax1, fax2, fax3, fax4, fax5, fax6, fax7, fax8, fax9, fax10]

1079
    # First plot the labels map:
1080
    pcol0 = fax1.pcolor(label_mat, cmap=discrete_cmap(cluster_centroids.shape[0], base_cmap=cmap))
1081
    fig501.colorbar(pcol0, ax=fax1, ticks=np.arange(cluster_centroids.shape[0]))
1082
1083
    fax1.axis('tight')
    fax1.set_aspect('auto')
1084
    fax1.set_title('Cluster Label Map')
1085
    """im = fax1.imshow(label_mat, interpolation='none')
1086
1087
    divider = make_axes_locatable(fax1)
    cax = divider.append_axes("right", size="5%", pad=0.05)  # space for colorbar
1088
1089
1090
1091
    plt.colorbar(im, cax=cax)"""

    if spec_val is None and cluster_centroids.ndim == 2:
        spec_val = np.arange(cluster_centroids.shape[1])
1092
1093

    # Plot results
1094
1095
1096
    for ax, index in zip(axes_handles[1: max_centroids + 1], np.arange(max_centroids)):
        if cluster_centroids.ndim == 2:
            ax.plot(spec_val, cluster_centroids[index, :],
1097
                    color=cmap(int(255 * index / (cluster_centroids.shape[0] - 1))))
1098
1099
1100
            ax.set_xlabel(x_label)
            ax.set_ylabel(y_label)
        elif cluster_centroids.ndim == 3:
1101
            plot_map(ax, cluster_centroids[index])
1102
        ax.set_title('Centroid: %d' % index)
Somnath, Suhas's avatar
Somnath, Suhas committed
1103
1104

    fig501.subplots_adjust(hspace=0.60, wspace=0.60)
1105
    fig501.tight_layout()
Somnath, Suhas's avatar
Somnath, Suhas committed
1106
1107
1108
1109
1110
1111

    return fig501


###############################################################################

1112
1113
def plot_cluster_dendrogram(label_mat, e_vals, num_comp, num_cluster, mode='Full', last=None,
                            sort_type='distance', sort_mode=True):
Somnath, Suhas's avatar
Somnath, Suhas committed
1114
    """
Somnath, Suhas's avatar
Somnath, Suhas committed
1115
1116
1117
1118
1119
1120
    Creates and plots the dendrograms for the given label_mat and
    eigenvalues

    Parameters
    -------------
    label_mat : 2D real numpy array
1121
        structured as [rows, cols], from KMeans clustering
Somnath, Suhas's avatar
Somnath, Suhas committed
1122
    e_vals: 3D real numpy array of eigenvalues
1123
        structured as [component, rows, cols]