/*********************************************************************************** * Copyright (c) 2016, UT-Battelle * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the xacc nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Contributors: * Initial API and implementation - Alex McCaskey * **********************************************************************************/ #ifndef QUANTUM_GATE_QASMTOGRAPH_HPP_ #define QUANTUM_GATE_QASMTOGRAPH_HPP_ #include "Graph.hpp" #include <regex> #include <boost/algorithm/string.hpp> namespace xacc { namespace quantum { /** * CircuitNode subclasses QCIVertex to provide the following * parameters in the given order: * * Parameters: Gate, Layer (ie time sequence), Gate Vertex Id, * Qubit Ids that the gate acts on */ class CircuitNode: public qci::common::QCIVertex<std::string, int, int, std::vector<int>, bool> { public: CircuitNode() : QCIVertex() { propertyNames[0] = "Gate"; propertyNames[1] = "Circuit Layer"; propertyNames[2] = "Gate Vertex Id"; propertyNames[3] = "Gate Acting Qubits"; propertyNames[4] = "Enabled"; // by default all circuit nodes // are enabled and std::get<4>(properties) = true; } }; /** * The QasmToGraph class provides a static * utility method that maps a flat qasm string * to a QCI Common Graph data structure. */ class QasmToGraph { public: /** * Create a Graph data structure that models a quantum * circuit from the provided qasm string. * * @param flatQasmStr The qasm to be converted to a Graph. * @return graph Graph modeling a quantum circuit. */ static qci::common::Graph<CircuitNode> getCircuitGraph( const std::string& flatQasmStr) { // Local Declarations using namespace qci::common; Graph<CircuitNode> graph; std::map<std::string, int> qubitVarNameToId; std::vector<std::string> qasmLines; std::vector<int> allQbitIds; std::regex newLineDelim("\n"), spaceDelim(" "); std::regex qubitDeclarations("\\s*qubit\\s*\\w+"); std::sregex_token_iterator first{flatQasmStr.begin(), flatQasmStr.end(), newLineDelim, -1}, last; int nQubits = 0, qbitId = 0, layer = 1, gateId = 1; qasmLines = {first, last}; // Let's now loop over the qubit declarations, // and construct a mapping of qubit var names to integer id, // and get the total number of qubits for (auto i = std::sregex_iterator(flatQasmStr.begin(), flatQasmStr.end(), qubitDeclarations); i != std::sregex_iterator(); ++i) { std::string qubitLine = (*i).str(); qubitLine.erase(std::remove(qubitLine.begin(), qubitLine.end(), '\n'), qubitLine.end()); std::sregex_token_iterator first{qubitLine.begin(), qubitLine.end(), spaceDelim, -1}, last; std::vector<std::string> splitQubitLine = {first, last}; qubitVarNameToId[splitQubitLine[1]] = qbitId; allQbitIds.push_back(qbitId); qbitId++; } // Set the number of qubits nQubits = qubitVarNameToId.size(); // First create a starting node for the initial // wave function - it should have nQubits outgoing // edges graph.addVertex("InitialState", 0, 0, allQbitIds, true); std::vector<CircuitNode> gateOperations; for (auto line : qasmLines) { // If this is a gate line... if (!boost::contains(line, "qubit") && !boost::contains(line, "cbit")) { // Create a new CircuitNode CircuitNode node; // Split the current qasm command at the spaces std::sregex_token_iterator first { line.begin(), line.end(), spaceDelim, -1 }, last; std::vector<std::string> gateCommand = {first, last}; // Set the gate as a lowercase gate name string auto g = boost::to_lower_copy(gateCommand[0]); boost::trim(g); if (g == "measz") g = "measure"; std::get<0>(node.properties) = g; // If not a 2 qubit gate, and if the acting // qubit is different than the last one, then // keep the layer the same, otherwise increment if (incrementLayer(gateCommand, qubitVarNameToId, gateOperations, layer)) { layer++; } // Set the current layer std::get<1>(node.properties) = layer; // Set the gate vertex id std::get<2>(node.properties) = gateId; gateId++; // Set the qubits this gate acts on std::vector<int> actingQubits; if (!boost::contains(gateCommand[1], ",")) { actingQubits.push_back(qubitVarNameToId[gateCommand[1]]); } else { std::vector<std::string> qbits; boost::split(qbits, gateCommand[1], boost::is_any_of(",")); for (auto q : qbits) { actingQubits.push_back(qubitVarNameToId[q]); } } // Set the acting qubits std::get<3>(node.properties) = actingQubits; // Add this gate to the local vector // and to the graph gateOperations.push_back(node); graph.addVertex(node); } } // Add a final layer for the graph sink CircuitNode finalNode; std::get<0>(finalNode.properties) = "FinalState"; std::get<1>(finalNode.properties) = layer+1; std::get<2>(finalNode.properties) = gateId; std::get<3>(finalNode.properties) = allQbitIds; std::get<4>(finalNode.properties) = true; graph.addVertex(finalNode); gateOperations.push_back(finalNode); // Set how many layers are in this circuit int maxLayer = layer+1; // Print info... // for (auto cn : gateOperations) { // std::cout << "Gate Operation: \n"; // std::cout << "\tName: " << std::get<0>(cn.properties) << "\n"; // std::cout << "\tLayer: " << std::get<1>(cn.properties) << "\n"; // std::cout << "\tGate Vertex Id: " << std::get<2>(cn.properties) << "\n"; // std::cout << "\tActing Qubits: "; // std::vector<int> qubits = std::get<3>(cn.properties); // for (auto v : qubits) { // std::cout << v << ", "; // } // std::cout << "\n\n"; // } generateEdgesFromLayer(1, graph, gateOperations, 0); return graph; } /** * Create connecting conditional nodes that link the main * circuit graph to subsequent conditional graphs. The conditional * nodes can be used by Accelerators to figure out if the condition * code should be executed or not. * s * @param mainGraph * @param conditionalGraphs */ static void linkConditionalQasm(qci::common::Graph<CircuitNode>& mainGraph, std::vector<qci::common::Graph<CircuitNode>>& conditionalGraphs, std::vector<int>& conditionalQubits) { // At this point we have a main circuit graph, // and one or more smaller conditional graphs (each with // initial and final state nodes. // We need to loop through the conditional graphs and // pull out the gate vertices (skip initial final state nodes) // and add them to the main graph after some conditional nodes assert (conditionalQubits.size() == conditionalGraphs.size()); int counter = 0; int finalIdMainGraph = mainGraph.getVertexProperty<2>(mainGraph.order() - 1); int finalLayerMainGraph = mainGraph.getVertexProperty<1>(mainGraph.order() - 1); int layer = finalLayerMainGraph + 1; int id = finalIdMainGraph + 1; // By default all conditional graph nodes should be disabled // Conditional nodes should have acting qubits set to the // measured qubit, and gate vertex id set to the measurement // gate vertex id. for (auto g : conditionalGraphs) { CircuitNode node; std::get<0>(node.properties) = "conditional"; std::get<2>(node.properties) = id; std::get<3>(node.properties) = std::vector<int> {conditionalQubits[counter]}; mainGraph.addVertex(node); // Connect the main graph to the cond node mainGraph.addEdge(finalIdMainGraph, id); id++; std::vector<CircuitNode> newGates; int initialStateId, initialStateLayer; for (int i = 0; i < g.order(); i++) { CircuitNode newVert; newVert.properties = g.getVertexProperties(i); std::get<0>(newVert.properties) = g.getVertexProperty<0>(i); std::get<1>(newVert.properties) = layer+g.getVertexProperty<1>(i); std::get<2>(newVert.properties) = id; std::get<3>(newVert.properties) = g.getVertexProperty<3>(i); std::get<4>(newVert.properties) = false; mainGraph.addVertex(newVert); newGates.push_back(newVert); // Connect conditional node with first node here if(i == 0) mainGraph.addEdge(id - 1, id); if(i == 0) initialStateId = id; if (i == 0) initialStateLayer = std::get<1>(newVert.properties); id++; } generateEdgesFromLayer(initialStateLayer+1, mainGraph, newGates, initialStateId); // Set the new layer for the next conditional node layer = mainGraph.getVertexProperty<1>(id - 1) + 1; counter++; } } private: /** * Generate all edges for the circuit graph starting at * the given layer. * * @param layer * @param graph * @param gateOperations * @param initialStateId */ static void generateEdgesFromLayer(const int layer, qci::common::Graph<CircuitNode>& graph, std::vector<CircuitNode>& gateOperations, int initialStateId) { int nQubits = std::get<3>(graph.getVertexProperties(0)).size(); int maxLayer = std::get<1>(gateOperations[gateOperations.size() - 1].properties); std::map<int,int> qubitToCurrentGateId; for (int i = 0 ; i < nQubits; i++) { qubitToCurrentGateId[i] = initialStateId; } int currentLayer = layer; while (currentLayer <= maxLayer) { std::vector<CircuitNode> currentLayerGates; std::copy_if(gateOperations.begin(), gateOperations.end(), std::back_inserter(currentLayerGates), [&](const CircuitNode& c) {return std::get<1>(c.properties) == currentLayer;}); for (auto n : currentLayerGates) { std::vector<int> actingQubits = std::get<3>(n.properties); for (auto qubit : actingQubits) { int currentQubitGateId = qubitToCurrentGateId[qubit]; graph.addEdge(currentQubitGateId, std::get<2>(n.properties)); qubitToCurrentGateId[qubit] = std::get<2>(n.properties); } } currentLayer++; } } /** * This method determines if a new layer should be added to the circuit. * * @param gateCommand * @param qubitVarNameToId * @param gates * @param currentLayer * @return */ static bool incrementLayer(const std::vector<std::string>& gateCommand, std::map<std::string, int>& qubitVarNameToId, const std::vector<CircuitNode>& gates, const int& currentLayer) { bool oneQubitGate = !boost::contains(gateCommand[1], ","), noGateAtQOnL = true; auto g = boost::to_lower_copy(gateCommand[0]); boost::trim(g); if (g == "measz") g = "measure"; std::vector<CircuitNode> thisLayerGates; std::copy_if(gates.begin(), gates.end(), std::back_inserter(thisLayerGates), [&](const CircuitNode& c) {return std::get<1>(c.properties) == currentLayer;}); for (auto layerGate : thisLayerGates) { std::vector<int> qubits = std::get<3>(layerGate.properties); for (auto q : qubits) { if (qubitVarNameToId[gateCommand[1]] == q) { noGateAtQOnL = false; } } } if (!oneQubitGate) { return true; } else if (!noGateAtQOnL) { return true; } else if (!gates.empty() && (std::get<0>(gates[gates.size() - 1].properties) == "measure") && g != "measure") { return true; } return false; } }; } } #endif /* QUANTUM_GATE_QASMTOGRAPH_HPP_ */