/*********************************************************************************** * Copyright (c) 2016, UT-Battelle * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the <organization> nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Contributors: * Initial API and implementation - Alex McCaskey * **********************************************************************************/ #ifndef QUANTUM_GATE_QASMTOGRAPH_HPP_ #define QUANTUM_GATE_QASMTOGRAPH_HPP_ #include "Graph.hpp" #include <regex> #include <boost/unordered_map.hpp> #include <boost/assign/list_of.hpp> #include <boost/algorithm/string.hpp> namespace xacc { namespace quantum { using boost::assign::map_list_of; enum SupportedGates { H, CNot, C_Z, C_X, Measure, X, Y, Z, T, S, ZZ, SS, Swap, Toffoli, InitialState }; const boost::unordered_map<std::string, SupportedGates> strToGate = map_list_of("h", H)("cnot", CNot)("c_z", C_Z)("c_x", C_X)("measure", Measure)("x", X)("y", Y)("z", Z)("t", T)("s", S)("zz", ZZ)("ss", SS)("swap", Swap)("toffoli", Toffoli); const boost::unordered_map<SupportedGates, std::string> gateToStr = map_list_of(H, "h")(CNot, "cnot")(C_Z, "c_z")(C_X, "c_x")(Measure, "measure")(X, "x")(Y, "y")(Z, "z")(T, "t")(S, "s")(ZZ, "zz")(SS, "ss")(Swap, "swap")(Toffoli, "toffoli"); /** * Params - gate name, layer (ie time sequence), vertex id, * qubit ids that gate acts on */ class CircuitNode : public qci::common::QCIVertex<SupportedGates, int, int, std::vector<int>> {}; class QasmToGraph { public: static qci::common::Graph<CircuitNode> getCircuitGraph( const std::string& flatQasmStr) { using namespace qci::common; Graph<CircuitNode> graph; std::map<std::string, int> qubitVarNameToId; std::vector<std::string> qasmLines; std::vector<int> allQbitIds; std::regex newLineDelim("\n"), spaceDelim(" "); std::regex qubitDeclarations("\\s*qubit\\s*\\w+"); std::sregex_token_iterator first{flatQasmStr.begin(), flatQasmStr.end(), newLineDelim, -1}, last; int nQubits = 0, qbitId = 0, layer = 1, gateId = 1; qasmLines = {first, last}; // Let's now loop over the qubit declarations, // and construct a mapping of qubit var names to integer id, // and get the total number of qubits for (auto i = std::sregex_iterator(flatQasmStr.begin(), flatQasmStr.end(), qubitDeclarations); i != std::sregex_iterator(); ++i) { std::string qubitLine = (*i).str(); qubitLine.erase(std::remove(qubitLine.begin(), qubitLine.end(), '\n'), qubitLine.end()); std::sregex_token_iterator first{qubitLine.begin(), qubitLine.end(), spaceDelim, -1}, last; std::vector<std::string> splitQubitLine = {first, last}; qubitVarNameToId[splitQubitLine[1]] = qbitId; allQbitIds.push_back(qbitId); qbitId++; } nQubits = qubitVarNameToId.size(); std::cout << "Number of Qubits is " << nQubits << std::endl; // Fill the Graph... // First create a starting node for the initial // wave function - it should have nQubits outgoing // edges graph.addVertex(SupportedGates::InitialState, 0, 0, allQbitIds); std::vector<CircuitNode> gateOperations; for (auto line : qasmLines) { // If this is a gate line... if (!boost::contains(line, "qubit")) { std::sregex_token_iterator first { line.begin(), line.end(), spaceDelim, -1 }, last; std::vector<std::string> gateCommand = {first, last}; // If we have a > 2 qubit gate, make a new layer if (boost::contains(gateCommand[1], ",")) { layer++; } // Create a new CircuitNode CircuitNode node; // Set the gate as a lowercase gate name string auto g = boost::to_lower_copy(gateCommand[0]); boost::trim(g); auto s = strToGate.at(g); std::get<0>(node.properties) = s; // Set the current layer std::get<1>(node.properties) = layer; std::get<2>(node.properties) = gateId; gateId++; std::vector<int> actingQubits; if (!boost::contains(gateCommand[1], ",")) { actingQubits.push_back(qubitVarNameToId[gateCommand[1]]); } else { std::vector<std::string> qbits; boost::split(qbits, gateCommand[1], boost::is_any_of(",")); for (auto q : qbits) { actingQubits.push_back(qubitVarNameToId[q]); } } // Set the acting qubits std::get<3>(node.properties) = actingQubits; gateOperations.push_back(node); graph.addVertex(node); } } // Set how many layers are in this circuit int maxLayer = layer; // Print info... for (auto cn : gateOperations) { std::cout << "Gate Operation: \n"; std::cout << "\tName: " << gateToStr.at(std::get<0>(cn.properties)) << "\n"; std::cout << "\tLayer: " << std::get<1>(cn.properties) << "\n"; std::cout << "\tGate Vertex Id: " << std::get<2>(cn.properties) << "\n"; std::cout << "\tActing Qubits: "; std::vector<int> qubits = std::get<3>(cn.properties); for (auto v : qubits) { if (!(v == *qubits.end())) { std::cout << v << ", "; } else { std::cout << v; } } std::cout << "\n\n"; } // Add an edge between the initial state node // and the layer 1 gates std::map<int,int> qubitToCurrentGateId; for (int i = 0 ; i < nQubits; i++) { qubitToCurrentGateId[i] = 0; } // std::vector<CircuitNode> layerOneGates; // std::copy_if(gateOperations.begin(), gateOperations.end(), // std::back_inserter(layerOneGates), // [](const CircuitNode& c) {return std::get<1>(c.properties) == 1;}); // for (auto i : layerOneGates) { // std::vector<int> actingQubits = std::get<3>(i.properties); // for (auto qubit : actingQubits) { // graph.addEdge(0, std::get<2>(i.properties)); // qubitToCurrentGateId[qubit] = std::get<2>(i.properties); // } // } int currentLayer = 1; while (currentLayer <= maxLayer) { std::vector<CircuitNode> currentLayerGates; std::copy_if(gateOperations.begin(), gateOperations.end(), std::back_inserter(currentLayerGates), [&](const CircuitNode& c) {return std::get<1>(c.properties) == currentLayer;}); for (auto n : currentLayerGates) { std::vector<int> actingQubits = std::get<3>(n.properties); for (auto qubit : actingQubits) { int currentQubitGateId = qubitToCurrentGateId[qubit]; graph.addEdge(currentQubitGateId, std::get<2>(n.properties)); qubitToCurrentGateId[qubit] = std::get<2>(n.properties); } } currentLayer++; } // Then we can go through and assign edges // to all vertices return graph; } }; } } #endif /* QUANTUM_GATE_QASMTOGRAPH_HPP_ */