Mesh.cpp 43.4 KB
Newer Older
1
2
3
4
5
6
7
8
#include "Mesh.hpp"

Mesh::Mesh(Sketch &sketch) {
    Boundary = sketch.boundary();

    for (size_t i = 0; i != sketch.size_curves(); ++i) {
        auto c = sketch.curve(i);
        if (!(c->for_construction())) {
9
            BoundaryConstraints.push_back(std::make_shared<BoundaryConstraint>(c));
10
11
        }
    }
12
    sort_constraints();
13
14
15
16
17

    for (size_t i = 0; i != sketch.size_contours(); ++i) {
        Contours.push_back(sketch.contour(i));
    }

18
    new_dart_constraint(0.0, 1.0, std::make_shared<BoundaryConstraint>(nullptr));
19
20
21
22
}

bool Mesh::are_intersecting(size_t ei, size_t ej) const {
    // TODO, Make more detailed return type enumeration
23
    if (is_constrained(ei) && curve_from_edge(ei) == curve_from_edge(ej)) {
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        return false;
    }

    Point const v00 = base(ei);
    Point const v01 = tip(ei);
    Point const v10 = base(ej);
    Point const v11 = tip(ej);

    double xs0 = (v00.X + v01.X) / 2.0;
    double ys0 = (v00.Y + v01.Y) / 2.0;
    double xs1 = (v10.X + v11.X) / 2.0;
    double ys1 = (v10.Y + v11.Y) / 2.0;

    double xd0 = (v00.X - v01.X) / 2.0;
    double yd0 = (v00.Y - v01.Y) / 2.0;
    double xd1 = (v10.X - v11.X) / 2.0;
    double yd1 = (v10.Y - v11.Y) / 2.0;

    double d0 = xd0 * xd0 + yd0 * yd0;
    double d1 = xd1 * xd1 + yd1 * yd1;
    double cross = abs(xd0 * yd1 - xd1 * yd0);
    double tol = (d0 * d1) * FLT_EPSILON;

    if (cross < tol) {
        // Lines are nearly parallel
        // There are four possible minimum distance points between the lines

        double s, dx, dy, dmin = DBL_MAX;

        s = ((xd0 - xd1) * (xs0 - xs1) + (yd0 - yd1) * (ys0 - ys1)) /
            ((xd0 - xd1) * (xd0 - xd1) + (yd0 - yd1) * (yd0 - yd1));
        if (abs(s) < 1.0 - FLT_EPSILON) {
            dx = xs0 + xd0 * s - xs1 - xd1 * s;
            dy = ys0 + yd0 * s - ys1 - yd1 * s;
            dmin = std::fmin(dmin, dx * dx + dy * dy);

            dx = xs0 - xd0 * s - xs1 + xd1 * s;
            dy = ys0 - yd0 * s - ys1 + yd1 * s;
            dmin = std::fmin(dmin, dx * dx + dy * dy);
        }

        s = ((xd0 + xd1) * (xs0 - xs1) + (yd0 + yd1) * (ys0 - ys1)) /
            ((xd0 + xd1) * (xd0 + xd1) + (yd0 + yd1) * (yd0 + yd1));
        if (abs(s) < 1.0 - FLT_EPSILON) {
            dx = xs0 + xd0 * s - xs1 + xd1 * s;
            dy = ys0 + yd0 * s - ys1 + yd1 * s;
            dmin = std::fmin(dmin, dx * dx + dy * dy);

            dx = xs0 - xd0 * s - xs1 - xd1 * s;
            dy = ys0 - yd0 * s - ys1 - yd1 * s;
            dmin = std::fmin(dmin, dx * dx + dy * dy);
        }

        tol = (d0 + d1) * FLT_EPSILON;
        return (dmin < tol);
    } else { // Lines are not parallel
        double s0 = abs(xd1 * (ys0 - ys1) - yd1 * (xs0 - xs1));
        double s1 = abs(xd0 * (ys0 - ys1) - yd0 * (xs0 - xs1));
        tol = cross * (1.0 - FLT_EPSILON);

        return (s0 < tol && s1 < tol);
    }
}

bool Mesh::edges_are_valid() const {
    bool result = true;

    for (size_t e = 0; e != Edges.size(); ++e) {
        if (e != prev(next(e))) {
            result = false;
            break;
        }
        if (e != next(prev(e))) {
            result = false;
            break;
        }
        if (e != twin(twin(e))) {
            result = false;
            break;
        }

        if ((e != twin(e))) {
            if (node(e) != node(next(twin(e)))) {
                result = false;
                break;
            }
110
            if (curve_from_edge(e) != curve_from_edge(twin(e))) {
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
                result = false;
                break;
            }
            if (is_constrained(e)) {
                if (orientation(e) == orientation(twin(e))) {
                    result = false;
                    break;
                }
            }

            if (node(e) == node(twin(e))) {
                result = false;
                break;
            }
        }

        if (is_constrained(e)) {
128
            DartConstraint dc = DartConstraints[Edges[e].Constraint];
129
130
131
            double tol = length(e) * FLT_EPSILON;
            if (orientation(e)) {
                Point p0 = base(e);
132
                Point p1 = dc.curve()->point(dc.S0);
133
134
135
136
137
138
                if (dist(p0,p1) > tol) {
                    result = false;
                    break;
                }

                p0 = tip(e);
139
                p1 = dc.curve()->point(dc.S1);
140
141
142
143
144
145
                if (dist(p0,p1) > tol) {
                    result = false;
                    break;
                }
            } else {
                Point p0 = base(e);
146
                Point p1 = dc.curve()->point(dc.S1);
147
148
149
150
151
152
                if (dist(p0,p1) > tol) {
                    result = false;
                    break;
                }

                p0 = tip(e);
153
                p1 = dc.curve()->point(dc.S0);
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
                if (dist(p0,p1) > tol) {
                    result = false;
                    break;
                }
            }
        }
    }

    return result;
}

bool Mesh::find_attached(Point const p, size_t &e_out) {
    double tol = length(e_out) * FLT_EPSILON;

    if (dist(tip(e_out),p) < tol) {
        return true;
    }

    size_t e_in = e_out;

    if (e_out != twin(e_out)) {
        e_out = next(twin(e_out));
        while (e_out != e_in) {
            if (dist(tip(e_out),p) < tol) {
                return true;
            } else if (e_out != twin(e_out)) {
                e_out = next(twin(e_out));
            } else {
                break;
            }
        }
    }

    if (e_out == twin(e_out)) {
        e_out = prev(e_in);
        while (e_out != twin(e_out)) {
            if (dist(base(e_out),p) < tol) {
                e_out = twin(e_out);
                return true;
            } else {
                e_out = prev(twin(e_out));
            }
        }
    }

    return false;
}

bool Mesh::refine() {
    std::vector<double> radii;
    std::vector<double> quality;
    std::vector<size_t> index;

    // TODO: Loop until quality is satisfied
    // TODO: Iteratively decrease the min and max element size until quality is satisfied
    // TODO: plan() bounds on maximum element quality
    // TODO: First: refine until maximum element size criteria is satisfied
    // TODO:        plan() out iterative maximum element size refinement
    // TODO: Then: refine until element quality cirteria is satisfied
    // TODO:        ?somehow iterate?
    // TODO: SMOOTHING!

    element_quality(radii, quality);
    //sort_permutation_ascending(quality, index);
    sort_permutation_descending(radii, index);
    size_t N = Triangles.size();

    refine_once(index, radii, quality);
    size_t M = Triangles.size();

    while (M > N) {
        N = M;
        element_quality(radii, quality);
        //sort_permutation_ascending(quality, index);
        sort_permutation_descending(radii, index);
        refine_once(index, radii, quality);
        M = Triangles.size();
    }

    return edges_are_valid(); // TODO: Instrument in tests
}

bool Mesh::refine_once() {
    std::vector<double> radii;
    std::vector<double> quality;
    std::vector<size_t> index;

    element_quality(radii, quality);
    //sort_permutation_ascending(quality, index);
    sort_permutation_descending(radii, index);
    refine_once(index, radii, quality);

    return edges_are_valid(); // TODO: Instrument in tests
}

bool Mesh::in_triangle(Point const p, size_t ei) const {
    double xp = p.X;
    double yp = p.Y;

    Point const p0 = base(ei);
    Point const p1 = base(next(ei));
    Point const p2 = base(prev(ei));

    double dx0p = p0.X - xp;
    double dy0p = p0.Y - yp;

    double dx1p = p1.X - xp;
    double dy1p = p1.Y - yp;

    double dx2p = p2.X - xp;
    double dy2p = p2.Y - yp;

    double dx01 = p0.X - p1.X;
    double dy01 = p0.Y - p1.Y;

    double dx12 = p1.X - p2.X;
    double dy12 = p1.Y - p2.Y;

    double dx20 = p2.X - p0.X;
    double dy20 = p2.Y - p0.Y;

    double area012 = dx01 * dy12 - dy01 * dx12;

    double tol = FLT_EPSILON * area012;

    double area01p = dx0p * dy1p - dx1p * dy0p;
    double area12p = dx1p * dy2p - dx2p * dy1p;
    double area20p = dx2p * dy0p - dx0p * dy2p;

    return (area01p > -tol && area12p > -tol && area20p > -tol);
}

bool Mesh::is_encroached(Point const p, size_t ei) const {
    /*
        A constrained edge is encroached if a triangle and it's circumcenter lie on opposite sides of the edge.
        This is equivalent to a node being in the diameteral ball of the edge?
        This only occurs if one of the triangles attached to the edge encroaches the edge?
        This only occurs if the angle of the triangles attached to the edge has an angle opposite the edge of greater than 90 degrees.
        Using the dot product, this requires that the normalized dot product < cos(90) = 0
    */

    if (!is_constrained(ei)) {
        return false;
    } else {
        Point const p0 = base(ei);
        Point const p1 = tip(ei);

        double dx0 = p0.X - p.X;
        double dy0 = p0.Y - p.Y;

        double dx1 = p1.X - p.X;
        double dy1 = p1.Y - p.Y;

        double dot = dx0 * dx1 + dy0 * dy1;
        double tol = std::sqrt(dx0 * dx0 + dy0 * dy0) * std::sqrt(dx1 * dx1 + dy1 * dy1) * FLT_EPSILON;

        return (dot < tol);
    }
}

bool Mesh::is_locally_optimal(size_t ei) const {
    /*
        See Chapter 3.7 of "Triangulations and Applications" by Øyvind Hjelle and Morten Dæhlen
    */

    if (is_constrained(ei)) {
        return true;
    } else {
        Point const p3 = base(ei);
        Point const p2 = base(prev(ei));
        Point const p1 = base(twin(ei));
        Point const p4 = base(prev(twin(ei)));

        double v1x = p3.X - p2.X;
        double v1y = p3.Y - p2.Y;
        double v2x = p1.X - p2.X;
        double v2y = p1.Y - p2.Y;
        double v3x = p1.X - p4.X;
        double v3y = p1.Y - p4.Y;
        double v4x = p3.X - p4.X;
        double v4y = p3.Y - p4.Y;

        double d1 = std::sqrt(v1x * v1x + v1y * v1y);
        double d2 = std::sqrt(v2x * v2x + v2y * v2y);
        double d3 = std::sqrt(v3x * v3x + v3y * v3y);
        double d4 = std::sqrt(v4x * v4x + v4y * v4y);
340
        double tol = -std::sqrt(d1 * d2 * d3 * d4) * FLT_EPSILON;
341
342
343
344
345
346
347

        double sina = v1x * v2y - v1y * v2x;
        double sinb = v3x * v4y - v3y * v4x;
        double cosa = v1x * v2x + v1y * v2y;
        double cosb = v3x * v4x + v3y * v4y;
        double cct = sina * cosb + cosa * sinb;

348
        return cct >= tol; // TODO: Optional tol for testing purposes
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    }
}

bool Mesh::is_protruding(size_t ei) const {
    //
    //    See Chapter 1.4 of "Triangulations and Applications" by Øyvind Hjelle and Morten Dæhlen
    //

    Point const p0 = base(prev(ei));
    Point const p1 = base(ei);
    Point const p2 = base(next(ei));

    double v1x = p2.X - p1.X;
    double v1y = p2.Y - p1.Y;

    double v0x = p0.X - p1.X;
    double v0y = p0.Y - p1.Y;

    double area = v1x * v0y - v1y * v0x;

    if (area > 0.0) {
        // Make sure no boundary points interior to triangle
        // Calculate barrycentric coordinates of p

        size_t nxt = next(next(ei));
        while (nxt != prev(ei)) {
            Point const p4 = base(nxt);

            double v2x = p2.X - p4.X;
            double v2y = p2.Y - p4.Y;

            v1x = p1.X - p4.X;
            v1y = p1.Y - p4.Y;

            v0x = p0.X - p4.X;
            v0y = p0.Y - p4.Y;

            double b0 = (v0x * v1y - v0y * v1x);
            double b1 = (v1x * v2y - v1y * v2x);
            double b2 = (v2x * v0y - v2y * v0x);

            if (b0 >= 0.0 && b0 <= area && b1 >= 0.0 && b1 <= area && b2 >= 0.0 && b2 <= area) {
                return false;    // Point is interior to triangle
            } else {
                nxt = next(nxt);
            }
        }
        return true;
    } else {
        return false;
    }
}

bool Mesh::is_valid(size_t ei) const {
    bool value = true;

    value = value && (ei == prev(next(ei)));
    value = value && (ei == next(prev(ei)));
    value = value && (ei == twin(twin(ei)));

    return value;
}

bool Mesh::recursive_swap(size_t ei) {
    // TODO, May need to have two different recursive swap methods, one for midpoint insertion and one for circumcenter insertion
    if (!is_locally_optimal(ei) && swap(ei)) {
        size_t enext = next(ei);
        size_t eprev = prev(ei);
        size_t tnext = next(twin(ei));
        size_t tprev = prev(twin(ei));

        recursive_swap(enext);
        recursive_swap(eprev);
        recursive_swap(tnext);
        recursive_swap(tprev);

        return true;
    } else {
        return false;
    }
}

bool Mesh::swap(size_t ei) {
    if (!is_constrained(ei)) {
        Edge &e0 = Edges[ei];
        Edge &e1 = Edges[e0.Next];
        Edge &e2 = Edges[e0.Prev];
        Edge &e5 = Edges[e0.Twin];
        Edge &e3 = Edges[e5.Next];
        Edge &e4 = Edges[e5.Prev];

        e0.Node = e2.Node;
        e0.Next = e4.Self;
        e0.Prev = e1.Self;
        e0.Mark = false;

        e5.Node = e4.Node;
        e5.Next = e2.Self;
        e5.Prev = e3.Self;
        e5.Mark = false;

        e1.Next = e0.Self;
        e1.Prev = e4.Self;
        e1.Mark = false;

        e2.Next = e3.Self;
        e2.Prev = e0.Twin;
        e2.Mark = false;

        e3.Next = e0.Twin;
        e3.Prev = e2.Self;
        e3.Mark = false;

        e4.Next = e1.Self;
        e4.Prev = e0.Self;
        e4.Mark = false;

        return true;
    } else {
        Edges[ei].Mark = false;
        return false;
    }
}

double Mesh::circumradius(size_t ei) const {
    Point const slf = base(ei);
    Point const prv = base(prev(ei));
    Point const nxt = base(next(ei));

    double xa = slf.X;
    double ya = slf.Y;
    double xb = prv.X - xa;
    double yb = prv.Y - ya;
    double xc = nxt.X - xa;
    double yc = nxt.Y - ya;
    xa = xb - xc;
    ya = yb - yc;

    double den = 2.0 * abs(xb * yc - yb * xc);
    double num = std::sqrt(xa * xa + ya * ya) * std::sqrt(xb * xb + yb * yb) * std::sqrt(xc * xc + yc * yc);

    return num / den;
}

double Mesh::length(size_t ei) const {
    Point const p0 = base(ei);
    Point const p1 = tip(ei);

    double dx = p0.X - p1.X;
    double dy = p0.Y - p1.Y;

    return std::sqrt(dx * dx + dy * dy);
}

double Mesh::shortest_edge_length(size_t ei) const { // TODO: Rename Edge class to Dart
    Point const slf = base(ei);
    Point const prv = base(prev(ei));
    Point const nxt = base(next(ei));

    double x0 = slf.X;
    double y0 = slf.Y;
    double x1 = nxt.X;
    double y1 = nxt.Y;
    double x2 = prv.X;
    double y2 = prv.Y;

    double dx = x0 - x1;
    double dy = y0 - y1;
    double dl = dx * dx + dy * dy;

    dx = x1 - x2;
    dy = y1 - y2;
    dl = std::fmin(dl, dx * dx + dy * dy);

    dx = x2 - x0;
    dy = y2 - y0;
    dl = std::fmin(dl, dx * dx + dy * dy);

    return std::sqrt(dl);
}

size_t Mesh::num_edges() const {
    size_t count = 0;
    for (size_t e = 0; e != Edges.size(); ++e) {
        count += (e == twin(e) ? 2 : 1);
    }
    count /= 2;

    return count;
}

void Mesh::create() {
    create_boundary_polygon();
    triangulate_boundary_polygon();

    insert_internal_boundaries();
    get_triangles();
}

void Mesh::create_boundary_polygon() {
    // Create input edges
    Edges.reserve(Boundary->size());
    Points.reserve(Boundary->size());
    for (size_t i = 0; i != Boundary->size(); ++i) {
        std::shared_ptr<Curve const> cc = Boundary->curve(i);
        bool dir = Boundary->orientation(i);
555
        Edge &e = new_edge(Points.size(), DartConstraints.size(), dir); // TODO: change to new_edge(Edge)
556
557
        e.Twin = e.Self;

558
        DartConstraint &dc = new_dart_constraint(0.0, 1.0, boundary_constraint(cc));
559
560
561
562
563
564

        if (dir) {
            dc.forward_dart(e.self());
        } else {
            dc.reverse_dart(e.self());
        }
565

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        Points.push_back(Point(dir ? cc->start() : cc->end()));
    }

    // Set Next/Prev edges from Boundary
    size_t Ne = 0;
    for (size_t i = 0; i != Edges.size(); ++i) {
        size_t j = (i + 1) % Edges.size();
        Edges[i].Next = Edges[j].Self;
        Edges[j].Prev = Edges[i].Self;
    }

    // Some edges may intersect due to discretization error
    // If two edges intersect, split the longest edge
    bool any_split = true;
    while (any_split) {
        any_split = false;
        for (size_t i = 0; i != Edges.size() - 1; ++i) {
            for (size_t j = i + 1; j != Edges.size(); ++j) {
                if (are_intersecting(i, j)) {
                    any_split = true;
                    if (length(i) > length(j)) {
                        split_edge(i);
                    } else {
                        split_edge(j);
                    }
                }
            }
        }
    }
}

void Mesh::element_quality(std::vector<double> &radii, std::vector<double> &quality) {
    radii.resize(0);
    quality.resize(0);

    radii.reserve(Triangles.size());
    quality.reserve(Triangles.size());
    for (size_t i = 0; i != Triangles.size(); ++i) {
604
605
        double r = circumradius(Triangles[i].Edge);
        double l = shortest_edge_length(Triangles[i].Edge);
606
607
608
609
610
611
612
613
614
615
616

        radii.push_back(r);
        quality.push_back(l / r / sqrt(3.0)); // sqrt(3.0) = (shortest edges length) / radius of equilateral triangle
    }
}

void Mesh::get_triangles() {
    Triangles.resize(0);
    Triangles.reserve(2 * num_points());

    for (auto &e : Edges) {
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
        e.Mark = true;
    }

    std::vector<size_t> edge_queue;
    std::vector<size_t> contours;
    edge_queue.reserve(2 * num_points());
    contours.reserve(2 * num_points());
    for (size_t contour_index = 0; contour_index != Contours.size(); ++contour_index) {
        edge_queue.resize(0);

        std::shared_ptr<Contour const> &contour = Contours[contour_index];
        std::shared_ptr<Curve const> c = contour->curve(0);
        std::shared_ptr<BoundaryConstraint> bc = boundary_constraint(c);
        DartConstraint const dc = dart_constraint(bc->dart(0));

        edge_queue.push_back(contour->orientation(0) ? dc.forward_dart() : dc.reverse_dart());
        while(edge_queue.size() > 0) {
            Edge &et = Edges[edge_queue.back()];
            Edge &en = Edges[et.next()];
            Edge &ep = Edges[et.prev()];

            edge_queue.pop_back();

            if (et.Mark) {
                Triangles.emplace_back(et.self(), contour_index);

                if(!en.is_constrained() && en.Mark) {
                    edge_queue.push_back(en.twin());
                    en.Mark = false;
                }

                if(!ep.is_constrained() && ep.Mark) {
                    edge_queue.push_back(ep.twin());
                    ep.Mark = false;
                }
            }
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
        }
    }
}

void Mesh::insert_internal_boundaries() {
    /*
        For each constraint curve :
            Add constraint curve to queue
            Insert endpoints if they do not exist.
                Will have to keep attempting insertion until no existing edge is encroached

            While the queue is not empty :
                Orbit the start point of the last curve in the queue :
                    If the end point is attached to the start point by some edge :
                        Set Edge->ConstraintCurve and->Orientation properties
                        Pop last curve from queue
                    Else
                        Split the last curve and add a new curve to the end of the queue

            Repeat until no edge is split :
                Orbit each edge, checking for encroachment by attached verticies
                If encroached, split edge
    */

    // Find interior curves
678
679
680
    std::vector<size_t> interior_index;
    for (size_t i = 0; i!= BoundaryConstraints.size(); ++i) {
        auto const & bc = BoundaryConstraints[i];
681
682
        bool on_exterior = false;
        for (size_t i = 0; i != Boundary->size(); ++i) {
683
            if (bc->curve() == Boundary->curve(i)) {
684
685
686
687
688
689
                on_exterior = true;
                break;
            }
        }

        if (!on_exterior) {
690
            interior_index.push_back(i);
691
692
693
694
        }
    }

    // Insert interior curve end points
695
    for (size_t i : interior_index) {
696
        // Insert start point
697
        Point p = BoundaryConstraints[i]->curve()->start();
698
699
        LocateTriangleResult result = locate_triangle(p);
        if (result == LocateTriangleResult::Interior) {
700
701
702
703
            while (add_point_to_queue(p) == AddToQueueResult::Midpoint) {
                insert_from_queue();
            }
            insert_from_queue();
704
705
706
        }

        // Insert end point
707
        p = BoundaryConstraints[i]->curve()->end();
708
709
        result = locate_triangle(p);
        if (result == LocateTriangleResult::Interior) {
710
711
712
713
            while (add_point_to_queue(p) == AddToQueueResult::Midpoint) {
                insert_from_queue();
            }
            insert_from_queue();
714
715
716
        }
    }

717
718
    // Attach edges to constraints by inserting interior curve midpoints until constraints are naturally satisfied
    std::vector<size_t> queue;
719
    for (size_t i : interior_index) {
720
        queue.push_back(DartConstraints.size());
721
        new_dart_constraint(0.0, 1.0, BoundaryConstraints[i]);
722
        while (queue.size() != 0) {
723
            DartConstraint &dc = DartConstraints[queue.back()];
724
725
            Point p0 = dc.curve()->point(dc.S0); // TODO: write Point Curve::point(double) and differentiate from Vertex Curve::vertex(double)
            Point p1 = dc.curve()->point(dc.S1);
726
727
728
729
730
731
732
733
734
735

            size_t ei = Edges.size() - 1;
            LocateTriangleResult result = locate_triangle(p0, ei);

            if (result != LocateTriangleResult::Point) {
                throw std::exception();
            }

            if (find_attached(p1, ei)) {
                Edge &e = Edges[ei];
736
                e.Constraint = dc.Self;
737
                e.Orientation = true;
738
739
                dc.forward_dart(e.self());

740
                Edge &et = Edges[e.Twin];
741
                et.Constraint = dc.Self;
742
                et.Orientation = false;
743
                dc.reverse_dart(et.self());
744
745
746
747
748
749

                queue.pop_back();
            } else {
                double s0 = dc.S0;
                double s1 = dc.S1;
                double sn = (s0 + s1) / 2.0;
750
751

                Point const p = dc.curve()->point(sn);
752
753
754

                dc.S1 = sn;

755
756
757
758
759
760
761
                queue.push_back(DartConstraints.size());
                new_dart_constraint(sn, s1, dc.boundary_constraint());

                while (add_point_to_queue(p) == AddToQueueResult::Midpoint) {
                    insert_from_queue();
                }
                insert_from_queue();
762
763
764
765
            }
        }
    }

766
    for (auto bc : BoundaryConstraints) { // Length based refinement
767
        bc->refine(*this, 0.01);
768
769
    }

770
    split_encroached_edges();
771

772
773
774
775
776
777
    for (auto bc: BoundaryConstraints) {
        if (bc->uniform_discretizaiton()) {
            bc->make_uniform(*this);
        }
    }

778
    // TODO: Enforce BoundaryConstraint conditions (e.g. uniform discretization, boundary maps)
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
}

void Mesh::mark_triangles() {
    for (size_t i = 0; i != Edges.size(); ++i) {
        Edges[i].Mark = true;
    }

    for (size_t i = 0; i != Edges.size(); ++i) {
        if (Edges[i].Mark && Edges[next(i)].Mark && Edges[prev(i)].Mark) {
            Edges[next(i)].Mark = false;
            Edges[prev(i)].Mark = false;
        }
    }
}

void Mesh::refine_once(std::vector<size_t> index, std::vector<double> radii, std::vector<double> quality) {
    for (size_t i = 0; i != Triangles.size(); ++i) {
        size_t j = index[i];
797
        if ((edge_from_triangle_index(j).Mark) && ((radii[j] > MaximumElementSize) || (radii[j] > MinimumElementSize && quality[j] < MinimumElementQuality))) {
798
            add_circumcenter_to_queue(Triangles[j].Edge);
799
            insert_from_queue();
800
801
802
803
804
        }
    }
    get_triangles();
}

805
806
807
808
809
810
811
void Mesh::insert_from_queue() {
    while (!Queue.empty()) {
        Queue.back()->insert(*this);
        Queue.pop_back();
    }
}

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
void Mesh::save_as(std::string path, std::string file_name) const {
    /*
        This is a stub for visualization
    */

    if (!boost::filesystem::exists(path)) {
        boost::filesystem::create_directories(path);
    }

    std::fstream fs;
    fs.open(path + file_name + ".oeme", std::fstream::out);

    for (size_t e = 0; e != Edges.size(); ++e) {
        Point const v0 = base(e);
        Point const v1 = base(next(e));
        Point const v2 = base(next(next(e)));
        fs << v0.X << ',' << v1.X << ',' << v2.X << ',' << v0.Y << ',' << v1.Y << ',' << v2.Y << '\n';
    }

    fs.close();
}

834
835
836
837
838
839
840
841
void Mesh::sort_constraints() {
    std::sort(BoundaryConstraints.begin(), BoundaryConstraints.end(),
              [](std::shared_ptr<BoundaryConstraint> const &x, std::shared_ptr<BoundaryConstraint> const &y) {
                  return (size_t)(x->curve().get()) < (size_t)(y->curve().get());
              }
    );
}

842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
void Mesh::sort_permutation_ascending(std::vector<double> &values, std::vector<size_t> &index) const {
    index.resize(values.size());
    std::iota(index.begin(), index.end(), 0);
    std::sort(index.begin(), index.end(), [&](size_t i, size_t j) { return (values[i] < values[j]); });
}

void Mesh::sort_permutation_descending(std::vector<double> &values, std::vector<size_t> &index) const {
    index.resize(values.size());
    std::iota(index.begin(), index.end(), 0);
    std::sort(index.begin(), index.end(), [&](size_t i, size_t j) { return (values[i] > values[j]); });
}

void Mesh::split_edge(size_t ei) {
    /*
        Splits edge into two edges at the midpoint without creating any new triangles.
        Used for initial polygon refinement.
    */

860
    // TODO: Rename to split_boundary_edge
861

862
863
864
    if (!(is_constrained(ei) && ei == twin(ei))) { // TODO: write bool Edge::is_boundary()
        std::cerr << "Mesh::split_edge(size_t ei) should only be called on boundary edges" << std::endl;
        return;
865
866
    }

867
868
869
    DartConstraint &dci = DartConstraints[Edges[ei].Constraint];
    double s0 = dci.S0;
    double s1 = dci.S1;
870
    std::shared_ptr<Curve const> cc = dci.curve();
871

872
873
    double sn = (s0 + s1) / 2.0;
    dci.S1 = sn;
874

875
    size_t c{DartConstraints.size()};
876
877
    new_dart_constraint(sn, s1, dci.boundary_constraint());
    Points.push_back(cc->point(sn));
878

879
880
881
882
883
    size_t itr = new_edges(1);
    Edge &newe = Edges[--itr];
    Edge &e = Edges[ei];
    Edge &nxt = Edges[e.Next];

884
885
886
    DartConstraint &dcc = DartConstraints[c];
    DartConstraint &dce = DartConstraints[e.Constraint];

887
888
889
890
    // Constraint Curve
    newe.Orientation = e.Orientation;
    if (e.Orientation) {
        newe.Constraint = c;
891
892

        dcc.forward_dart(newe.self());
893
    } else {
894
895
        newe.Constraint = e.Constraint;
        e.Constraint = c;
896
897
898

        dce.reverse_dart(newe.self());
        dcc.reverse_dart(e.self());
899
    }
900
901
902
903
904
905
906
907
908
909
910
911
912

    // Connectivity
    newe.Node = Points.size() - 1;
    newe.Next = e.Next;
    newe.Prev = e.Self;
    newe.Twin = newe.Self;
    newe.Mark = false;

    nxt.Prev = newe.Self;
    nxt.Mark = false;

    e.Next = newe.Self;
    e.Mark = false;
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
}

void Mesh::split_encroached_edges() {
    bool any_split = true;
    while (any_split) {
        any_split = false;
        for (size_t i = 0; i != Edges.size(); ++i) {
            if (is_constrained(i)) {
                if (is_encroached(base(prev(i)), i)) {
                    any_split = true;
                    insert_midpoint(i);
                }
            }
        }
    }
}

void Mesh::triangulate_boundary_polygon() {
    Edges.reserve(3 * num_points());

    size_t i = 0;
    while (i != next(next(next(i)))) {
        if (is_protruding(i)) {
            size_t itr = new_edges(2);
            Edge &e1 = Edges[--itr];
            Edge &e0 = Edges[--itr];

            Edge &ei = Edges[i];
            Edge &nxt = Edges[ei.Next];
            Edge &prv = Edges[ei.Prev];

            Edge &prvprv = Edges[prv.Prev];

            // Edge of new triangle
            e0.Node = nxt.Node;
            e0.Prev = ei.Self;
            e0.Next = ei.Prev;
            e0.Twin = e1.Self;

            // Twin edge, part of new polygonal boundary
            e1.Node = prv.Node;
            e1.Next = ei.Next;
            e1.Prev = prv.Prev;
            e1.Twin = e0.Self;

            // Update polygonal boundary
            nxt.Prev = e1.Self;
            ei.Next = e0.Self;
            prvprv.Next = e1.Self;
            prv.Prev = e0.Self;

            // Next edge
            i = next(e1.Self);
        } else {
            i = next(i);
        }
    }

    // Edge swap to make triangulation Delaunay
    for (size_t i = 0; i != Edges.size(); ++i) {
        recursive_swap(i);
    }

    split_encroached_edges();
977
978
979
980
981
982
983
984
985

    for (size_t i = 0; i != Boundary->size(); ++i) { // Length based-refinement of boundary curves
        std::shared_ptr<Curve const> cc = Boundary->curve(i);
        std::shared_ptr<BoundaryConstraint> bc = boundary_constraint(cc);
        bc->refine(*this, 0.01);
        if (bc->uniform_discretizaiton()) {
            bc->make_uniform(*this);
        }
    }
986
987
988
}

LocateTriangleResult Mesh::locate_triangle(Point const p, size_t &ei) const {
989
    // TODO: Check for visibility of vertex? That someone contradicts the purpose of this method as a general point location function (as opposed to purely for mesh refinement)
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
    double xp = p.X;
    double yp = p.Y;

    Point p0 = base(ei);
    Point p1 = base(next(ei));
    Point p2 = base(prev(ei));

    double dx0p = p0.X - xp;
    double dy0p = p0.Y - yp;

    double dx1p = p1.X - xp;
    double dy1p = p1.Y - yp;

    double dx2p = p2.X - xp;
    double dy2p = p2.Y - yp;

    double dx01 = p0.X - p1.X;
    double dy01 = p0.Y - p1.Y;

    double dx12 = p1.X - p2.X;
    double dy12 = p1.Y - p2.Y;

    double dx20 = p2.X - p0.X;
    double dy20 = p2.Y - p0.Y;

    double tol_a = FLT_EPSILON * (dx20 * dy01 - dy20 * dx01);
    double tol_l = FLT_EPSILON * sqrt(dx20 * dy01 - dy20 * dx01);

    double dist0 = sqrt(dx0p * dx0p + dy0p * dy0p);
    double dist1 = sqrt(dx1p * dx1p + dy1p * dy1p);
    double dist2 = sqrt(dx2p * dx2p + dy2p * dy2p);

    double area01 = dx0p * dy1p - dx1p * dy0p;
    double area12 = dx1p * dy2p - dx2p * dy1p;
    double area20 = dx2p * dy0p - dx0p * dy2p;

    if (dist0 < tol_l) {
        return LocateTriangleResult::Point;
    } else if (dist1 < tol_l) {
        ei = next(ei);
        return LocateTriangleResult::Point;
    } else if (dist2 < tol_l) {
        ei = prev(ei);
        return LocateTriangleResult::Point;
    } else  if (area01 > tol_a && area12 > tol_a && area20 > tol_a) {
        return LocateTriangleResult::Interior;
    } else if (area01 < -tol_a && ei != twin(ei)) {
        ei = twin(ei);
        p2 = p1;
        p1 = p0;
        p0 = p2;

        dx2p = dx1p;
        dx1p = dx0p;
        dx0p = dx2p;

        dy2p = dy1p;
        dy1p = dy0p;
        dy0p = dy2p;

        dx01 = -dx01;
        dy01 = -dy01;
    } else if (area12 < -tol_a && next(ei) != twin(next(ei))) {
        ei = twin(next(ei));
        p0 = p2;

        dx0p = dx2p;
        dy0p = dy2p;

        dx01 = -dx12;
        dy01 = -dy12;
    } else if (area20 < -tol_a && prev(ei) != twin(prev(ei))) {
        ei = twin(prev(ei));
        p1 = p2;

        dx1p = dx2p;
        dy1p = dy2p;

        dx01 = -dx20;
        dy01 = -dy20;
    } else if (area01 > -tol_a && area12 > tol_a && area20 > tol_a) {
        ei = twin(ei);
        return LocateTriangleResult::Interior;
    } else if (area01 > tol_a && area12 > -tol_a && area20 > tol_a) {
        ei = twin(next(ei));
        return LocateTriangleResult::Interior;
    } else if (area01 > tol_a && area12 > tol_a && area20 > -tol_a) {
        ei = twin(prev(ei));
        return LocateTriangleResult::Interior;
    } else if (area01 < -tol_a) {
        return LocateTriangleResult::Exterior;
    } else if (area12 < -tol_a) {
        ei = next(ei);
        return LocateTriangleResult::Exterior;
    } else if (area20 < -tol_a) {
        ei = prev(ei);
        return LocateTriangleResult::Exterior;
    } else {
        throw std::exception();
    }

    while (true) { // After first iteration, area01 > 0
        p2 = base(prev(ei));

        dx2p = p2.X - xp;
        dy2p = p2.Y - yp;

        dx12 = p1.X - p2.X;
        dy12 = p1.Y - p2.Y;

        dx20 = p2.X - p0.X;
        dy20 = p2.Y - p0.Y;

        tol_a = FLT_EPSILON * (dx20 * dy01 - dy20 * dx01);
        tol_l = FLT_EPSILON * sqrt(dx20 * dy01 - dy20 * dx01);

        dist2 = sqrt(dx2p * dx2p + dy2p * dy2p);

        area12 = dx1p * dy2p - dx2p * dy1p;
        area20 = dx2p * dy0p - dx0p * dy2p;

        if (dist2 < tol_l) {
            ei = prev(ei);
            return LocateTriangleResult::Point;
        } else if (area12 > tol_a && area20 > tol_a) {
            return LocateTriangleResult::Interior;
        } else if (area12 < -tol_a && next(ei) != twin(next(ei))) {
            ei = twin(next(ei));
            p0 = p2;

            dx0p = dx2p;
            dy0p = dy2p;

            dx01 = -dx12;
            dy01 = -dy12;
            continue;
        } else if (area20 < -tol_a && prev(ei) != twin(prev(ei))) {
            ei = twin(prev(ei));
            p1 = p2;

            dx1p = dx2p;
            dy1p = dy2p;

            dx01 = -dx20;
            dy01 = -dy20;
            continue;
        } else if (area12 > -tol_a && area20 > tol_a) {
            ei = twin(next(ei));
            return LocateTriangleResult::Interior;
        } else if (area12 > tol_a && area20 > -tol_a) {
            ei = twin(prev(ei));
            return LocateTriangleResult::Interior;
        } else if (area12 < -tol_a) {
            ei = next(ei);
            return LocateTriangleResult::Exterior;
        } else if (area20 < -tol_a) {
            ei = prev(ei);
            return LocateTriangleResult::Exterior;
        } else {
            throw std::exception();
        }
    }
}

1154
1155
AddToQueueResult Mesh::add_circumcenter_to_queue(size_t dart) {
    return add_point_to_queue(circumcenter(dart), dart);
1156
1157
1158
1159
1160
1161
1162
1163
1164
}

InsertPointResult Mesh::insert_midpoint(size_t ei) {
    /*
        Splits edge into two edges and creates two new triangles.
    */

    size_t c{0};
    if (is_constrained(ei)) { // Constrained Edge
1165
        c = DartConstraints.size();
1166

1167
        DartConstraint &dc = DartConstraints[Edges[ei].Constraint];
1168
1169
        double s0 = dc.S0;
        double s1 = dc.S1;
1170
        std::shared_ptr<Curve const> cc = dc.curve();
1171
1172
1173
1174

        double sn = (s0 + s1) / 2.0;
        dc.S1 = sn;

1175
        new_dart_constraint(sn, s1, dc.boundary_constraint());
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
        Points.push_back(cc->point(sn));
    } else { // Unconstrained Edge
        Point const p0 = base(ei);
        Point const p1 = tip(ei);
        Points.push_back(Point((p0.X + p1.X) / 2.0, (p0.Y + p1.Y) / 2.0));
    }

    if (ei == twin(ei)) { // Boundary Edge
        size_t itr = new_edges(3);
        Edge &e2 = Edges[--itr];
        Edge &e1 = Edges[--itr];
        Edge &e0 = Edges[--itr];

        Edge &e = Edges[ei];
        Edge &nxt = Edges[e.Next];
        Edge &prv = Edges[e.Prev];

1193
1194
1195
        DartConstraint &dcc = DartConstraints[c];
        DartConstraint &dce = DartConstraints[e.Constraint];

1196
1197
1198
1199
        // Handle constraint curves
        e2.Orientation = e.Orientation;
        if (e.Orientation) {
            e2.Constraint = c;
1200
1201

            dcc.forward_dart(e2.self());
1202
1203
1204
        } else {
            e2.Constraint = e.Constraint;
            e.Constraint = c;
1205
1206
1207

            dcc.reverse_dart(e.self());
            dce.reverse_dart(e2.self());
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
        }

        // Construct edges
        e0.Node = prv.Node;
        e0.Next = e2.Self;
        e0.Prev = e.Next;
        e0.Twin = e1.Self;
        e0.Mark = false;

        e1.Node = Points.size() - 1; // TODO: write new_point(Point) method
        e1.Next = e.Prev;
        e1.Prev = e.Self;
        e1.Twin = e0.Self;
        e1.Mark = false;

        e2.Node = Points.size() - 1;
        e2.Next = e.Next;
        e2.Prev = e0.Self;
        e2.Twin = e2.Self;
        e2.Mark = false;

        nxt.Next = e0.Self;
        nxt.Prev = e2.Self;
        nxt.Mark = false;

        prv.Prev = e1.Self;
        prv.Mark = false;

        e.Next = e1.Self;
        e.Mark = false;

        // Recursive swap
        recursive_swap(e0.Self);
        recursive_swap(nxt.Self);
        recursive_swap(prv.Self);
    } else { // Interior Edge
        size_t itr = new_edges(6);
        Edge &e5 = Edges[--itr];
        Edge &e4 = Edges[--itr];
        Edge &e3 = Edges[--itr];
        Edge &e2 = Edges[--itr];
        Edge &e1 = Edges[--itr];
        Edge &e0 = Edges[--itr];

        Edge &e = Edges[ei];
        Edge &nxt = Edges[e.Next];
        Edge &prv = Edges[e.Prev];
        Edge &twn = Edges[e.Twin];
        Edge &tnxt = Edges[twn.Next];
        Edge &tprv = Edges[twn.Prev];

1259
1260
1261
        DartConstraint &dcc = DartConstraints[c];
        DartConstraint &dce = DartConstraints[e.Constraint];

1262
1263
1264
1265
1266
1267
        // Handle constraint curves
        e1.Orientation = e.Orientation;
        e4.Orientation = !e.Orientation;
        twn.Orientation = !e.Orientation;
        if (e.Orientation) {
            e1.Constraint = c;
1268
1269
1270
1271
1272
1273
1274
            dcc.forward_dart(e1.self());

            twn.Constraint = e1.Constraint;
            e4.Constraint = e.Constraint;

            dce.reverse_dart(e4.self());
            dcc.reverse_dart(twn.self());
1275
1276
1277
        } else {
            e1.Constraint = e.Constraint;
            e.Constraint = c;
1278
1279
1280
1281
1282
1283
1284
1285
1286

            dcc.reverse_dart(e.self());
            dce.reverse_dart(e1.self());

            twn.Constraint = e1.Constraint;
            e4.Constraint = e.Constraint;

            dcc.forward_dart(e4.self());
            dce.forward_dart(twn.self());
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
        }

        // Construct Edges
        e0.Node = Points.size() - 1;
        e0.Next = e.Prev;
        e0.Prev = e.Self;
        e0.Twin = e2.Self;
        e0.Mark = false;

        e1.Node = Points.size() - 1;
        e1.Next = e.Next;
        e1.Prev = e2.Self;
        e1.Twin = e.Twin;
        e1.Mark = false;

        e2.Node = prv.Node;
        e2.Next = e1.Self;
        e2.Prev = e.Next;
        e2.Twin = e0.Self;
        e2.Mark = false;

        e3.Node = Points.size() - 1;
        e3.Next = twn.Prev;
        e3.Prev = e.Twin;
        e3.Twin = e5.Self;
        e3.Mark = false;

        e4.Node = Points.size() - 1;
        e4.Next = twn.Next;
        e4.Prev = e5.Self;
        e4.Twin = e.Self;
        e4.Mark = false;

        e5.Node = tprv.Node;
        e5.Next = e4.Self;
        e5.Prev = twn.Next;
        e5.Twin = e3.Self;
        e5.Mark = false;

        tnxt.Next = e5.Self;
        tnxt.Prev = e4.Self;
        tnxt.Mark = false;

        tprv.Prev = e3.Self;
        tprv.Mark = false;

        twn.Next = e3.Self;
        twn.Twin = e1.Self;
        twn.Mark = false;

        nxt.Next = e2.Self;
        nxt.Prev = e1.Self;
        nxt.Mark = false;

        prv.Prev = e0.Self;
        prv.Mark = false;

        e.Next = e0.Self;
        e.Twin = e4.Self;
        e.Mark = false;

        // Recursive swap
        recursive_swap(e0.Self);
        recursive_swap(e3.Self);
        recursive_swap(nxt.Self);
        recursive_swap(prv.Self);
        recursive_swap(tnxt.Self);
        recursive_swap(tprv.Self);
    }

    return InsertPointResult::Midpoint;
}

1360
AddToQueueResult Mesh::add_point_to_queue(Point vc, size_t ei) {
1361
1362
1363
1364
    // Find triangle containing point
    LocateTriangleResult result = locate_triangle(vc, ei);

    if (result == LocateTriangleResult::Point) {
1365
1366
1367
1368
1369
1370
1371
1372
1373
        return AddToQueueResult::Duplicate; // Do not insert point if it is duplicate
    }

    if (result == LocateTriangleResult::Exterior) {
        if (is_constrained(ei)) { // Move attempted insertion point to the midpoint of the located edge to force encroachement
            vc = midpoint(ei);
        } else {
            throw std::exception(); // TODO: No triangle found containing circumcenter, boundary edge was encroached by circumcenter, and the located edge was not a constrained edge
        }
1374
1375
1376
1377
    }

    // Test edges in current and adjacent triangles for encroachment
    // These are the only possible edges that are encroached due to empty circumcircle property
1378
1379
    std::vector<size_t> encroached_edges = get_encroached_edges(vc, ei);
    bool any_encroached{encroached_edges.size() > 0};
1380

1381
1382
    if (any_encroached) {
        for (size_t e : encroached_edges) {
1383
            Edges[e].add_to_queue(*this);
1384
        }
1385
        return AddToQueueResult::Midpoint;
1386
1387

    } else if (result == LocateTriangleResult::Interior) {
1388
1389
        Queue.push_back(std::make_unique<CircumcenterQueuer>(vc, ei));
        return AddToQueueResult::Circumcenter;
1390

1391
1392
1393
1394
    } else {
        throw std::exception(); // TODO: No triangle could be found containing circumcenter and no boundary edge was encroached by circumcenter
    }
}
1395

1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
InsertPointResult Mesh::insert_point(Point const vc, size_t ei) {
    // TODO: Give Queuers function pointers and references to the mesh, then make these private
    // ei should be the triangle containing the point vc

    size_t itr = new_edges(6);
    Edge &e5 = Edges[--itr];
    Edge &e4 = Edges[--itr];
    Edge &e3 = Edges[--itr];
    Edge &e2 = Edges[--itr];
    Edge &e1 = Edges[--itr];
    Edge &e0 = Edges[--itr];

    Edge &tri = Edges[ei];
    Edge &nxt = Edges[tri.Next];
    Edge &prv = Edges[tri.Prev];

    size_t vt = node(tri);
    size_t vn = node(nxt);
    size_t vp = node(prv);

    Points.push_back(vc);

    e0.Node = Points.size() - 1;
    e0.Next = tri.Self;
    e0.Prev = e1.Self;
    e0.Twin = e5.Self;
    e0.Mark = false;

    e1.Node = vn;
    e1.Next = e0.Self;
    e1.Prev = tri.Self;
    e1.Twin = e2.Self;
    e1.Mark = false;

    e2.Node = Points.size() - 1;
    e2.Next = nxt.Self;
    e2.Prev = e3.Self;
    e2.Twin = e1.Self;
    e2.Mark = false;

    e3.Node = vp;
    e3.Next = e2.Self;
    e3.Prev = nxt.Self;
    e3.Twin = e4.Self;
    e3.Mark = false;

    e4.Node = Points.size() - 1;
    e4.Next = prv.Self;
    e4.Prev = e5.Self;
    e4.Twin = e3.Self;
    e4.Mark = false;

    e5.Node = vt;
    e5.Next = e4.Self;
    e5.Prev = prv.Self;
    e5.Twin = e0.Self;
    e5.Mark = false;

    nxt.Next = e3.Self;
    nxt.Prev = e2.Self;
    nxt.Mark = false;

    prv.Next = e5.Self;
    prv.Prev = e4.Self;
    prv.Mark = false;

    tri.Next = e1.Self;
    tri.Prev = e0.Self;
    tri.Mark = false;

    recursive_swap(tri.Self);
    recursive_swap(nxt.Self);
    recursive_swap(prv.Self);

    return InsertPointResult::Success;
}
1472

1473
1474
1475
1476
1477
1478
1479
1480
std::vector<size_t> Mesh::get_encroached_edges(Point const p, size_t edge) {
    std::vector<size_t> encroached_edges;
    encroached_edges.reserve(9);
    size_t e_self = edge;
    for (size_t i = 0; i != 3; ++i) {
        if (is_encroached(p, e_self)) {
            encroached_edges.push_back(e_self);
        }
1481

1482
1483
1484
1485
1486
1487
        size_t e_twin = twin(e_self);
        if (e_self != e_twin) { // if not boundary edge, check adjacent triangle
            size_t e_next = next(e_twin);
            if (is_encroached(p, e_next)) {
                encroached_edges.push_back(e_next);
            }
1488

1489
1490
1491
1492
1493
            size_t e_prev = prev(e_twin);
            if (is_encroached(p, e_prev)) {
                encroached_edges.push_back(e_prev);
            }
        }
1494

1495
        e_self = next(e_self);
1496
    }
1497
1498

    return encroached_edges;
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
}

Point Mesh::circumcenter(size_t ei) const {
    Point const slf = base(ei);
    Point const prv = base(prev(ei));
    Point const nxt = base(next(ei));

    double xa = slf.X;
    double ya = slf.Y;
    double xb = prv.X - xa;
    double yb = prv.Y - ya;
    double xc = nxt.X - xa;
    double yc = nxt.Y - ya;

    double d = 2.0 * (xb * yc - yb * xc);
    double db = xb * xb + yb * yb;
    double dc = xc * xc + yc * yc;
    double x = (yc * db - yb * dc) / d + xa;
    double y = (xb * dc - xc * db) / d + ya;

    return Point{x, y};
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
}

std::shared_ptr<BoundaryConstraint> Mesh::boundary_constraint(std::shared_ptr<Curve const> const &c) const {
    auto comp = [](std::shared_ptr<BoundaryConstraint> const &x, size_t const y) { return (size_t)(x->curve().get()) < y; };

    std::shared_ptr<BoundaryConstraint> result = *std::lower_bound(BoundaryConstraints.begin(), BoundaryConstraints.end(), (size_t)c.get(), comp);

    if((size_t)(result->curve().get()) == (size_t)(c.get())) {
        return result;
    } else {
        return nullptr;
    }
1532
}