Mesh_To_FEM_Test.cpp 40.3 KB
Newer Older
1
#include "Library_Integration_Test.hpp"
2 3 4

std::string SAVE_DIR = "./test/output/Integration/";

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
TEST(Full_Circle, Magnetostatic_Uniform_Current_Density) {
    // Create Sketch
    Sketch sk;

    auto v0 = sk.new_element<Vertex>(0.0, 0.0);
    auto v1 = sk.new_element<Vertex>(1.0, 0.0);
    auto v2 = sk.new_element<Vertex>(1.0 * std::cos(M_PI * 2.0 / 3.0), 1.0 * std::sin(M_PI * 2.0 / 3.0));
    auto v3 = sk.new_element<Vertex>(1.0 * std::cos(-M_PI * 2.0 / 3.0), 1.0 * std::sin(-M_PI * 2.0 / 3.0));

    auto c0 = sk.new_element<CircularArc>(v1, v2, v0, 1.0);
    auto c1 = sk.new_element<CircularArc>(v2, v3, v0, 1.0);
    auto c2 = sk.new_element<CircularArc>(v3, v1, v0, 1.0);

    auto f0 = sk.new_element<Fixation>(v0);
    auto f1 = sk.new_element<Fixation>(v1);
    auto f2 = sk.new_element<Fixation>(v2);
    auto f3 = sk.new_element<Fixation>(v3);

    double_t tol = sk.solve();
    EXPECT_LE(tol, FLT_EPSILON);

    bool result = sk.build();
    EXPECT_TRUE(result);

    EXPECT_EQ(sk.size_contours(), 1);

    sk.save_as<SaveMethod::Rasterize>(SAVE_DIR, std::string("full_circle_sketch"));

    // Create Refineable Mesh
    Mesh me{sk};
    me.create();

    me.MinimumElementSize = 0.01;
    me.MaximumElementSize = 0.1;
    me.MinimumElementQuality = 0.5;

    me.refine();

    me.save_as(SAVE_DIR, std::string("fulL_circle_mesh"));

    // Convert to FiniteElementMesh
    FiniteElementMesh<2, 1> fem{me};

    for (std::shared_ptr<DiscreteBoundary<2>> const &b : fem.boundaries()) {
        double_t a0{-2 * M_PI};
        for (size_t i : b->nodes()) {
            XY const &p = fem.node(i);

            // Test radius of boundary
            EXPECT_NEAR(1.0, std::hypot(p.x(), p.y()), FLT_EPSILON);

            // Test ordering of boundary nodes
            double_t a1{std::atan2(p.y(), p.x())};
            if (a1 < 0 || (a1 == 0 && a0 > M_PI)) {
                a1 += 2 * M_PI;
            }

            EXPECT_TRUE(a1 > a0);
            a0 = a1;
        }
    }

    // Create magnetostatic physics
    Magnetostatic<2, 1, 1, FieldVariable::A> msph{fem};

    msph.add_current_density([](double t) { return 1.0 / (2.0 * M_PI * 1e-7); }, {fem.region(0)});

    msph.add_magnetic_insulation({fem.boundary(0), fem.boundary(1), fem.boundary(2)});

    msph.build_matrices();

    msph.apply_conditions();

    // Initialize matrices
    auto J = msph.init_unknown_matrix();
    auto v = msph.init_unknown_vector();
    auto r = msph.init_unknown_vector();
    auto f = msph.init_unknown_vector();
    auto Fx = msph.init_element_array();
    auto Fy = msph.init_element_array();
    auto dFxdx = msph.init_element_array();
    auto dFydy = msph.init_element_array();
    auto dFxdy = msph.init_element_array();

    //
    // Set time
    msph.time(0.0);
    msph.calculate_forcing(f);

    // Linearize
    v.setZero();
    msph.linearize(J, v, r, f, Fx, Fy, dFxdx, dFydy, dFxdy);

    // Factor
    Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>> ldlt;
    ldlt.compute(J);
    ASSERT_EQ(ldlt.info(), Eigen::Success);

    // Solve
    v -= ldlt.solve(r);

    // Save
    Eigen::VectorXd vv = msph.recover_boundary(v);
    fem.write_scalar(vv, SAVE_DIR, std::string("full_circle_magnetostatic_uniform_current_density"));

    // Test
    msph.linearize(J, v, r, f, Fx, Fy, dFxdx, dFydy, dFxdy);

    for (size_t i = 0; i != r.size(); ++i) {
        EXPECT_NEAR(r(i), 0.0, FLT_EPSILON);
    }

    // Test flux-density values
    Eigen::ArrayXd Bx = msph.derivatives().dy(0).transpose() * v;
    Eigen::ArrayXd By = -msph.derivatives().dx(0).transpose() * v;

    Eigen::ArrayXd Bmag(By.size());
    Eigen::ArrayXd Bang(By.size());

    for (size_t i = 0; i != By.size(); ++i) {
        Bmag(i) = hypot(Bx(i), By(i));
        Bang(i) = atan2(By(i), Bx(i)) * 180.0 / M_PI;
    }

    std::vector<std::vector<XY>> qp = fem.quadrature_points<1>();

    for (size_t i = 0; i != qp.size(); ++i) {
        double_t r = std::hypot(qp[i][0].x(), qp[i][0].y());

        EXPECT_NEAR(Bmag(i), r, 1.0 * 0.05);

        double_t a = std::atan2(qp[i][0].y(), qp[i][0].x()) * 180 / M_PI + 90.0;

        if (a > 180.0) { a -= 360.0; }
        if (a - Bang(i) > 180.0) { a -= 360.0; }
        if (a - Bang(i) < -180.0) { a += 360.0; }
        EXPECT_NEAR(Bang(i), a, 360 * 0.05);
    }
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
class Sixth_Circle_Mirror_Copy : public ::testing::Test {
public:
    virtual void SetUp() {
        SetUp_Sketch();
        SetUp_Mesh();
    }

    void SetUp_Sketch() {
        v0 = sk.new_element<Vertex>(0.0, 0.0);
        v1 = sk.new_element<Vertex>(1.0, 0.0);
        v2 = sk.new_element<Vertex>(2.0, 0.0);
        v3 = sk.new_element<Vertex>(sqrt(3.0)/2.0, 0.5);
        v4 = sk.new_element<Vertex>(sqrt(3.0), 1.0);

        f0 = sk.new_element<Fixation>(v0);

        l01 = sk.new_element<LineSegment>(v0, v1);
        l12 = sk.new_element<LineSegment>(v1, v2);

        l04 = sk.new_element<LineSegment>(v0, v4, true);

        h01 = sk.new_element<Horizontal>(l01);
        h12 = sk.new_element<Horizontal>(l12);

        a0103 = sk.new_element<Angle>(l01, l04, 30.0);

        c013 = sk.new_element<CircularArc>(v1, v3, v0, 1.0);
        c024 = sk.new_element<CircularArc>(v2, v4, v0, 2.0);

        r013 = sk.new_element<Radius>(c013, 1.0);
        r024 = sk.new_element<Radius>(c024, 2.0);

        std::vector<std::shared_ptr<Curve const>> vec{l01, l12, c013, c024};
        m04 = sk.new_element<MirrorCopy>(vec, l04);

        double residual = sk.solve();
        EXPECT_LE(residual, FLT_EPSILON);

        bool result = sk.build();
        ASSERT_TRUE(result);

        sk.save_as<SaveMethod::Rasterize>(SAVE_DIR, "sixth_circle_mirror_copy_sketch");

        periodic_boundary = sk.select_periodic_boundary_pairs(v0, 60.0);
        {
            for (auto &bp : periodic_boundary) {
                if (bp.curve0().get() == l01.get()) {
                    EXPECT_EQ(bp.curve1()->is_identical(l01, v0, 60.0), MatchOrientation::Reverse);
                } else if (bp.curve0().get() == l12.get()) {
                    EXPECT_EQ(bp.curve1()->is_identical(l12, v0, 60.0), MatchOrientation::Reverse);
                } else {
                    GTEST_NONFATAL_FAILURE_("No matching boundary found");
                }
            }
        }

        outer_boundary = sk.select_radial_boundary(v0, 2.0);
        {
            for (auto &c : outer_boundary) {
                auto cc = std::dynamic_pointer_cast<CircularArc const>(c);
                if (cc) {
                    EXPECT_NEAR(cc->radius(), 2.0, FLT_EPSILON);
                    EXPECT_EQ(cc->center().get(), v0.get());
                } else {
                    GTEST_NONFATAL_FAILURE_("dynamic_cast of Curve to CircularArc failed");
                }
            }
        }

        v1p = sk.select_periodic_vertex(v1, v0, 60.0);
        {
            ASSERT_TRUE(v1p); // Make sure that returned vertex pointer is not null
            double_t x0 = v0->x();
            double_t y0 = v0->y();
            double_t x1 = v1->x();
            double_t y1 = v1->y();
            double_t x2 = v1p->x();
            double_t y2 = v1p->y();

            double_t dx = x1 - x0;
            double_t dy = y1 - y0;
            double_t dr = std::hypot(dx, dy);
            double_t da = std::atan2(dy, dx);

            da += M_PI * 1.0 / 3.0;
            x1 = x0 + dr * std::cos(da);
            y1 = y0 + dr * std::sin(da);

            EXPECT_NEAR(x1, x2, dr * FLT_EPSILON);
            EXPECT_NEAR(y1, y2, dr * FLT_EPSILON);
        }
    }

    void SetUp_Mesh() {
        // Create Refineable Mesh
        me = Mesh(sk);
241 242 243

        me.add_mapped_boundary_pair(periodic_boundary);

244 245 246 247 248 249 250 251
        me.create();

        me.MaximumElementSize = 0.1;
        me.MinimumElementSize = 0.01;
        me.MinimumElementQuality = 0.5;

        for (auto &pb : periodic_boundary) {
            auto bc0 = me.boundary_constraint(pb.curve0());
252
            EXPECT_TRUE(bc0);
253 254

            auto bc1 = me.boundary_constraint(pb.curve1());
255
            EXPECT_TRUE(bc1);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        }

        bool result = me.refine();
        ASSERT_TRUE(result);

        me.save_as(SAVE_DIR, std::string("sixth_circle_mirror_copy_mesh"));

        // Create FiniteElementMesh
        fem = FiniteElementMesh<2,1>(me);

        for (auto & pb : periodic_boundary) {
            EXPECT_EQ(fem.boundary(pb.curve0()).size(), 1);
            EXPECT_EQ(fem.boundary(pb.curve1()).size(), 1);

            auto nodes0 = fem.boundary(pb.curve0())[0]->nodes();
            auto nodes1 = fem.boundary(pb.curve1())[0]->nodes();

273 274
            EXPECT_EQ(nodes0.size(), nodes1.size());

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
            for (size_t i = 0; i != nodes0.size(); ++i) {
                auto const &n0 = fem.node(nodes0[i]);
                auto const &n1 = fem.node(nodes1[nodes0.size() - 1 - i]);

                EXPECT_NEAR(atan2(n0.y(), n0.x()), 0.0, FLT_EPSILON);
                if (&n0 != &n1) {
                    EXPECT_NEAR(atan2(n1.y(), n1.x()), M_PI / 3.0, FLT_EPSILON);
                }
            }
        }

        current_density_contour = me.select_contour(Point{0.5 * cos(M_PI / 6.0), 0.5 * sin(M_PI / 6.0)});
    }

    Sketch sk;
    Mesh me;
    FiniteElementMesh<2,1> fem;

    // Sketch Variables
    std::shared_ptr<Vertex> v0;
    std::shared_ptr<Vertex> v1;
    std::shared_ptr<Vertex> v2;
    std::shared_ptr<Vertex> v3;
    std::shared_ptr<Vertex> v4;

    std::shared_ptr<Fixation> f0;

    std::shared_ptr<LineSegment> l01 ;
    std::shared_ptr<LineSegment> l12;

    std::shared_ptr<LineSegment> l04;

    std::shared_ptr<Horizontal> h01;
    std::shared_ptr<Horizontal> h12;

    std::shared_ptr<Angle> a0103;

    std::shared_ptr<CircularArc> c013;
    std::shared_ptr<CircularArc> c024;

    std::shared_ptr<Radius> r013;
    std::shared_ptr<Radius> r024;

    std::shared_ptr<MirrorCopy> m04;

    std::shared_ptr<Contour const> current_density_contour;

    decltype(sk.select_periodic_boundary_pairs(v0, 90.0)) periodic_boundary;
    decltype(sk.select_radial_boundary(v0, 2.0)) outer_boundary;
    decltype(sk.select_periodic_vertex(v1, v0, 90.0)) v1p;
};

TEST_F(Sixth_Circle_Mirror_Copy, Magnetostatic_Uniform_Current_Density_Periodic) {
    // Create Physics
    Magnetostatic<2, 1, 1, FieldVariable::A> msph{fem};

    msph.add_current_density([](double t) { return 1.0 / (2.0 * M_PI * 1e-7); }, {current_density_contour});

    msph.add_magnetic_insulation(outer_boundary);

    msph.add_periodic_boundary(periodic_boundary, false);

    msph.build_matrices();

    msph.apply_conditions();

    auto J = msph.init_unknown_matrix();
    auto v = msph.init_unknown_vector();
    auto r = msph.init_unknown_vector();
    auto f = msph.init_unknown_vector();
    auto Fx = msph.init_element_array();
    auto Fy = msph.init_element_array();
    auto dFxdx = msph.init_element_array();
    auto dFydy = msph.init_element_array();
    auto dFxdy = msph.init_element_array();

    v.setZero();

    msph.calculate_forcing(f);

    msph.linearize(J, v, r, f, Fx, Fy, dFxdx, dFydy, dFxdy);

    Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>> ldlt;
    ldlt.compute(J);
    ASSERT_EQ(ldlt.info(), Eigen::Success);
    v -= ldlt.solve(r);

    // Verify equation is solved
    msph.linearize(J, v, r, f, Fx, Fy, dFxdx, dFydy, dFxdy);
    for (size_t i = 0; i != r.size(); ++i) {
        EXPECT_NEAR(r(i), 0.0, FLT_EPSILON);
    }

    // Test solution:
    // A = a_f * r^2 + c_f in forced inner region
    // A = a_h * log(r) + c_h in homogeneous outer region
    Eigen::VectorXd vv = msph.recover_boundary(v);
    fem.write_scalar(vv, SAVE_DIR, std::string("sixth_circle_uniform_current_density_periodic"));

    double_t a_f = -0.5;
    double_t c_f = -2.0 * a_f * std::log(2.0) - a_f;
    double_t a_h = 2 * a_f;
    double_t c_h = -2.0 * a_f * log(2.0);
    for(size_t i = 0; i!= fem.size_nodes(); ++i) {
        XY const &n = fem.node(i);
        double_t r = std::hypot(n.x(), n.y());
        if (r <= 1.0) {
            double_t val = a_f * r * r + c_f;
            EXPECT_NEAR(val, vv(i), c_f * 0.01);
        } else {
            double_t val = a_h * log(r) + c_h;
            EXPECT_NEAR(val, vv(i), c_h * 0.01);
        }
    }

    // Test flux-density values
    // B_r = 2 * a_f * r in forced inner region
    // B_r = a_h / r in homogenous outer region
    // TODO: The correct way to test may be to calculate average flux in the element from analytical solution
    Eigen::ArrayXd Bx = msph.derivatives().dy(0).transpose() * v;
    Eigen::ArrayXd By = -msph.derivatives().dx(0).transpose() * v;

    Eigen::ArrayXd Bmag(By.size());
    Eigen::ArrayXd Bang(By.size());

    for (size_t i = 0; i != By.size(); ++i) {
        Bmag(i) = hypot(Bx(i), By(i));
        Bang(i) = atan2(By(i), Bx(i)) * 180.0 / M_PI;
    }

    std::vector<std::vector<XY>> qp = fem.quadrature_points<1>();

    for (size_t i = 0; i != qp.size(); ++i) {
        double_t r = std::hypot(qp[i][0].x(), qp[i][0].y());

        if (r <= 1) {
            double_t val = std::abs(2.0 * a_f * r);
            EXPECT_NEAR(Bmag(i), val, std::abs(2 * a_f * 0.05));
        } else {
            double_t val = std::abs(a_h / r);
            EXPECT_NEAR(Bmag(i), val, std::abs(a_h* 0.05));
        }

        double_t a = std::atan2(qp[i][0].y(), qp[i][0].x()) * 180 / M_PI + 90.0;

        if (Bang(i) < 0.0) { Bang(i) += 360.0; };
        EXPECT_NEAR(Bang(i), a, 90 * 0.05);
    }
}

TEST_F(Sixth_Circle_Mirror_Copy, Magnetostatic_Uniform_Current_Density_Antieriodic) {
    // Create Physics
    Magnetostatic<2, 1, 1, FieldVariable::A> msph{fem};

    msph.add_current_density([](double t) { return 1.0 / (2.0 * M_PI * 1e-7); }, {current_density_contour});

    msph.add_magnetic_insulation(outer_boundary);

    msph.add_periodic_boundary(periodic_boundary, true);

    msph.build_matrices();

    msph.apply_conditions();

    auto J = msph.init_unknown_matrix();
    auto v = msph.init_unknown_vector();
    auto r = msph.init_unknown_vector();
    auto f = msph.init_unknown_vector();
    auto Fx = msph.init_element_array();
    auto Fy = msph.init_element_array();
    auto dFxdx = msph.init_element_array();
    auto dFydy = msph.init_element_array();
    auto dFxdy = msph.init_element_array();

    v.setZero();

    msph.calculate_forcing(f);

    msph.linearize(J, v, r, f, Fx, Fy, dFxdx, dFydy, dFxdy);

    Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>> ldlt;
    ldlt.compute(J);
    ASSERT_EQ(ldlt.info(), Eigen::Success);
    v -= ldlt.solve(r);

    // Verify equation is solved
    msph.linearize(J, v, r, f, Fx, Fy, dFxdx, dFydy, dFxdy);
    for (size_t i = 0; i != r.size(); ++i) {
        EXPECT_NEAR(r(i), 0.0, FLT_EPSILON);
    }

    // Test solution:
    // The actual analytic solution to this problem is somewhat complicated
    // The test is based on a single harmonic approximation
    // Bounds are obtained from the Fourier series approximation of the square wave current density

    Eigen::VectorXd vv = msph.recover_boundary(v);
    fem.write_scalar(vv, SAVE_DIR, std::string("sixth_circle_uniform_current_density_antiperiodic"));

    double_t a_f = -2.0 / (5.0);
    double_t b_f = -384.0 / 321.0 * a_f;
    double_t c_h = a_f / 321.0;
    double_t d_h = -64.0 / 321.0 * a_f;

    double_t r_max = - (2.0 * b_f) / (3.0 * a_f);
    double_t tol_a = (a_f * r_max + b_f) * r_max * r_max * 0.02;
    for(size_t i = 0; i!= fem.size_nodes(); ++i) {
        XY const &n = fem.node(i);
        double_t r = std::hypot(n.x(), n.y());
        double_t a = std::atan2(n.y(), n.x());
        if (r <= 1.0) {
            double_t val = ((a_f * r + b_f) * r * r) * sin(3.0 * a);
            EXPECT_LT(val - tol_a, vv(i));
            val = val * 4.0 / M_PI;
            EXPECT_GT(val + tol_a, vv(i));
        } else {
            double_t val = (c_h * (r * r * r) + d_h / (r * r * r)) * sin(3.0 * a);
            EXPECT_LT(val - tol_a, vv(i));
            val = val * 4.0 / M_PI;
            EXPECT_GT(val + tol_a, vv(i));
        }
    }
}

class Sixth_Circle : public ::testing::Test {
public:
    virtual void SetUp() {
        SetUp_Sketch();
        SetUp_Mesh();
    }

    void SetUp_Sketch() {
        v0 = sk.new_element<Vertex>(0.0, 0.0);
        v1 = sk.new_element<Vertex>(1.0, 0.0);
        v2 = sk.new_element<Vertex>(2.0, 0.0);
        v3 = sk.new_element<Vertex>(1.0 * cos(M_PI / 3.0), 1.0 * sin(M_PI / 3.0));
        v4 = sk.new_element<Vertex>(2.0 * cos(M_PI / 3.0), 2.0 * sin(M_PI / 3.0));

        f0 = sk.new_element<Fixation>(v0);

        l01 = sk.new_element<LineSegment>(v0, v1);
        l12 = sk.new_element<LineSegment>(v1, v2);

        l03 = sk.new_element<LineSegment>(v0, v3);
        l34 = sk.new_element<LineSegment>(v3, v4);

        h01 = sk.new_element<Horizontal>(l01);
        h12 = sk.new_element<Horizontal>(l12);

        a0103 = sk.new_element<Angle>(l01, l03, 60.0);
        a0134 = sk.new_element<Angle>(l12, l34, 60.0);

        c013 = sk.new_element<CircularArc>(v1, v3, v0, 1.0);
        c024 = sk.new_element<CircularArc>(v2, v4, v0, 2.0);

        r013 = sk.new_element<Radius>(c013, 1.0);
        r024 = sk.new_element<Radius>(c024, 2.0);

        double residual = sk.solve();
        EXPECT_LE(residual, FLT_EPSILON);

        bool result = sk.build();
        ASSERT_TRUE(result);

        sk.save_as<SaveMethod::Rasterize>(SAVE_DIR, "sixth_circle_sketch");

        periodic_boundary = sk.select_periodic_boundary_pairs(v0, 60.0);
        {
            for (auto &bp : periodic_boundary) {
                if (bp.curve0().get() == l01.get()) {
                    EXPECT_EQ(bp.curve1()->is_identical(l01, v0, 60.0), MatchOrientation::Forward);
                } else if (bp.curve0().get() == l12.get()) {
                    EXPECT_EQ(bp.curve1()->is_identical(l12, v0, 60.0), MatchOrientation::Forward);
                } else {
                    GTEST_NONFATAL_FAILURE_("No matching boundary found");
                }
            }
        }

        outer_boundary = sk.select_radial_boundary(v0, 2.0);
        {
            for (auto &c : outer_boundary) {
                auto cc = std::dynamic_pointer_cast<CircularArc const>(c);
                if (cc) {
                    EXPECT_NEAR(cc->radius(), 2.0, FLT_EPSILON);
                    EXPECT_EQ(cc->center().get(), v0.get());
                } else {
                    GTEST_NONFATAL_FAILURE_("dynamic_cast of Curve to CircularArc failed");
                }
            }
        }

        v1p = sk.select_periodic_vertex(v1, v0, 60.0);
        {
            ASSERT_TRUE(v1p); // Make sure that returned vertex pointer is not null
            double_t x0 = v0->x();
            double_t y0 = v0->y();
            double_t x1 = v1->x();
            double_t y1 = v1->y();
            double_t x2 = v1p->x();
            double_t y2 = v1p->y();

            double_t dx = x1 - x0;
            double_t dy = y1 - y0;
            double_t dr = std::hypot(dx, dy);
            double_t da = std::atan2(dy, dx);

            da += M_PI * 1.0 / 3.0;
            x1 = x0 + dr * std::cos(da);
            y1 = y0 + dr * std::sin(da);

            EXPECT_NEAR(x1, x2, dr * FLT_EPSILON);
            EXPECT_NEAR(y1, y2, dr * FLT_EPSILON);
        }
    }

    void SetUp_Mesh() {
        // Create Refineable Mesh
        me = Mesh(sk);
594 595 596

        me.add_mapped_boundary_pair(periodic_boundary);

597 598 599 600 601 602 603 604
        me.create();

        me.MaximumElementSize = 0.1;
        me.MinimumElementSize = 0.01;
        me.MinimumElementQuality = 0.5;

        for (auto &pb : periodic_boundary) {
            auto bc0 = me.boundary_constraint(pb.curve0());
605
            EXPECT_TRUE(bc0);
606 607

            auto bc1 = me.boundary_constraint(pb.curve1());
608
            EXPECT_TRUE(bc1);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        }

        bool result = me.refine();
        ASSERT_TRUE(result);

        me.save_as(SAVE_DIR, std::string("sixth_circle_mesh"));

        // Create FiniteElementMesh
        fem = FiniteElementMesh<2,1>(me);

        for (auto & pb : periodic_boundary) {
            EXPECT_EQ(fem.boundary(pb.curve0()).size(), 1);
            EXPECT_EQ(fem.boundary(pb.curve1()).size(), 1);

            auto nodes0 = fem.boundary(pb.curve0())[0]->nodes();
            auto nodes1 = fem.boundary(pb.curve1())[0]->nodes();

            for (size_t i = 0; i != nodes0.size(); ++i) {
                auto const &n0 = fem.node(nodes0[i]);
                auto const &n1 = fem.node(nodes1[i]);

                EXPECT_NEAR(atan2(n0.y(), n0.x()), 0.0, FLT_EPSILON);
                if (&n0 != &n1) {
                    EXPECT_NEAR(atan2(n1.y(), n1.x()), M_PI / 3.0, FLT_EPSILON);
                }
            }
        }

        current_density_contour = me.select_contour(Point{0.5 * cos(M_PI / 6.0), 0.5 * sin(M_PI / 6.0)});
    }

    Sketch sk;
    Mesh me;
    FiniteElementMesh<2,1> fem;

    // Sketch Variables
    std::shared_ptr<Vertex> v0;
    std::shared_ptr<Vertex> v1;
    std::shared_ptr<Vertex> v2;
    std::shared_ptr<Vertex> v3;
    std::shared_ptr<Vertex> v4;

    std::shared_ptr<Fixation> f0;

    std::shared_ptr<LineSegment> l01 ;
    std::shared_ptr<LineSegment> l12;

    std::shared_ptr<LineSegment> l03;
    std::shared_ptr<LineSegment> l34;

    std::shared_ptr<Horizontal> h01;
    std::shared_ptr<Horizontal> h12;

    std::shared_ptr<Angle> a0103;
    std::shared_ptr<Angle> a0134;

    std::shared_ptr<CircularArc> c013;
    std::shared_ptr<CircularArc> c024;

    std::shared_ptr<Radius> r013;
    std::shared_ptr<Radius> r024;

    std::shared_ptr<Contour const> current_density_contour;

    decltype(sk.select_periodic_boundary_pairs(v0, 90.0)) periodic_boundary;
    decltype(sk.select_radial_boundary(v0, 2.0)) outer_boundary;
    decltype(sk.select_periodic_vertex(v1, v0, 90.0)) v1p;
};

TEST_F(Sixth_Circle, Magnetostatic_Uniform_Current_Density_Periodic_Rotation) {
    // Create Physics
    Magnetostatic<2, 1, 1, FieldVariable::A> msph{fem};

    auto position = msph.add_sliding_interface(c013, false);

    { // Test node renumbering of triangles
        auto b_vec = fem.boundary(c013);
        auto nodes = fem.nodes();

        for (auto t : fem.triangles()) {
            double_t xc = (nodes[t.node(0)].x() + nodes[t.node(1)].x() + nodes[t.node(2)].x()) / 3.0;
            double_t yc = (nodes[t.node(0)].y() + nodes[t.node(1)].y() + nodes[t.node(2)].y()) / 3.0;
            double_t rc = std::hypot(xc, yc);
            if (rc > 1.0) {
                for (size_t i = 0; i != 3; ++i) {
                    for (size_t j : b_vec[0]->nodes()) {
                        EXPECT_NE(t.node(i), j);
                        if (t.node(i) == j) {
                            std::cout << nodes[t.node(i)].x() << ',' << nodes[t.node(i)].y() << std::endl;
                        }
                    }
                }
            }
        }
    }

    msph.add_current_density([](double t) { return 1.0 / (2.0 * M_PI * 1e-7); }, {current_density_contour});

    msph.add_magnetic_insulation(outer_boundary);

    msph.add_periodic_boundary(periodic_boundary, false);

    for (size_t iter = 0; iter != 17; ++iter) {
        msph.build_matrices();

        msph.apply_conditions();

        auto J = msph.init_unknown_matrix();
        auto v = msph.init_unknown_vector();
        auto r = msph.init_unknown_vector();
        auto f = msph.init_unknown_vector();
        auto Fx = msph.init_element_array();
        auto Fy = msph.init_element_array();
        auto dFxdx = msph.init_element_array();
        auto dFydy = msph.init_element_array();
        auto dFxdy = msph.init_element_array();

        v.setZero();

        msph.calculate_forcing(f);

        msph.linearize(J, v, r, f, Fx, Fy, dFxdx, dFydy, dFxdy);

        Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>> ldlt;
        ldlt.compute(J);
        ASSERT_EQ(ldlt.info(), Eigen::Success);
        v -= ldlt.solve(r);

        // Verify equation is solved
        msph.linearize(J, v, r, f, Fx, Fy, dFxdx, dFydy, dFxdy);
        for (size_t i = 0; i != r.size(); ++i) {
            EXPECT_NEAR(r(i), 0.0, FLT_EPSILON);
        }

        // Test solution:
        // A = a_f * r^2 + c_f in forced inner region
        // A = a_h * log(r) + c_h in homogeneous outer region
        Eigen::VectorXd vv = msph.recover_boundary(v);
        fem.write_scalar(vv, SAVE_DIR, std::string("one_sixth_circle_uniform_current_density_periodic_rotation_") + std::to_string(iter));

        double_t a_f = -0.5;
        double_t c_f = -2.0 * a_f * std::log(2.0) - a_f;
        double_t a_h = 2 * a_f;
        double_t c_h = -2.0 * a_f * log(2.0);
        for (size_t i = 0; i != fem.size_nodes(); ++i) {
            XY const &n = fem.node(i);
            double_t r = std::hypot(n.x(), n.y());
            if (r <= 1.0) {
                double_t val = a_f * r * r + c_f;
                EXPECT_NEAR(val, vv(i), c_f * 0.01);
            } else {
                double_t val = a_h * log(r) + c_h;
                EXPECT_NEAR(val, vv(i), c_h * 0.01);
            }
        }

        // Test flux-density values
        // B_r = 2 * a_f * r in forced inner region
        // B_r = a_h / r in homogenous outer region
        // TODO: The correct way to test may be to calculate average flux in the element from analytical solution
        Eigen::ArrayXd Bx = msph.derivatives().dy(0).transpose() * v;
        Eigen::ArrayXd By = -msph.derivatives().dx(0).transpose() * v;

        Eigen::ArrayXd Bmag(By.size());
        Eigen::ArrayXd Bang(By.size());

        for (size_t i = 0; i != By.size(); ++i) {
            Bmag(i) = hypot(Bx(i), By(i));
            Bang(i) = atan2(By(i), Bx(i)) * 180.0 / M_PI;
        }

        std::vector<std::vector<XY>> qp = fem.quadrature_points<1>();

        for (size_t i = 0; i != qp.size(); ++i) {
            double_t r = std::hypot(qp[i][0].x(), qp[i][0].y());

            if (r <= 1) {
                double_t val = std::abs(2.0 * a_f * r);
                EXPECT_NEAR(Bmag(i), val, std::abs(2 * a_f * 0.05));
            } else {
                double_t val = std::abs(a_h / r);
                EXPECT_NEAR(Bmag(i), val, std::abs(a_h * 0.05));
            }

            double_t a = std::atan2(qp[i][0].y(), qp[i][0].x()) * 180 / M_PI + 90.0;

            if (Bang(i) < 0.0) { Bang(i) += 360.0; };
            EXPECT_NEAR(Bang(i), a, 90 * 0.05);
        }

        ++(*position);
    }
}

TEST_F(Sixth_Circle, Magnetostatic_Uniform_Current_Density_Antiperiodic_Rotation) {
    // Create Physics
    Magnetostatic<2, 1, 1, FieldVariable::A> msph{fem};

    auto position = msph.add_sliding_interface(c013, true);
    double_t angle = 0.0;
    double_t delta_angle = (2 * M_PI) / (6.0 * position->size());

    msph.add_current_density([](double t) { return 1.0 / (2.0 * M_PI * 1e-7); }, {current_density_contour});

    msph.add_magnetic_insulation(outer_boundary);

    msph.add_periodic_boundary(periodic_boundary, true);

    for (size_t iter = 0; iter != 17; ++iter) {
        msph.build_matrices();

        msph.apply_conditions();

        auto J = msph.init_unknown_matrix();
        auto v = msph.init_unknown_vector();
        auto r = msph.init_unknown_vector();
        auto f = msph.init_unknown_vector();
        auto Fx = msph.init_element_array();
        auto Fy = msph.init_element_array();
        auto dFxdx = msph.init_element_array();
        auto dFydy = msph.init_element_array();
        auto dFxdy = msph.init_element_array();

        v.setZero();

        msph.calculate_forcing(f);

        msph.linearize(J, v, r, f, Fx, Fy, dFxdx, dFydy, dFxdy);

        Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>> ldlt;
        ldlt.compute(J);
        ASSERT_EQ(ldlt.info(), Eigen::Success);
        v -= ldlt.solve(r);

        // Verify equation is solved
        msph.linearize(J, v, r, f, Fx, Fy, dFxdx, dFydy, dFxdy);
        for (size_t i = 0; i != r.size(); ++i) {
            EXPECT_NEAR(r(i), 0.0, FLT_EPSILON);
        }

        // Test solution:
        // The actual analytic solution to this problem is somewhat complicated
        // The test is based on a single harmonic approximation
        // Bounds are obtained from the Fourier series approximation of the square wave current density

        Eigen::VectorXd vv = msph.recover_boundary(v);
        fem.write_scalar(vv, SAVE_DIR, std::string("sixth_circle_uniform_current_density_antiperiodic_") + std::to_string(iter));

        double_t a_f = -2.0 / (5.0);
        double_t b_f = -384.0 / 321.0 * a_f;
        double_t c_h = a_f / 321.0;
        double_t d_h = -64.0 / 321.0 * a_f;

        double_t r_max = -(2.0 * b_f) / (3.0 * a_f);
        double_t tol_a = (a_f * r_max + b_f) * r_max * r_max * 0.02;
        for (size_t i = 0; i != fem.size_nodes(); ++i) {
            XY const &n = fem.node(i);
            double_t r = std::hypot(n.x(), n.y());
            double_t a = std::atan2(n.y(), n.x());
            if (r < 1.0 - FLT_EPSILON) {
                double_t val = ((a_f * r + b_f) * r * r) * sin(3.0 * a);
                EXPECT_LT(val - tol_a, vv(i));
                val = val * 4.0 / M_PI;
                EXPECT_GT(val + tol_a, vv(i));
            } else if (r > 1.0 + FLT_EPSILON) {
                double_t val = (c_h * (r * r * r) + d_h / (r * r * r)) * sin(3.0 * (a + angle));
                if (val > 0) {
                    EXPECT_LT(val - tol_a, vv(i));
                    val = val * 4.0 / M_PI;
                    EXPECT_GT(val + tol_a, vv(i));
                } else {
                    EXPECT_GT(val + tol_a, vv(i));
                    val = val * 4.0 / M_PI;
                    EXPECT_LT(val - tol_a, vv(i));
                }
            } else {

            }
        }

        // Rotate
        ++(*position);
        angle -= delta_angle;
    }
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
}

class Salient_Pole_Synchrel : public ::testing::Test {
public:
    virtual void SetUp() {
        SetUp_Sketch();
        SetUp_Mesh();
    }

    void SetUp_Sketch() {
        sk = Sketch();

        // General Dimensions
        poles = 4.0;
        airgap = 30e-3 * 25.4e-3;

        origin = sk.new_element<Vertex>(0.0, 0.0);
        auto fo = sk.new_element<Fixation>(origin);

        // Rotor
        rro = 80e-3;

        auto vr0 = sk.new_element<Vertex>(rro * cos(2.0 * M_PI / poles / 4.0), 0.0);
        auto vr1 = sk.new_element<Vertex>(rro, 0.0);
        auto vr2 = sk.new_element<Vertex>(rro * cos(2.0 * M_PI / poles / 4.0), rro * sin(2.0 * M_PI / poles / 4.0));
        auto vr3 = sk.new_element<Vertex>(rro * cos(2.0 * M_PI / poles / 2.0), rro * sin(2.0 * M_PI / poles / 2.0));

        auto lr0 = sk.new_element<LineSegment>(origin, vr0);
        auto lr1 = sk.new_element<LineSegment>(vr0, vr1);
        auto lr2 = sk.new_element<LineSegment>(vr0, vr2);
        auto lr3 = sk.new_element<LineSegment>(origin, vr3, true);

        auto dr0 = sk.new_element<Distance<LineSegment>>(lr3, lr2, 0.5 * rro * sin(M_PI / poles));

        auto hr0 = sk.new_element<Horizontal>(lr0);
        auto hr1 = sk.new_element<Horizontal>(lr1);

        auto ar0 = sk.new_element<Angle>(lr0, lr3, 90.0 / 2.0);

        auto cr0 = sk.new_element<CircularArc>(vr1, vr2, origin, rro);
        auto cr1 = sk.new_element<CircularArc>(vr2, vr3, origin, rro);

        auto rr0 = sk.new_element<Radius>(cr0, rro);
        auto rr1 = sk.new_element<Radius>(cr1, rro);

        std::vector<std::shared_ptr<Curve const>> mirror_vec_r{lr0, lr1, lr2, cr0, cr1};
        auto mr0 = sk.new_element<MirrorCopy>(mirror_vec_r, lr3);

        // Rotor part of airgap
        auto vra0 = sk.new_element<Vertex>(rro + airgap / 2.0, 0.0);
        auto vra1 = sk.new_element<Vertex>(0.0, rro + airgap / 2.0);

        auto fra0 = sk.new_element<Fixation>(vra0);
        auto fra1 = sk.new_element<Fixation>(vra1);

        auto vr1p = sk.select_periodic_vertex(vr1, origin, 90.0);
        auto lra0 = sk.new_element<LineSegment>(vr1, vra0);
        auto lra1 = sk.new_element<LineSegment>(vr1p, vra1);

        continuous_airgap = sk.new_element<CircularArc>(vra0, vra1, origin, rro + airgap / 2.0);

        // Stator
955 956 957
        rsi = rro + airgap;
        rso = 132e-3;
        rsb = (rso + rsi) / 2.0;
958 959

        auto vs0 = sk.new_element<Vertex>(rsi, 0.0);
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
        auto vs1 = sk.new_element<Vertex>(rso, 0.0);
        auto vs2 = sk.new_element<Vertex>(rso * cos(2.0 * M_PI / 24.0), rso * sin(2.0 * M_PI / 24.0));
        auto vs3 = sk.new_element<Vertex>(rsb * cos(2.0 * M_PI / 24.0), rsb * sin(2.0 * M_PI / 24.0));
        auto vs4 = sk.new_element<Vertex>(rsb * cos(2.0 * M_PI / 24.0), rsi * sin(2.0 * M_PI / 48.0));
        auto vs5 = sk.new_element<Vertex>(rsi * cos(2.0 * M_PI / 48.0), rsi * sin(2.0 * M_PI / 48.0));
        auto vs6 = sk.new_element<Vertex>(rsi * cos(2.0 * M_PI / 24.0), rsi * sin(2.0 * M_PI / 24.0));

        auto ls01 = sk.new_element<LineSegment>(vs0, vs1);
        auto ls63 = sk.new_element<LineSegment>(vs6, vs3, true);
        auto ls32 = sk.new_element<LineSegment>(vs3, vs2, true);
        auto ls54 = sk.new_element<LineSegment>(vs5, vs4);

        auto h01 = sk.new_element<Horizontal>(ls01);
        auto h54 = sk.new_element<Horizontal>(ls54);
        std::cout << "//TODO: Fix distance between h54 and h01. h54 will not need the horizontal constraint" << std::endl;

        auto a63 = sk.new_element<Angle>(ls01, ls63, 360.0 / 24.0);
        auto a32 = sk.new_element<Angle>(ls01, ls32, 360.0 / 24.0);

        auto co12 = sk.new_element<CircularArc>(vs1, vs2, origin, rso);
        auto co43 = sk.new_element<CircularArc>(vs4, vs3, origin, rsb);
        auto co05 = sk.new_element<CircularArc>(vs0, vs5, origin, rsi);
        auto co56 = sk.new_element<CircularArc>(vs5, vs6, origin, rsi);

        auto r12 = sk.new_element<Radius>(co12, rso);
        auto r43 = sk.new_element<Radius>(co43, rsb);
        auto r05 = sk.new_element<Radius>(co05, rsi);
        auto r56 = sk.new_element<Radius>(co56, rsi);
988

989 990
        double_t residual = sk.solve();
        EXPECT_LE(residual, FLT_EPSILON * rro);
991

992 993
        std::vector<std::shared_ptr<Curve const>> copy_items{ls01, ls54, co12, co43, co05, co56};
        auto mirror0 = sk.new_element<MirrorCopy>(copy_items, ls63, true);
994

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
        residual = sk.solve();
        EXPECT_LE(residual, FLT_EPSILON * rro);

        copy_items.insert(copy_items.end(), mirror0->curves().begin(), mirror0->curves().end());

        auto rotation0 = sk.new_element<RotateCopy>(copy_items, origin, 360.0 / 12.0, 2.0, true);

        residual = sk.solve();
        EXPECT_LE(residual, FLT_EPSILON * rro);

        // Stator part of airgap
        auto vsa0 = vs0;
        auto vsa1 = sk.select_periodic_vertex(vsa0, origin, 90.0);

        auto lsa0 = sk.new_element<LineSegment>(vra0, vsa0);
        auto lsa1 = sk.new_element<LineSegment>(vra1, vsa1);
1011 1012

        // Build and Save
1013
        residual = sk.solve();
1014 1015
        EXPECT_LE(residual, FLT_EPSILON * rro);

1016 1017
        sk.save_as<SaveMethod::Rasterize>(SAVE_DIR, std::string("salient_pole_synchrel_sketch"));

1018 1019 1020
        bool result = sk.build();
        EXPECT_TRUE(result);

1021 1022
        periodic_boundary = sk.select_periodic_boundary_pairs(origin, 90.0);
        outer_boundary = sk.select_radial_boundary(origin, rso);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    }

    void SetUp_Mesh() {
        me = Mesh{sk};

        // Periodic boundaries
        for (auto &pb : periodic_boundary) {
            me.add_mapped_boundary_pair(pb);
            /*
            auto bc0 = me.boundary_constraint(pb.curve0());
            bc0->uniform_discretization(true);

            auto bc1 = me.boundary_constraint(pb.curve1());
            bc1->uniform_discretization(true);
             */
        }

        // Airgap boundary
        auto discrete_airgap = me.boundary_constraint(continuous_airgap);
        discrete_airgap->uniform_discretization(true);

        // Create initial mesh
        me.create();
        me.MaximumElementSize = rro;
        me.MinimumElementSize = airgap;
        me.MinimumElementQuality = 0.5;

        // Refine and save
        me.refine();
        me.save_as(SAVE_DIR, std::string("saleint_pole_synchrel_mesh"));
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

        // Create FiniteElementMesh
        fem = FiniteElementMesh<2,1>(me);

        for (auto & pb : periodic_boundary) {
            EXPECT_EQ(fem.boundary(pb.curve0()).size(), 1);
            EXPECT_EQ(fem.boundary(pb.curve1()).size(), 1);

            auto nodes0 = fem.boundary(pb.curve0())[0]->nodes();
            auto nodes1 = fem.boundary(pb.curve1())[0]->nodes();

            EXPECT_EQ(nodes0.size(), nodes1.size());

            size_t j;
            if (pb.orientation()) {
                j = 0;
            } else {
                j = nodes1.size();
            }

            for (size_t i = 0; i != nodes0.size(); ++i) {
                if (!pb.orientation()) { --j; };

                auto const &n0 = fem.node(nodes0[i]);
                auto const &n1 = fem.node(nodes1[j]);

                if (&n0 != &n1) {
                    EXPECT_NEAR(atan2(n0.y(), n0.x()), 0.0, FLT_EPSILON);
                    EXPECT_NEAR(atan2(n1.y(), n1.x()), M_PI / 2.0, FLT_EPSILON);
                } else {
                    EXPECT_NEAR(n0.x(), 0.0, FLT_EPSILON);
                    EXPECT_NEAR(n0.x(), 0.0, FLT_EPSILON);
                    EXPECT_NEAR(n1.y(), 0.0, FLT_EPSILON);
                    EXPECT_NEAR(n1.y(), 0.0, FLT_EPSILON);
                }
                EXPECT_NEAR(hypot(n0.x(), n0.y()), hypot(n1.x(), n1.y()), FLT_EPSILON);

                if (pb.orientation()) { ++j; };
            }
        }

        double_t rabc = (rsi + rsb) / 2.0;
        double_t r_rotor_iron = rro / 2.0;
        double_t r_stator_iron = (rsb + rso) / 2.0;

        double_t aa = 2 * M_PI / (4 * 6);
        double_t ab = aa + 2 * M_PI / (4 * 3);
        double_t ac = ab + 2 * M_PI / (4 * 3);

        phase_a_contour = me.select_contour(Point{rabc * cos(aa), rabc * sin(aa)});
        phase_b_contour = me.select_contour(Point{rabc * cos(ab), rabc * sin(ab)});
        phase_c_contour = me.select_contour(Point{rabc * cos(ac), rabc * sin(ac)});

        rotor_iron = me.select_contour(Point{r_rotor_iron * cos(M_PI / 4.0), r_rotor_iron * cos(M_PI / 4.0)});
        ASSERT_TRUE(rotor_iron);

        stator_iron = me.select_contour(Point{r_stator_iron * cos(M_PI / 4.0), r_stator_iron * cos(M_PI / 4.0)});
        ASSERT_TRUE(stator_iron);
1111 1112 1113 1114
    }

    double_t poles;
    double_t rro;
1115 1116 1117 1118
    double_t rsi;
    double_t rsb;
    double_t rso;

1119 1120 1121 1122 1123 1124 1125
    double_t airgap;

    std::shared_ptr<Vertex> origin;
    std::shared_ptr<CircularArc> continuous_airgap;

    Sketch sk;
    Mesh me;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    FiniteElementMesh<2,1> fem;

    std::shared_ptr<Contour const> phase_a_contour;
    std::shared_ptr<Contour const> phase_b_contour;
    std::shared_ptr<Contour const> phase_c_contour;
    std::shared_ptr<Contour const> rotor_iron;
    std::shared_ptr<Contour const> stator_iron;

    decltype(sk.select_periodic_boundary_pairs(origin, 90.0)) periodic_boundary;
    decltype(sk.select_radial_boundary(origin, rso)) outer_boundary;
1136 1137 1138
};

TEST_F(Salient_Pole_Synchrel, Test) {
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    Magnetostatic<2, 1, 1, FieldVariable::A> msph{fem};
    msph.time(0.0);

    // Set material properties
    //MaterialProperties Linear1000 = MaterialProperties(std::make_shared<LinearIsotropicMagneticMaterial>(1000.0));
    //fem.region(rotor_iron)->material(Linear1000);
    //fem.region(stator_iron)->material(Linear1000);

    MaterialProperties Nonlinear796 = MaterialProperties(std::make_shared<NonlinearIsotropicMagneticMaterial>());
    fem.region(rotor_iron)->material(Nonlinear796);
    fem.region(stator_iron)->material(Nonlinear796);

    // Conditions
    msph.add_current_density([](double t) { return -30e6 * sin(2*M_PI*t - M_PI*2.0/3.0); }, {phase_a_contour});
    msph.add_current_density([](double t) { return 30e6 * sin(2*M_PI*t); }, {phase_b_contour});
    msph.add_current_density([](double t) { return -30e6 * sin(2*M_PI*t + M_PI*2.0/3.0); }, {phase_c_contour});

    msph.add_magnetic_insulation(outer_boundary);

    msph.add_periodic_boundary(periodic_boundary, true);

    auto position = msph.add_sliding_interface(continuous_airgap, true);
    double_t dt = 1.0 / (2.0 * position->size());
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    msph.assemble();

    // Solve
    auto solution = msph.initialize();
    for(size_t iter = 0; iter != 1; ++iter){ //position->size(); ++iter) {
        msph.solve(solution);

        // Verify equation is solved
        //for (size_t i = 0; i != solution->r.size(); ++i) {
        //    EXPECT_NEAR(solution->r(i), 0.0, FLT_EPSILON);
        //}

        // Save image
        Eigen::VectorXd vv = msph.recover_boundary(solution->v);
        fem.write_scalar(vv, SAVE_DIR, std::string("salient_pole_syncrel_A_") + std::to_string(iter));


        Eigen::ArrayXd Bx = msph.derivatives().dy(0).transpose() * solution->v;
        Eigen::ArrayXd By = -msph.derivatives().dx(0).transpose() * solution->v;
        fem.write_vector(Bx, By, SAVE_DIR, std::string("salient_pole_synchrel_B_") + std::to_string(iter));

        //std::cout << Bx << std::endl;

        // Increment Position
        for (size_t i = 0; i != 2; ++i) {
            ++*position;
            msph.time(msph.time() + dt);
            std::cout << "//TODO: msph.time() += N * dt, *position += N" << std::endl;
        }
        msph.assemble();
    }
1194
}