# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + import numpy as np import math import mantid.simpleapi as mantid from mantid.api import WorkspaceGroup from isis_powder.routines import absorb_corrections, common from isis_powder.routines.common_enums import WORKSPACE_UNITS from isis_powder.routines.run_details import create_run_details_object, get_cal_mapping_dict from isis_powder.polaris_routines import polaris_advanced_config def calculate_van_absorb_corrections(ws_to_correct, multiple_scattering, is_vanadium): mantid.MaskDetectors(ws_to_correct, SpectraList=list(range(1, 55))) absorb_dict = polaris_advanced_config.absorption_correction_params sample_details_obj = absorb_corrections.create_vanadium_sample_details_obj(config_dict=absorb_dict) ws_to_correct = absorb_corrections.run_cylinder_absorb_corrections( ws_to_correct=ws_to_correct, multiple_scattering=multiple_scattering, sample_details_obj=sample_details_obj, is_vanadium=is_vanadium) return ws_to_correct def _get_run_numbers_for_key(current_mode_run_numbers, key): err_message = "this must be under the relevant Rietveld or PDF mode." return common.cal_map_dictionary_key_helper(current_mode_run_numbers, key=key, append_to_error_message=err_message) def _get_current_mode_dictionary(run_number_string, inst_settings): mapping_dict = get_cal_mapping_dict(run_number_string, inst_settings.cal_mapping_path) if inst_settings.mode is None: ws = mantid.Load('POLARIS'+run_number_string+'.nxs') mode, cropping_vals = _determine_chopper_mode(ws) inst_settings.mode = mode inst_settings.focused_cropping_values = cropping_vals mantid.DeleteWorkspace(ws) # Get the current mode "Rietveld" or "PDF" run numbers return common.cal_map_dictionary_key_helper(mapping_dict, inst_settings.mode) def get_run_details(run_number_string, inst_settings, is_vanadium_run): mode_run_numbers = _get_current_mode_dictionary(run_number_string, inst_settings) # Get empty and vanadium err_message = "this must be under the relevant Rietveld or PDF mode." empty_runs = common.cal_map_dictionary_key_helper(mode_run_numbers, key="empty_run_numbers", append_to_error_message=err_message) vanadium_runs = common.cal_map_dictionary_key_helper(mode_run_numbers, key="vanadium_run_numbers", append_to_error_message=err_message) grouping_file_name = inst_settings.grouping_file_name return create_run_details_object(run_number_string=run_number_string, inst_settings=inst_settings, is_vanadium_run=is_vanadium_run, empty_run_number=empty_runs, vanadium_string=vanadium_runs, grouping_file_name=grouping_file_name) def save_unsplined_vanadium(vanadium_ws, output_path): converted_workspaces = [] for ws_index in range(vanadium_ws.getNumberOfEntries()): ws = vanadium_ws.getItem(ws_index) previous_units = ws.getAxis(0).getUnit().unitID() if previous_units != WORKSPACE_UNITS.tof: ws = mantid.ConvertUnits(InputWorkspace=ws, Target=WORKSPACE_UNITS.tof) ws = mantid.RenameWorkspace(InputWorkspace=ws, OutputWorkspace="van_bank_{}".format(ws_index + 1)) converted_workspaces.append(ws) converted_group = mantid.GroupWorkspaces(",".join(ws.name() for ws in converted_workspaces)) mantid.SaveNexus(InputWorkspace=converted_group, Filename=output_path, Append=False) mantid.DeleteWorkspace(converted_group) def generate_ts_pdf(run_number, focus_file_path, merge_banks=False, q_lims=None, cal_file_name=None, sample_details=None, delta_r=None, delta_q=None, pdf_type="G(r)", freq_params=None): focused_ws = _obtain_focused_run(run_number, focus_file_path) focused_ws = mantid.ConvertUnits(InputWorkspace=focused_ws, Target="MomentumTransfer", EMode='Elastic') raw_ws = mantid.Load(Filename='POLARIS'+str(run_number)+'.nxs') sample_geometry = common.generate_sample_geometry(sample_details) sample_material = common.generate_sample_material(sample_details) self_scattering_correction = mantid.TotScatCalculateSelfScattering(InputWorkspace=raw_ws, CalFileName=cal_file_name, SampleGeometry=sample_geometry, SampleMaterial=sample_material) ws_group_list = [] for i in range(self_scattering_correction.getNumberHistograms()): ws_name = 'correction_' + str(i) mantid.ExtractSpectra(InputWorkspace=self_scattering_correction, OutputWorkspace=ws_name, WorkspaceIndexList=[i]) ws_group_list.append(ws_name) self_scattering_correction = mantid.GroupWorkspaces(InputWorkspaces=ws_group_list) self_scattering_correction = mantid.RebinToWorkspace(WorkspaceToRebin=self_scattering_correction, WorkspaceToMatch=focused_ws) focused_ws = mantid.Subtract(LHSWorkspace=focused_ws, RHSWorkspace=self_scattering_correction) if delta_q: focused_ws = mantid.Rebin(InputWorkspace=focused_ws, Params=delta_q) if merge_banks: q_min, q_max = _load_qlims(q_lims) merged_ws = mantid.MatchAndMergeWorkspaces(InputWorkspaces=focused_ws, XMin=q_min, XMax=q_max, CalculateScale=False) fast_fourier_filter(merged_ws, freq_params) pdf_output = mantid.PDFFourierTransform(Inputworkspace="merged_ws", InputSofQType="S(Q)-1", PDFType=pdf_type, Filter=True, DeltaR=delta_r) else: for ws in focused_ws: fast_fourier_filter(ws, freq_params) pdf_output = mantid.PDFFourierTransform(Inputworkspace='focused_ws', InputSofQType="S(Q)-1", PDFType=pdf_type, Filter=True, DeltaR=delta_r) pdf_output = mantid.RebinToWorkspace(WorkspaceToRebin=pdf_output, WorkspaceToMatch=pdf_output[4], PreserveEvents=True) common.remove_intermediate_workspace('self_scattering_correction') # Rename output ws if 'merged_ws' in locals(): mantid.RenameWorkspace(InputWorkspace=merged_ws, OutputWorkspace=run_number + '_merged_Q') mantid.RenameWorkspace(InputWorkspace='focused_ws', OutputWorkspace=run_number+'_focused_Q') if isinstance(focused_ws, WorkspaceGroup): for i in range(len(focused_ws)): mantid.RenameWorkspace(InputWorkspace=focused_ws[i], OutputWorkspace=run_number+'_focused_Q_'+str(i+1)) mantid.RenameWorkspace(InputWorkspace='pdf_output', OutputWorkspace=run_number+'_pdf_R') if isinstance(pdf_output, WorkspaceGroup): for i in range(len(pdf_output)): mantid.RenameWorkspace(InputWorkspace=pdf_output[i], OutputWorkspace=run_number+'_pdf_R_'+str(i+1)) return pdf_output def _obtain_focused_run(run_number, focus_file_path): """ Searches for the focused workspace to use (based on user specified run number) in the ADS and then the output directory. If unsuccessful, a ValueError exception is thrown. :param run_number: The run number to search for. :param focus_file_path: The expected file path for the focused file. :return: The focused workspace. """ # Try the ADS first to avoid undesired loading if mantid.mtd.doesExist('%s-Results-TOF-Grp' % run_number): focused_ws = mantid.mtd['%s-Results-TOF-Grp' % run_number] elif mantid.mtd.doesExist('%s-Results-D-Grp' % run_number): focused_ws = mantid.mtd['%s-Results-D-Grp' % run_number] else: # Check output directory print('No loaded focused files found. Searching in output directory...') try: focused_ws = mantid.LoadNexus(Filename=focus_file_path, OutputWorkspace='focused_ws').OutputWorkspace except ValueError: raise ValueError("Could not find focused file for run number:%s\n" "Please ensure a focused file has been produced and is located in the output directory." % run_number) return focused_ws def _load_qlims(q_lims): if isinstance(q_lims, str): q_min = [] q_max = [] try: with open(q_lims, 'r') as f: line_list = [line.rstrip('\n') for line in f] for line in line_list[1:]: value_list = line.split() q_min.append(float(value_list[2])) q_max.append(float(value_list[3])) q_min = np.array(q_min) q_max = np.array(q_max) except IOError as exc: raise RuntimeError("q_lims path is not valid: {}".format(exc)) elif isinstance(q_lims, (list, tuple)) or isinstance(q_lims, np.ndarray): q_min = q_lims[0] q_max = q_lims[1] else: raise RuntimeError("q_lims type is not valid. Expected a string filename or an array.") return q_min, q_max def _determine_chopper_mode(ws): if ws.getRun().hasProperty('Frequency'): frequency = ws.getRun()['Frequency'].timeAverageValue() print("Found chopper frequency of {} in log file.".format(frequency)) if math.isclose(frequency, 50, abs_tol=1): print("Automatically chose Rietveld mode") return 'Rietveld', polaris_advanced_config.rietveld_focused_cropping_values if math.isclose(frequency, 0, abs_tol=1): print("Automatically chose PDF mode") return 'PDF', polaris_advanced_config.pdf_focused_cropping_values else: raise ValueError("Chopper frequency not in log data. Please specify a chopper mode") def fast_fourier_filter(ws, freq_params=None): if not freq_params: return # This is a simple fourier filter using the FFTSmooth to get a WS with only the low radius components, then # subtracting that from the merged WS x_range = ws.dataX(0) # The param p in FFTSmooth defined such that if the input ws has Nx bins then in the fourier space ws it will cut of # all frequencies in bins nk=Nk/p and above, calculated by p = pi/(k_c*dQ) when k_c is the cutoff frequency desired. # The input ws of FFTSmooth has binning [x_min, dx, x_max], with Nx bins. # FFTSmooth doubles the length of the input ws and preforms an FFT with output ws binning # [0, dk, k_max]=[0, 1/2*(x_max-x_min), 1/(2*dx)], and Nk=Nx bins. # k_max/k_c = Nk/nk # 1/(k_c*2*dx) = p # because FFT uses sin(2*pi*k*x) while PDFFourierTransform uses sin(Q*r) we need to include a factor of 2*pi # p = pi/(k_c*dQ) lower_freq_param = round(np.pi / (freq_params[0] * (x_range[1] - x_range[0]))) # This is giving the FFTSmooth the data in the form of S(Q)-1, later we use PDFFourierTransform with Q(S(Q)-1) # it does not matter which we use in this case. tmp = mantid.FFTSmooth(InputWorkspace=ws, Filter="Zeroing", Params=str(lower_freq_param), StoreInADS=False, IgnoreXBins=True) mantid.Minus(LHSWorkspace=ws, RHSWorkspace=tmp, OutputWorkspace=ws) if len(freq_params) > 1: upper_freq_param = round(np.pi / (freq_params[1] * (x_range[1] - x_range[0]))) mantid.FFTSmooth(InputWorkspace=ws, OutputWorkspace=ws, Filter="Zeroing", Params=str(upper_freq_param), IgnoreXBins=True)