//---------------------------------------------------------------------- // Includes //---------------------------------------------------------------------- #include "MantidAlgorithms/CalculateEfficiency.h" #include "MantidDataObjects/EventWorkspace.h" #include "MantidDataObjects/EventList.h" #include "MantidKernel/BoundedValidator.h" #include <vector> namespace Mantid { namespace Algorithms { // Register the class into the algorithm factory DECLARE_ALGORITHM(CalculateEfficiency) using namespace Kernel; using namespace API; using namespace Geometry; using namespace DataObjects; /** Initialization method. * */ void CalculateEfficiency::init() { declareProperty( new WorkspaceProperty<>("InputWorkspace", "", Direction::Input), "The workspace containing the flood data"); declareProperty( new WorkspaceProperty<>("OutputWorkspace", "", Direction::Output), "The name of the workspace to be created as the output of the algorithm"); auto positiveDouble = boost::make_shared<BoundedValidator<double>>(); positiveDouble->setLower(0); declareProperty( "MinEfficiency", EMPTY_DBL(), positiveDouble, "Minimum efficiency for a pixel to be considered (default: no minimum)."); declareProperty( "MaxEfficiency", EMPTY_DBL(), positiveDouble, "Maximum efficiency for a pixel to be considered (default: no maximum)."); } /** Executes the algorithm * */ void CalculateEfficiency::exec() { // Minimum efficiency. Pixels with lower efficiency will be masked double min_eff = getProperty("MinEfficiency"); // Maximum efficiency. Pixels with higher efficiency will be masked double max_eff = getProperty("MaxEfficiency"); // Get the input workspace MatrixWorkspace_sptr inputWS = getProperty("InputWorkspace"); MatrixWorkspace_sptr rebinnedWS; // = inputWS; // Now create the output workspace MatrixWorkspace_sptr outputWS; // = getProperty("OutputWorkspace"); // DataObjects::EventWorkspace_const_sptr inputEventWS = // boost::dynamic_pointer_cast<const EventWorkspace>(inputWS); // Sum up all the wavelength bins IAlgorithm_sptr childAlg = createChildAlgorithm("Integration", 0.0, 0.2); childAlg->setProperty<MatrixWorkspace_sptr>("InputWorkspace", inputWS); childAlg->executeAsChildAlg(); rebinnedWS = childAlg->getProperty("OutputWorkspace"); outputWS = WorkspaceFactory::Instance().create(rebinnedWS); WorkspaceFactory::Instance().initializeFromParent(inputWS, outputWS, false); for (int i = 0; i < static_cast<int>(rebinnedWS->getNumberHistograms()); i++) { outputWS->dataX(i) = rebinnedWS->readX(i); } setProperty("OutputWorkspace", outputWS); double sum = 0.0; double err = 0.0; int npixels = 0; // Loop over spectra and sum all the counts to get normalization // Skip monitors and masked detectors sumUnmaskedDetectors(rebinnedWS, sum, err, npixels); // Normalize each detector pixel by the sum we just found to get the // relative efficiency. If the minimum and maximum efficiencies are // provided, the pixels falling outside this range will be marked // as 'masked' in both the input and output workspace. // We mask detectors in the input workspace so that we can resum the // counts to find a new normalization factor that takes into account // the newly masked detectors. normalizeDetectors(rebinnedWS, outputWS, sum, err, npixels, min_eff, max_eff); if (!isEmpty(min_eff) || !isEmpty(max_eff)) { // Recompute the normalization, excluding the pixels that were outside // the acceptable efficiency range. sumUnmaskedDetectors(rebinnedWS, sum, err, npixels); // Now that we have a normalization factor that excludes bad pixels, // recompute the relative efficiency. // We pass EMPTY_DBL() to avoid masking pixels that might end up high or low // after the new normalization. normalizeDetectors(rebinnedWS, outputWS, sum, err, npixels, EMPTY_DBL(), EMPTY_DBL()); } return; } /* * Sum up all the unmasked detector pixels. * * @param rebinnedWS: workspace where all the wavelength bins have been grouped *together * @param sum: sum of all the unmasked detector pixels (counts) * @param error: error on sum (counts) * @param nPixels: number of unmasked detector pixels that contributed to sum */ void CalculateEfficiency::sumUnmaskedDetectors(MatrixWorkspace_sptr rebinnedWS, double &sum, double &error, int &nPixels) { // Number of spectra const int numberOfSpectra = static_cast<int>(rebinnedWS->getNumberHistograms()); sum = 0.0; error = 0.0; nPixels = 0; for (int i = 0; i < numberOfSpectra; i++) { progress(0.2 + 0.2 * i / numberOfSpectra, "Computing sensitivity"); // Get the detector object for this spectrum IDetector_const_sptr det = rebinnedWS->getDetector(i); // If this detector is masked, skip to the next one if (det->isMasked()) continue; // If this detector is a monitor, skip to the next one if (det->isMonitor()) continue; // Retrieve the spectrum into a vector const MantidVec &YValues = rebinnedWS->readY(i); const MantidVec &YErrors = rebinnedWS->readE(i); sum += YValues[0]; error += YErrors[0] * YErrors[0]; nPixels++; } error = std::sqrt(error); } /* * Normalize each detector to produce the relative detector efficiency. * Pixels that fall outside those efficiency limits will be masked in both * the input and output workspaces. * * @param rebinnedWS: input workspace * @param outputWS: output workspace containing the relative efficiency * @param sum: sum of all the unmasked detector pixels (counts) * @param error: error on sum (counts) * @param nPixels: number of unmasked detector pixels that contributed to sum */ void CalculateEfficiency::normalizeDetectors(MatrixWorkspace_sptr rebinnedWS, MatrixWorkspace_sptr outputWS, double sum, double error, int nPixels, double min_eff, double max_eff) { // Number of spectra const size_t numberOfSpectra = rebinnedWS->getNumberHistograms(); // Empty vector to store the pixels that outside the acceptable efficiency // range std::vector<size_t> dets_to_mask; for (size_t i = 0; i < numberOfSpectra; i++) { const double currProgress = 0.4 + 0.2 * (static_cast<double>(i) / static_cast<double>(numberOfSpectra)); progress(currProgress, "Computing sensitivity"); // Get the detector object for this spectrum IDetector_const_sptr det = rebinnedWS->getDetector(i); // If this detector is masked, skip to the next one if (det->isMasked()) continue; // Retrieve the spectrum into a vector const MantidVec &YIn = rebinnedWS->readY(i); const MantidVec &EIn = rebinnedWS->readE(i); MantidVec &YOut = outputWS->dataY(i); MantidVec &EOut = outputWS->dataE(i); // If this detector is a monitor, skip to the next one if (det->isMonitor()) { YOut[0] = 1.0; EOut[0] = 0.0; continue; } // Normalize counts to get relative efficiency YOut[0] = nPixels / sum * YIn[0]; const double err_sum = YIn[0] / sum * error; EOut[0] = nPixels / std::abs(sum) * std::sqrt(EIn[0] * EIn[0] + err_sum * err_sum); // Mask this detector if the signal is outside the acceptable band if (!isEmpty(min_eff) && YOut[0] < min_eff) dets_to_mask.push_back(i); if (!isEmpty(max_eff) && YOut[0] > max_eff) dets_to_mask.push_back(i); } // If we identified pixels to be masked, mask them now if (!dets_to_mask.empty()) { // Mask detectors that were found to be outside the acceptable efficiency // band try { IAlgorithm_sptr mask = createChildAlgorithm("MaskDetectors", 0.8, 0.9); // First we mask detectors in the output workspace mask->setProperty<MatrixWorkspace_sptr>("Workspace", outputWS); mask->setProperty<std::vector<size_t>>("WorkspaceIndexList", dets_to_mask); mask->execute(); mask = createChildAlgorithm("MaskDetectors", 0.9, 1.0); // Then we mask the same detectors in the input workspace mask->setProperty<MatrixWorkspace_sptr>("Workspace", rebinnedWS); mask->setProperty<std::vector<size_t>>("WorkspaceIndexList", dets_to_mask); mask->execute(); } catch (std::invalid_argument &err) { std::stringstream e; e << "Invalid argument to MaskDetectors Child Algorithm: " << err.what(); g_log.error(e.str()); } catch (std::runtime_error &err) { std::stringstream e; e << "Unable to successfully run MaskDetectors Child Algorithm: " << err.what(); g_log.error(e.str()); } } } } // namespace Algorithms } // namespace Mantid