// Mantid Repository : https://github.com/mantidproject/mantid // // Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI, // NScD Oak Ridge National Laboratory, European Spallation Source // & Institut Laue - Langevin // SPDX - License - Identifier: GPL - 3.0 + #include "MantidMDAlgorithms/MDNormalization.h" #include "MantidAPI/IMDEventWorkspace.h" #include "MantidDataObjects/MDHistoWorkspace.h" #include "MantidAPI/Run.h" #include "MantidGeometry/Crystal/OrientedLattice.h" #include "MantidGeometry/MDGeometry/QSample.h" #include "MantidGeometry/MDGeometry/HKL.h" #include "MantidGeometry/MDGeometry/MDFrameFactory.h" #include "MantidKernel/ArrayLengthValidator.h" #include "MantidKernel/ArrayProperty.h" #include "MantidKernel/VisibleWhenProperty.h" #include "MantidKernel/Strings.h" #include "MantidKernel/CompositeValidator.h" #include "MantidAPI/CommonBinsValidator.h" #include "MantidAPI/InstrumentValidator.h" #include "MantidAPI/Sample.h" #include "MantidGeometry/Crystal/OrientedLattice.h" #include "MantidGeometry/Crystal/SymmetryOperationFactory.h" #include "MantidGeometry/Crystal/SpaceGroupFactory.h" #include "MantidGeometry/Crystal/PointGroupFactory.h" #include <boost/lexical_cast.hpp> #include "MantidKernel/Exception.h" namespace Mantid { namespace MDAlgorithms { using namespace Mantid::Kernel; using namespace Mantid::API; using namespace Mantid::Geometry; using namespace Mantid::DataObjects; static bool abs_compare(int a, int b) { return (std::abs(a) < std::abs(b)); } // Register the algorithm into the AlgorithmFactory DECLARE_ALGORITHM(MDNormalization) //---------------------------------------------------------------------------------------------- /** * Constructor */ MDNormalization::MDNormalization() :m_normWS(), m_inputWS(), m_isRLU(false), m_UB(3,3), m_W(3,3,true), m_transformation(), m_numExptInfos(0), m_diffraction(true), m_accumulate(false), m_dEIntegrated(false) {} /// Algorithms name for identification. @see Algorithm::name const std::string MDNormalization::name() const { return "MDNormalization"; } /// Algorithm's version for identification. @see Algorithm::version int MDNormalization::version() const { return 1; } /// Algorithm's category for identification. @see Algorithm::category const std::string MDNormalization::category() const { return "MDAlgorithms\\Normalisation"; } /// Algorithm's summary for use in the GUI and help. @see Algorithm::summary const std::string MDNormalization::summary() const { return "Bins multidimensional data and calculate the normalization on the same grid"; } //---------------------------------------------------------------------------------------------- /** Initialize the algorithm's properties. */ void MDNormalization::init() { declareProperty(make_unique<WorkspaceProperty<API::IMDEventWorkspace>>( "InputWorkspace", "", Kernel::Direction::Input), "An input MDEventWorkspace. Must be in Q_sample frame."); // RLU and settings declareProperty("RLU", true, "Use reciprocal lattice units. If false, use Q_sample"); setPropertyGroup("RLU","Q projections RLU"); auto mustBe3D = boost::make_shared<Kernel::ArrayLengthValidator<double> >(3); std::vector<double> Q1(3, 0.), Q2(3, 0), Q3(3, 0); Q1[0] = 1.; Q2[1] = 1.; Q3[2] = 1.; declareProperty(make_unique<ArrayProperty<double>>("QDimension1", Q1, mustBe3D), "The first Q projection axis - Default is (1,0,0)"); setPropertySettings("QDimension1", make_unique<Kernel::VisibleWhenProperty>("RLU", IS_EQUAL_TO, "1")); setPropertyGroup("QDimension1","Q projections RLU"); declareProperty(make_unique<ArrayProperty<double>>("QDimension2", Q2, mustBe3D), "The second Q projection axis - Default is (0,1,0)"); setPropertySettings("QDimension2", make_unique<Kernel::VisibleWhenProperty>("RLU", IS_EQUAL_TO, "1")); setPropertyGroup("QDimension2","Q projections RLU"); declareProperty(make_unique<ArrayProperty<double>>("QDimension3", Q3, mustBe3D), "The thirdtCalculateCover Q projection axis - Default is (0,0,1)"); setPropertySettings("QDimension3", make_unique<Kernel::VisibleWhenProperty>("RLU", IS_EQUAL_TO, "1")); setPropertyGroup("QDimension3","Q projections RLU"); // vanadium auto fluxValidator = boost::make_shared<CompositeValidator>(); fluxValidator->add<InstrumentValidator>(); fluxValidator->add<CommonBinsValidator>(); auto solidAngleValidator = fluxValidator->clone(); declareProperty(make_unique<WorkspaceProperty<>>("SolidAngleWorkspace", "", Direction::Input, API::PropertyMode::Optional, solidAngleValidator), "An input workspace containing integrated vanadium " "(a measure of the solid angle).\n" "Mandatory for diffraction, optional for direct geometry inelastic"); declareProperty(make_unique<WorkspaceProperty<>>( "FluxWorkspace", "", Direction::Input, API::PropertyMode::Optional, fluxValidator), "An input workspace containing momentum dependent flux.\n" "Mandatory for diffraction. No effect on direct geometry inelastic"); setPropertyGroup("SolidAngleWorkspace","Vanadium normalization"); setPropertyGroup("FluxWorkspace","Vanadium normalization"); // Define slicing for(std::size_t i=0;i<6;i++) { std::string propName = "Dimension"+Strings::toString(i)+"Name"; std::string propBinning = "Dimension"+Strings::toString(i)+"Binning"; declareProperty(Kernel::make_unique<PropertyWithValue<std::string>>(propName, "", Direction::Input), "Name for the " + Strings::toString(i) + "th dimension. Leave blank for NONE."); auto atMost3 = boost::make_shared<ArrayLengthValidator<double> >(0,3); std::vector<double> temp; declareProperty(Kernel::make_unique<ArrayProperty<double>>(propBinning,temp,atMost3), "Binning for the " + Strings::toString(i) + "th dimension.\n"+ "- Leave blank for complete integration\n"+ "- One value is interpreted as step\n" "- Two values are interpreted integration interval\n"+ "- Three values are interpreted as min, step, max"); setPropertyGroup(propName, "Binning"); setPropertyGroup(propBinning, "Binning"); } // symmetry operations declareProperty(Kernel::make_unique<PropertyWithValue<std::string>>("SymmetryOperations", "", Direction::Input), "If specified the symmetry will be applied, " "can be space group name, point group name, or list individual symmetries."); // temporary workspaces declareProperty(make_unique<WorkspaceProperty<IMDHistoWorkspace>>( "TemporaryDataWorkspace", "", Direction::Input, PropertyMode::Optional), "An input MDHistoWorkspace used to accumulate data from " "multiple MDEventWorkspaces. If unspecified a blank " "MDHistoWorkspace will be created."); declareProperty(make_unique<WorkspaceProperty<IMDHistoWorkspace>>( "TemporaryNormalizationWorkspace", "", Direction::Input, PropertyMode::Optional), "An input MDHistoWorkspace used to accumulate normalization " "from multiple MDEventWorkspaces. If unspecified a blank " "MDHistoWorkspace will be created."); setPropertyGroup("TemporaryDataWorkspace", "Temporary workspaces"); setPropertyGroup("TemporaryNormalizationWorkspace", "Temporary workspaces"); declareProperty(make_unique<WorkspaceProperty<API::Workspace>>( "OutputWorkspace", "", Kernel::Direction::Output), "A name for the output data MDHistoWorkspace."); declareProperty(make_unique<WorkspaceProperty<Workspace>>( "OutputNormalizationWorkspace", "", Direction::Output), "A name for the output normalization MDHistoWorkspace."); } //---------------------------------------------------------------------------------------------- /// Validate the input workspace @see Algorithm::validateInputs std::map<std::string, std::string> MDNormalization::validateInputs() { std::map<std::string, std::string> errorMessage; // Check for input workspace frame Mantid::API::IMDEventWorkspace_sptr inputWS = this->getProperty("InputWorkspace"); if (inputWS->getNumDims() < 3) { errorMessage.emplace("InputWorkspace", "The input workspace must be at least 3D"); } else { for (size_t i = 0; i < 3; i++) { if (inputWS->getDimension(i)->getMDFrame().name() != Mantid::Geometry::QSample::QSampleName) { errorMessage.emplace("InputWorkspace", "The input workspace must be in Q_sample"); } } } // Check if the vanadium is available for diffraction bool diffraction=true; if ((inputWS->getNumDims() >3) && (inputWS->getDimension(3)->getMDFrame().name()=="DeltaE")) { diffraction = false; } if (diffraction) { API::MatrixWorkspace_const_sptr solidAngleWS = getProperty("SolidAngleWorkspace"); API::MatrixWorkspace_const_sptr fluxWS = getProperty("FluxWorkspace"); if (solidAngleWS == nullptr) { errorMessage.emplace("SolidAngleWorkspace","SolidAngleWorkspace is required for diffraction"); } if (fluxWS == nullptr) { errorMessage.emplace("FluxWorkspace","FluxWorkspace is required for diffraction"); } } // Check for property MDNorm_low and MDNorm_high size_t nExperimentInfos = inputWS->getNumExperimentInfo(); if (nExperimentInfos == 0) { errorMessage.emplace("InputWorkspace", "There must be at least one experiment info"); } else { for (size_t iExpInfo = 0; iExpInfo < nExperimentInfos; iExpInfo++) { auto ¤tExptInfo = *(inputWS->getExperimentInfo(static_cast<uint16_t>(iExpInfo))); if (!currentExptInfo.run().hasProperty("MDNorm_low")) { errorMessage.emplace("InputWorkspace", "Missing MDNorm_low log. Please " "use CropWorkspaceForMDNorm " "before converting to MD"); } if (!currentExptInfo.run().hasProperty("MDNorm_high")) { errorMessage.emplace("InputWorkspace", "Missing MDNorm_high log. Please use " "CropWorkspaceForMDNorm before converting to MD"); } } } // check projections and UB if (getProperty("RLU")) { DblMatrix W = DblMatrix(3, 3); std::vector<double> Q1Basis = getProperty("QDimension1"); std::vector<double> Q2Basis = getProperty("QDimension2"); std::vector<double> Q3Basis = getProperty("QDimension3"); W.setColumn(0, Q1Basis); W.setColumn(1, Q2Basis); W.setColumn(2, Q3Basis); if (fabs(W.determinant()) < 1e-5) { errorMessage.emplace("QDimension1", "The projection dimensions are coplanar or zero"); errorMessage.emplace("QDimension2", "The projection dimensions are coplanar or zero"); errorMessage.emplace("QDimension3", "The projection dimensions are coplanar or zero"); } if (!inputWS->getExperimentInfo(0)->sample().hasOrientedLattice()) { errorMessage.emplace("InputWorkspace", "There is no oriented lattice " "associated with the input workspace. " "Use SetUB algorithm"); } } // check dimension names std::vector<std::string> originalDimensionNames; for (size_t i=3; i<inputWS->getNumDims(); i++) { originalDimensionNames.push_back(inputWS->getDimension(i)->getName()); } originalDimensionNames.push_back("QDimension1"); originalDimensionNames.push_back("QDimension2"); originalDimensionNames.push_back("QDimension3"); std::vector<std::string> selectedDimensions; for(std::size_t i=0;i<6;i++) { std::string propName = "Dimension"+Strings::toString(i)+"Name"; std::string dimName = getProperty(propName); std::string binningName = "Dimension"+Strings::toString(i)+"Binning"; std::vector<double> binning = getProperty(binningName); if (!dimName.empty()) { auto it = std::find(originalDimensionNames.begin(),originalDimensionNames.end(),dimName); if (it==originalDimensionNames.end()) { errorMessage.emplace(propName, "Name '"+dimName+"' is not one of the " "original workspace names or a Q dimension"); } else { //make sure dimension is unique auto itSel = std::find(selectedDimensions.begin(),selectedDimensions.end(),dimName); if (itSel==selectedDimensions.end()){ selectedDimensions.push_back(dimName); } else{ errorMessage.emplace(propName, "Name '"+dimName+"' was already selected"); } } } else { if (!binning.empty()) { errorMessage.emplace(binningName, "There should be no binning if the dimension name is empty"); } } } // since Q dimensions can be non - orthogonal, all must be present if ((std::find(selectedDimensions.begin(),selectedDimensions.end(),"QDimension1") == selectedDimensions.end())|| (std::find(selectedDimensions.begin(),selectedDimensions.end(),"QDimension2") == selectedDimensions.end())|| (std::find(selectedDimensions.begin(),selectedDimensions.end(),"QDimension3") == selectedDimensions.end())) { for(std::size_t i=0;i<6;i++) { std::string propName = "Dimension"+Strings::toString(i)+"Name"; errorMessage.emplace(propName, "All of QDimension1, QDimension2, QDimension3 must be present"); } } // symmetry operations std::string symOps = this->getProperty("SymmetryOperations"); if(!symOps.empty()) { bool isSpaceGroup =Geometry::SpaceGroupFactory::Instance().isSubscribed(symOps); bool isPointGroup = Geometry::PointGroupFactory::Instance().isSubscribed(symOps); if(!isSpaceGroup &&!isPointGroup) { try { Geometry::SymmetryOperationFactory::Instance().createSymOps(symOps); } catch (const Mantid::Kernel::Exception::ParseError&) { errorMessage.emplace("SymmetryOperations", "The input is not a space group, a point group, or a list of symmetry operations"); } } } return errorMessage; } //---------------------------------------------------------------------------------------------- /** Execute the algorithm. */ void MDNormalization::exec() { // symmetry operations std::string symOps = this->getProperty("SymmetryOperations"); std::vector<Geometry::SymmetryOperation> symmetryOps; if (symOps.empty()){ symOps="x,y,z"; } if(Geometry::SpaceGroupFactory::Instance().isSubscribed(symOps)){ auto spaceGroup = Geometry::SpaceGroupFactory::Instance().createSpaceGroup(symOps); auto pointGroup = spaceGroup->getPointGroup(); symmetryOps = pointGroup->getSymmetryOperations(); } else if (Geometry::PointGroupFactory::Instance().isSubscribed(symOps)) { auto pointGroup = Geometry::PointGroupFactory::Instance().createPointGroup(symOps); symmetryOps = pointGroup->getSymmetryOperations(); } else { symmetryOps = Geometry::SymmetryOperationFactory::Instance().createSymOps(symOps); } g_log.debug()<<"Symmetry operations\n"; for(auto so:symmetryOps){ g_log.debug()<<so.identifier()<<"\n"; } m_isRLU = getProperty("RLU"); //get the workspaces m_inputWS = this->getProperty("InputWorkspace"); if ((m_inputWS->getNumDims() >3) && (m_inputWS->getDimension(3)->getMDFrame().name()=="DeltaE")) { m_diffraction = false; } auto outputWS = binInputWS(symmetryOps); createNormalizationWS(*outputWS); this->setProperty("OutputNormalizationWorkspace",m_normWS); this->setProperty("OutputWorkspace",outputWS); m_numExptInfos = outputWS->getNumExperimentInfo(); // loop over all experiment infos for (uint16_t expInfoIndex = 0; expInfoIndex < m_numExptInfos; expInfoIndex++) { // Check for other dimensions if we could measure anything in the original // data bool skipNormalization = false; const std::vector<coord_t> otherValues = getValuesFromOtherDimensions(skipNormalization, expInfoIndex); g_log.warning()<<skipNormalization<<"\n"; /* const auto affineTrans = findIntergratedDimensions(otherValues, skipNormalization); cacheDimensionXValues(); if (!skipNormalization) { calculateNormalization(otherValues, affineTrans, expInfoIndex); } else { g_log.warning("Binning limits are outside the limits of the MDWorkspace. " "Not applying normalization."); } */ // if more than one experiment info, keep accumulating m_accumulate = true; } } std::string MDNormalization::QDimensionName(std::vector<double> projection) { std::vector<double>::iterator result; result = std::max_element(projection.begin(), projection.end(), abs_compare); std::vector<char> symbol{'H','K','L'}; char character=symbol[std::distance(projection.begin(), result)]; std::stringstream name; name<<"["; for(size_t i=0;i<3;i++){ if(projection[i]==0){ name<<"0"; } else if (projection[i]==1){ name<<character; } else if (projection[i]==-1){ name<<"-"<<character; } else { name<<std::defaultfloat<<std::setprecision(3)<<projection[i]<<character; } if(i!=2){ name<<","; } } name<<"]"; return name.str(); } std::map<std::string, std::string> MDNormalization::getBinParameters() { std::map<std::string, std::string> parameters; std::stringstream extents; std::stringstream bins; std::vector<std::string> originalDimensionNames; originalDimensionNames.push_back("QDimension1"); originalDimensionNames.push_back("QDimension2"); originalDimensionNames.push_back("QDimension3"); for (size_t i=3; i<m_inputWS->getNumDims(); i++) { originalDimensionNames.push_back(m_inputWS->getDimension(i)->getName()); } if (m_isRLU) { m_Q1Basis = getProperty("QDimension1"); m_Q2Basis = getProperty("QDimension2"); m_Q3Basis = getProperty("QDimension3"); m_UB = m_inputWS->getExperimentInfo(0)->sample().getOrientedLattice().getUB()*2*M_PI; } std::vector<double> W(m_Q1Basis); W.insert(W.end(),m_Q2Basis.begin(),m_Q2Basis.end()); W.insert(W.end(),m_Q3Basis.begin(),m_Q3Basis.end()); m_W = DblMatrix(W); m_W.Transpose(); // Find maximum Q auto &exptInfo0 = *(m_inputWS->getExperimentInfo(static_cast<uint16_t>(0))); auto upperLimitsVector = (*(dynamic_cast<Kernel::PropertyWithValue<std::vector<double>> *>( exptInfo0.getLog("MDNorm_high"))))(); double maxQ; if(m_diffraction){ maxQ=2.*(*std::max_element(upperLimitsVector.begin(),upperLimitsVector.end())); } else { double Ei; double maxDE = *std::max_element(upperLimitsVector.begin(),upperLimitsVector.end()); auto loweLimitsVector = (*(dynamic_cast<Kernel::PropertyWithValue<std::vector<double>> *>( exptInfo0.getLog("MDNorm_low"))))(); double minDE = *std::min_element(loweLimitsVector.begin(),loweLimitsVector.end()); if (exptInfo0.run().hasProperty("Ei")) { Kernel::Property *eiprop = exptInfo0.run().getProperty("Ei"); Ei = boost::lexical_cast<double>(eiprop->value()); if (Ei <= 0) { throw std::invalid_argument("Ei stored in the workspace is not positive"); } } else { throw std::invalid_argument("Could not find Ei value in the workspace."); } const double energyToK = 8.0 * M_PI * M_PI * PhysicalConstants::NeutronMass * PhysicalConstants::meV * 1e-20 / (PhysicalConstants::h * PhysicalConstants::h); double ki = std::sqrt(energyToK * Ei); double kfmin = std::sqrt(energyToK * (Ei - minDE)); double kfmax = std::sqrt(energyToK * (Ei - maxDE)); maxQ=ki+std::max(kfmin,kfmax); } size_t basisVectorIndex=0; std::vector<double> transformation; for(std::size_t i=0;i<6;i++) { std::string propName = "Dimension"+Strings::toString(i)+"Name"; std::string binningName = "Dimension"+Strings::toString(i)+"Binning"; std::string dimName = getProperty(propName); std::vector<double> binning = getProperty(binningName); std::string bv="BasisVector"; if (!dimName.empty()) { std::string property=bv+Strings::toString(basisVectorIndex); std::stringstream propertyValue; propertyValue<<dimName; //get the index in the original workspace auto dimIndex=std::distance(originalDimensionNames.begin(),std::find(originalDimensionNames.begin(),originalDimensionNames.end(),dimName)); auto dimension=m_inputWS->getDimension(dimIndex); propertyValue<<","<<dimension->getMDUnits().getUnitLabel().ascii(); for (size_t j=0;j<originalDimensionNames.size();j++){ if(j==static_cast<size_t>(dimIndex)){ propertyValue<<",1"; transformation.push_back(1.); } else { propertyValue<<",0"; transformation.push_back(0.); } } parameters.emplace(property,propertyValue.str()); //get the extents an number of bins coord_t dimMax=dimension->getMaximum(); coord_t dimMin=dimension->getMinimum(); if(m_isRLU){ Mantid::Geometry::OrientedLattice ol; ol.setUB(m_UB*m_W); //note that this is already multiplied by 2Pi if(dimIndex==0) { dimMax=static_cast<coord_t>(ol.a()*maxQ); dimMin=-dimMax; } else if (dimIndex==1){ dimMax=static_cast<coord_t>(ol.b()*maxQ); dimMin=-dimMax; } else if (dimIndex==2){ dimMax=static_cast<coord_t>(ol.c()*maxQ); dimMin=-dimMax; } } if (binning.size()==0){ //only one bin, integrating from min to max extents<<dimMin<<","<<dimMax<<","; bins<<1<<","; } else if (binning.size()==2){ //only one bin, integrating from min to max extents<<binning[0]<<","<<binning[1]<<","; bins<<1<<","; } else if (binning.size()==1){ auto step=binning[0]; int nsteps=static_cast<int>(std::ceil((dimMax-dimMin)/step)); bins<<nsteps<<","; extents<<dimMin<<","<<dimMin+nsteps*step<<","; } else if (binning.size()==3){ dimMin=static_cast<coord_t>(binning[0]); auto step=binning[1]; dimMax=static_cast<coord_t>(binning[2]); int nsteps=static_cast<int>(std::ceil((dimMax-dimMin)/step)); bins<<nsteps<<","; extents<<dimMin<<","<<dimMin+nsteps*step<<","; } basisVectorIndex++; } } parameters.emplace("OutputExtents",extents.str()); parameters.emplace("OutputBins",bins.str()); m_transformation = DblMatrix(transformation,static_cast<size_t>((transformation.size())/m_inputWS->getNumDims()), m_inputWS->getNumDims()); return parameters; } void MDNormalization::createNormalizationWS(const DataObjects::MDHistoWorkspace &dataWS) { // Copy the MDHisto workspace, and change signals and errors to 0. boost::shared_ptr<IMDHistoWorkspace> tmp = this->getProperty("TemporaryNormalizationWorkspace"); m_normWS = boost::dynamic_pointer_cast<MDHistoWorkspace>(tmp); if (!m_normWS) { m_normWS = dataWS.clone(); m_normWS->setTo(0., 0., 0.); } else { m_accumulate = true; } } DataObjects::MDHistoWorkspace_sptr MDNormalization::binInputWS(std::vector<Geometry::SymmetryOperation> symmetryOps) { Mantid::API::IMDHistoWorkspace_sptr tempDataWS = this->getProperty("TemporaryDataWorkspace"); Mantid::API::Workspace_sptr outputWS; std::map<std::string, std::string> parameters=getBinParameters(); double soIndex = 0; std::vector<size_t> qDimensionIndices; for(auto so:symmetryOps){ // calculate dimensions for binning V3D Q1,Q2,Q3; Q1=so.transformHKL(V3D(m_Q1Basis[0],m_Q1Basis[1],m_Q1Basis[2])); Q2=so.transformHKL(V3D(m_Q2Basis[0],m_Q2Basis[1],m_Q2Basis[2])); Q3=so.transformHKL(V3D(m_Q3Basis[0],m_Q3Basis[1],m_Q3Basis[2])); if (m_isRLU) { Q1 = m_UB * Q1; Q2 = m_UB * Q2; Q3 = m_UB * Q3; } // bin the data double fraction=1./static_cast<double>(symmetryOps.size()); IAlgorithm_sptr binMD = createChildAlgorithm("BinMD", soIndex*0.3*fraction, (soIndex+1)*0.3*fraction); binMD->setPropertyValue("AxisAligned", "0"); binMD->setProperty("InputWorkspace",m_inputWS); binMD->setProperty("TemporaryDataWorkspace", tempDataWS); binMD->setPropertyValue("NormalizeBasisVectors","0"); binMD->setPropertyValue("OutputWorkspace",getPropertyValue("OutputWorkspace")); //set binning properties size_t qindex=0; for( auto const& p : parameters ) { auto key=p.first; auto value=p.second; std::stringstream basisVector; std::vector<double> projection(m_inputWS->getNumDims(),0.); if (value.find("QDimension1")!=std::string::npos) { if (!m_isRLU) { projection[0]=1.; basisVector<<"Q_sample_x,A^{-1}"; } else { qDimensionIndices.push_back(qindex); projection[0]=Q1.X(); projection[1]=Q1.Y(); projection[2]=Q1.Z(); basisVector<<QDimensionName(m_Q1Basis)<<", r.l.u."; } } else if (value.find("QDimension2")!=std::string::npos) { if (!m_isRLU) { projection[1]=1.; basisVector<<"Q_sample_y,A^{-1}"; } else { qDimensionIndices.push_back(qindex); projection[0]=Q2.X(); projection[1]=Q2.Y(); projection[2]=Q2.Z(); basisVector<<QDimensionName(m_Q2Basis)<<", r.l.u."; } } else if (value.find("QDimension3")!=std::string::npos) { if (!m_isRLU) { projection[2]=1.; basisVector<<"Q_sample_z,A^{-1}"; } else { qDimensionIndices.push_back(qindex); projection[0]=Q3.X(); projection[1]=Q3.Y(); projection[2]=Q3.Z(); basisVector<<QDimensionName(m_Q3Basis)<<", r.l.u."; } } if (!basisVector.str().empty()){ for(auto const& proji: projection){ basisVector<<","<<proji; } value=basisVector.str(); } g_log.debug()<<"Binning parameter "<<key<<" value: "<<value<<"\n"; binMD->setPropertyValue(key, value); qindex++; } //execute algorithm binMD->executeAsChildAlg(); outputWS=binMD->getProperty("OutputWorkspace"); //set the temporary workspace to be the output workspace, so it keeps adding different symmetries tempDataWS = boost::dynamic_pointer_cast<MDHistoWorkspace>(outputWS); soIndex+=1; } auto outputMDHWS = boost::dynamic_pointer_cast<MDHistoWorkspace>(outputWS); //set MDUnits for Q dimensions if(m_isRLU){ Mantid::Geometry::MDFrameArgument argument(Mantid::Geometry::HKL::HKLName,"r.l.u."); auto mdFrameFactory = Mantid::Geometry::makeMDFrameFactoryChain(); Mantid::Geometry::MDFrame_uptr hklFrame = mdFrameFactory->create(argument); for(size_t i:qDimensionIndices){ auto mdHistoDimension = boost::const_pointer_cast<Mantid::Geometry::MDHistoDimension>( boost::dynamic_pointer_cast< const Mantid::Geometry::MDHistoDimension>(outputMDHWS->getDimension(i))); mdHistoDimension->setMDFrame(*hklFrame); } } outputMDHWS->setDisplayNormalization(Mantid::API::NoNormalization); return outputMDHWS; } std::vector<coord_t> MDNormalization::getValuesFromOtherDimensions(bool &skipNormalization, uint16_t expInfoIndex) const { const auto ¤tRun = m_inputWS->getExperimentInfo(expInfoIndex)->run(); std::vector<coord_t> otherDimValues; for (size_t i = 3; i < m_inputWS->getNumDims(); i++) { const auto dimension = m_inputWS->getDimension(i); coord_t inputDimMin = static_cast<float>(dimension->getMinimum()); coord_t inputDimMax = static_cast<float>(dimension->getMaximum()); coord_t outputDimMin(0),outputDimMax(0); bool isIntegrated=true; for(size_t j=0; j<m_transformation.numRows(); j++) { if(m_transformation[j][i]==1){ isIntegrated = false; outputDimMin=m_normWS->getDimension(j)->getMinimum(); outputDimMax=m_normWS->getDimension(j)->getMaximum(); } } if(dimension->getName()=="DeltaE") { if((inputDimMax<outputDimMin) || (inputDimMin>outputDimMax)){ skipNormalization=true; } } else { coord_t value = static_cast<coord_t>(currentRun.getLogAsSingleValue( dimension->getName(), Mantid::Kernel::Math::TimeAveragedMean)); otherDimValues.push_back(value); if (value < inputDimMin || value > inputDimMax) { skipNormalization = true; } if ((!isIntegrated) && (value < outputDimMin || value > outputDimMax)) { skipNormalization = true; } } } return otherDimValues; } } // namespace MDAlgorithms } // namespace Mantid