/*WIKI* The algorithm SaveNexusProcessed will write a Nexus data file from the named workspace. The file name can be an absolute or relative path and should have the extension .nxs, .nx5 or .xml. Warning - using XML format can be extremely slow for large data sets and generate very large files. Both the extensions nxs and nx5 will generate HDF5 files. The optional parameters can be used to control which spectra are saved into the file (not yet implemented). If spectrum_min and spectrum_max are given, then only that range to data will be loaded. A Mantid Nexus file may contain several workspace entries each labelled with an integer starting at 1. If the file already contains n workspaces, the new one will be labelled n+1. ===Time series data=== TimeSeriesProperty data within the workspace will be saved as NXlog sections in the Nexus file. Only floating point logs are stored and loaded at present. ===Subalgorithms used=== None *WIKI*/ // SaveNexusProcessed // @author Ronald Fowler, based on SaveNexus //---------------------------------------------------------------------- // Includes //---------------------------------------------------------------------- #include "MantidAPI/EnabledWhenWorkspaceIsType.h" #include "MantidAPI/FileProperty.h" #include "MantidAPI/WorkspaceOpOverloads.h" #include "MantidDataHandling/SaveNexusProcessed.h" #include "MantidDataObjects/EventWorkspace.h" #include "MantidDataObjects/PeaksWorkspace.h" #include "MantidKernel/ArrayProperty.h" #include "MantidKernel/ConfigService.h" #include "MantidNexus/NexusFileIO.h" #include "MantidNexusCPP/NeXusFile.hpp" #include <boost/shared_ptr.hpp> #include <cmath> #include <Poco/File.h> #include <Poco/Path.h> using namespace Mantid::API; namespace Mantid { namespace DataHandling { using namespace Kernel; using namespace API; using namespace DataObjects; using Geometry::Instrument_const_sptr; // Register the algorithm into the algorithm factory DECLARE_ALGORITHM(SaveNexusProcessed) /// Sets documentation strings for this algorithm void SaveNexusProcessed::initDocs() { this->setWikiSummary("The SaveNexusProcessed algorithm will write the given Mantid workspace to a Nexus file. SaveNexusProcessed may be invoked by [[SaveNexus]]. "); this->setOptionalMessage("The SaveNexusProcessed algorithm will write the given Mantid workspace to a Nexus file. SaveNexusProcessed may be invoked by SaveNexus."); } /// Empty default constructor SaveNexusProcessed::SaveNexusProcessed() : Algorithm() { } //----------------------------------------------------------------------------------------------- /** Initialisation method. * */ void SaveNexusProcessed::init() { declareProperty(new WorkspaceProperty<Workspace>("InputWorkspace","",Direction::Input), "Name of the workspace to be saved"); // Declare required input parameters for algorithm std::vector<std::string> exts; exts.push_back(".nxs"); exts.push_back(".nx5"); exts.push_back(".xml"); declareProperty(new FileProperty("Filename", "", FileProperty::Save, exts), "The name of the Nexus file to write, as a full or relative\n" "path"); // Declare optional parameters (title now optional, was mandatory) declareProperty("Title", "", new NullValidator<std::string>, "A title to describe the saved workspace"); BoundedValidator<int> *mustBePositive = new BoundedValidator<int>(); mustBePositive->setLower(0); declareProperty("WorkspaceIndexMin", 0, mustBePositive->clone(), "Index number of first spectrum to write, only for single\n" "period data. Not yet implemented"); declareProperty("WorkspaceIndexMax", Mantid::EMPTY_INT(), mustBePositive->clone(), "Index of last spectrum to write, only for single period\n" "data. Not yet implemented"); declareProperty(new ArrayProperty<int>("WorkspaceIndexList"), "List of spectrum numbers to read, only for single period\n" "data. Not yet implemented"); //declareProperty("EntryNumber", 0, mustBePositive); declareProperty("Append",false,"Determines whether .nxs file needs to be\n" "over written or appended"); declareProperty("PreserveEvents", true, "For EventWorkspaces, preserve the events when saving (default).\n" "If false, will save the 2D histogram version of the workspace with the current binning parameters."); setPropertySettings("PreserveEvents", new EnabledWhenWorkspaceIsType<EventWorkspace>(this, "InputWorkspace", true)); } /** Get the list of workspace indices to use * * @param spec :: returns the list of workspace indices */ void SaveNexusProcessed::getSpectrumList(std::vector<int> & spec, MatrixWorkspace_const_sptr matrixWorkspace) { std::vector<int> spec_list = getProperty("WorkspaceIndexList"); int spec_min = getProperty("WorkspaceIndexMin"); int spec_max = getProperty("WorkspaceIndexMax"); const bool list = !spec_list.empty(); const bool interval = (spec_max != Mantid::EMPTY_INT()); if ( spec_max == Mantid::EMPTY_INT() ) spec_max = 0; const int numberOfHist = static_cast<int>(matrixWorkspace->getNumberHistograms()); if( interval ) { if ( spec_max < spec_min || spec_max > numberOfHist-1 ) { g_log.error("Invalid WorkspaceIndex min/max properties"); throw std::invalid_argument("Inconsistent properties defined"); } spec.reserve(1+spec_max-spec_min); for(int i=spec_min;i<=spec_max;i++) spec.push_back(i); if (list) { for(size_t i=0;i<spec_list.size();i++) { int s = spec_list[i]; if ( s < 0 ) continue; if (s < spec_min || s > spec_max) spec.push_back(s); } } } else if (list) { spec_max=0; spec_min=numberOfHist-1; for(size_t i=0;i<spec_list.size();i++) { int s = spec_list[i]; if ( s < 0 ) continue; spec.push_back(s); if (s > spec_max) spec_max = s; if (s < spec_min) spec_min = s; } } else { spec_min=0; spec_max=numberOfHist-1; spec.reserve(1+spec_max-spec_min); for(int i=spec_min;i<=spec_max;i++) spec.push_back(i); } } //----------------------------------------------------------------------------------------------- /** Executes the algorithm. * * @throw runtime_error Thrown if algorithm cannot execute */ void SaveNexusProcessed::exec() { //TODO: Remove? NXMEnableErrorReporting(); Workspace_sptr inputWorkspace = getProperty("InputWorkspace"); boost::shared_ptr<WorkspaceGroup> wsGrpSptr = boost::dynamic_pointer_cast<WorkspaceGroup>(inputWorkspace); if(wsGrpSptr) { processGroups(wsGrpSptr, this->getProperties()); return; } // Set amount of time expected to be spent on writing initial part - could in future depend on type of workspace m_timeProgInit = 0.05; // Create progress object for this Progress prog_init(this, 0.0, m_timeProgInit, 5); // Retrieve the filename from the properties m_filename = getPropertyValue("Filename"); //m_entryname = getPropertyValue("EntryName"); m_title = getPropertyValue("Title"); // Do we prserve events? bool PreserveEvents = getProperty("PreserveEvents"); MatrixWorkspace_const_sptr matrixWorkspace = boost::dynamic_pointer_cast<const MatrixWorkspace>(inputWorkspace); ITableWorkspace_const_sptr tableWorkspace = boost::dynamic_pointer_cast<const ITableWorkspace>(inputWorkspace); PeaksWorkspace_const_sptr peaksWorkspace = boost::dynamic_pointer_cast<const PeaksWorkspace>(inputWorkspace); if(peaksWorkspace) g_log.debug("We have a peaks workspace"); // check if inputWorkspace is something we know how to save if (!matrixWorkspace && !tableWorkspace) { g_log.debug() << "Workspace " << m_title << " not saved because it is not of a type we can presently save.\n"; return; } m_eventWorkspace = boost::dynamic_pointer_cast<const EventWorkspace>(matrixWorkspace); const std::string workspaceID = inputWorkspace->id(); if ((workspaceID.find("Workspace2D") == std::string::npos) && !m_eventWorkspace && !tableWorkspace) throw Exception::NotImplementedError("SaveNexusProcessed passed invalid workspaces. Must be Workspace2D, EventWorkspace or ITableWorkspace."); // If no title's been given, use the workspace title field if (m_title.empty()) m_title = inputWorkspace->getTitle(); // If we don't want to append then remove the file if it already exists bool append_to_file = getProperty("Append"); if( !append_to_file ) { Poco::File file(m_filename); if( file.exists() ) file.remove(); } // Then immediately open the file Mantid::NeXus::NexusFileIO *nexusFile= new Mantid::NeXus::NexusFileIO(); if( nexusFile->openNexusWrite( m_filename ) != 0 ) throw Exception::FileError("Failed to open file", m_filename); // Equivalent C++ API handle ::NeXus::File * cppFile = new ::NeXus::File(nexusFile->fileID); prog_init.reportIncrement(1, "Opening file"); if( nexusFile->writeNexusProcessedHeader( m_title ) != 0 ) throw Exception::FileError("Failed to write to file", m_filename); prog_init.reportIncrement(1, "Writing header"); // write instrument data, if present and writer enabled if (matrixWorkspace) { // Save the instrument names, ParameterMap, sample, run matrixWorkspace->saveExperimentInfoNexus(cppFile); prog_init.reportIncrement(1, "Writing sample and instrument"); // check if all X() are in fact the same array const bool uniformSpectra = API::WorkspaceHelpers::commonBoundaries(matrixWorkspace); // Retrieve the workspace indices (from params) std::vector<int> spec; this->getSpectrumList(spec, matrixWorkspace); // Write out the data (2D or event) if (m_eventWorkspace && PreserveEvents) { this->execEvent(nexusFile,uniformSpectra,spec); } else { nexusFile->writeNexusProcessedData2D(matrixWorkspace,uniformSpectra,spec, "workspace", true); } // MW 27/10/10 - don't try and save the spectra-detector map if there isn't one if ( matrixWorkspace->getAxis(1)->isSpectra() ) { cppFile->openGroup("instrument", "NXinstrument"); matrixWorkspace->saveSpectraMapNexus(cppFile, spec, ::NeXus::LZW); cppFile->closeGroup(); } } // finish matrix workspace specifics if (peaksWorkspace) { // Save the instrument names, ParameterMap, sample, run peaksWorkspace->saveExperimentInfoNexus(cppFile); prog_init.reportIncrement(1, "Writing sample and instrument"); } // peaks workspace specifics if (peaksWorkspace) { // g_log.information("Peaks Workspace saving to Nexus would be done"); // int pNum = peaksWorkspace->getNumberPeaks(); peaksWorkspace->saveNexus( cppFile ); } // finish peaks workspace specifics else if (tableWorkspace) // Table workspace specifics { nexusFile->writeNexusTableWorkspace(tableWorkspace,"table_workspace"); } // finish table workspace specifics nexusFile->writeNexusProcessedProcess(inputWorkspace); nexusFile->closeNexusFile(); delete nexusFile; return; } //------------------------------------------------------------------------------------- /** Append out each field of a vector of events to separate array. * * @param events :: vector of TofEvent or WeightedEvent, etc. * @param offset :: where the first event goes in the array * @param tofs, weights, errorSquareds, pulsetimes :: arrays to write to. * Must be initialized and big enough, * or NULL if they are not meant to be written to. */ template<class T> void SaveNexusProcessed::appendEventListData( std::vector<T> events, size_t offset, double * tofs, float * weights, float * errorSquareds, int64_t * pulsetimes) { // Do nothing if there are no events. size_t num = events.size(); if (num <= 0) return; typename std::vector<T>::const_iterator it; typename std::vector<T>::const_iterator it_end = events.end(); size_t i = offset; // Fill the C-arrays with the fields from all the events, as requested. for (it = events.begin(); it != it_end; it++) { if (tofs) tofs[i] = it->tof(); if (weights) weights[i] = static_cast<float>(it->weight()); if (errorSquareds) errorSquareds[i] = static_cast<float>(it->errorSquared()); if (pulsetimes) pulsetimes[i] = it->pulseTime().total_nanoseconds(); i++; } } //----------------------------------------------------------------------------------------------- /** Execute the saving of event data. * This will make one long event list for all events contained. * */ void SaveNexusProcessed::execEvent(Mantid::NeXus::NexusFileIO * nexusFile,const bool uniformSpectra,const std::vector<int> spec) { prog = new Progress(this, m_timeProgInit, 1.0, m_eventWorkspace->getNumberEvents()*2); // Start by writing out the axes and crap nexusFile->writeNexusProcessedData2D(m_eventWorkspace, uniformSpectra, spec, "event_workspace", false); // Make a super long list of tofs, weights, etc. std::vector<int64_t> indices; indices.reserve( m_eventWorkspace->getNumberHistograms()+1 ); // First we need to index the events in each spectrum size_t index = 0; for (int wi =0; wi < static_cast<int>(m_eventWorkspace->getNumberHistograms()); wi++) { indices.push_back(index); // Track the total # of events index += m_eventWorkspace->getEventList(wi).getNumberEvents(); } indices.push_back(index); // Initialize all the arrays int64_t num = index; double * tofs = NULL; float * weights = NULL; float * errorSquareds = NULL; int64_t * pulsetimes = NULL; // overall event type. EventType type = m_eventWorkspace->getEventType(); bool writeTOF = true; bool writePulsetime = false; bool writeWeight = false; bool writeError = false; switch (type) { case TOF: writePulsetime = true; break; case WEIGHTED: writePulsetime = true; writeWeight = true; writeError = true; break; case WEIGHTED_NOTIME: writeWeight = true; writeError = true; break; } // --- Initialize the combined event arrays ---- if (writeTOF) tofs = new double[num]; if (writeWeight) weights = new float[num]; if (writeError) errorSquareds = new float[num]; if (writePulsetime) pulsetimes = new int64_t[num]; // --- Fill in the combined event arrays ---- PARALLEL_FOR_NO_WSP_CHECK() for (int wi=0; wi < static_cast<int>(m_eventWorkspace->getNumberHistograms()); wi++) { PARALLEL_START_INTERUPT_REGION const DataObjects::EventList & el = m_eventWorkspace->getEventList(wi); // This is where it will land in the output array. // It is okay to write in parallel since none should step on each other. size_t offset = indices[wi]; std::string eventType; switch (el.getEventType()) { case TOF: eventType = "TOF"; appendEventListData( el.getEvents(), offset, tofs, weights, errorSquareds, pulsetimes); break; case WEIGHTED: eventType = "WEIGHTED"; appendEventListData( el.getWeightedEvents(), offset, tofs, weights, errorSquareds, pulsetimes); break; case WEIGHTED_NOTIME: eventType = "WEIGHTED_NOTIME"; appendEventListData( el.getWeightedEventsNoTime(), offset, tofs, weights, errorSquareds, pulsetimes); break; } prog->reportIncrement(el.getNumberEvents(), "Copying EventList"); PARALLEL_END_INTERUPT_REGION } PARALLEL_CHECK_INTERUPT_REGION // Write out to the NXS file. nexusFile->writeNexusProcessedDataEventCombined(m_eventWorkspace, indices, tofs, weights, errorSquareds, pulsetimes, false /*DONT compress - much faster*/); // Free mem. delete [] tofs; delete [] weights; delete [] errorSquareds; delete [] pulsetimes; } //----------------------------------------------------------------------------------------------- /** virtual method to set the non workspace properties for this algorithm * @param alg :: pointer to the algorithm * @param propertyName :: name of the property * @param propertyValue :: value of the property * @param perioidNum :: period number */ void SaveNexusProcessed::setOtherProperties(IAlgorithm* alg,const std::string& propertyName,const std::string& propertyValue,int perioidNum) { if(!propertyName.compare("Append")) { if(perioidNum!=1) { alg->setPropertyValue(propertyName,"1"); } else alg->setPropertyValue(propertyName,propertyValue); } else Algorithm::setOtherProperties(alg,propertyName,propertyValue,perioidNum); } } // namespace DataHandling } // namespace Mantid