# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source # & Institut Laue - Langevin # SPDX - License - Identifier: GPL - 3.0 + from __future__ import (absolute_import, division, print_function) import numpy as np import mantid.simpleapi as mantid from isis_powder.routines import absorb_corrections, common from isis_powder.routines.common_enums import WORKSPACE_UNITS from isis_powder.routines.run_details import create_run_details_object, get_cal_mapping_dict from isis_powder.polaris_routines import polaris_advanced_config def calculate_van_absorb_corrections(ws_to_correct, multiple_scattering, is_vanadium): mantid.MaskDetectors(ws_to_correct, SpectraList=list(range(1, 55))) absorb_dict = polaris_advanced_config.absorption_correction_params sample_details_obj = absorb_corrections.create_vanadium_sample_details_obj(config_dict=absorb_dict) ws_to_correct = absorb_corrections.run_cylinder_absorb_corrections( ws_to_correct=ws_to_correct, multiple_scattering=multiple_scattering, sample_details_obj=sample_details_obj, is_vanadium=is_vanadium) return ws_to_correct def _get_run_numbers_for_key(current_mode_run_numbers, key): err_message = "this must be under the relevant Rietveld or PDF mode." return common.cal_map_dictionary_key_helper(current_mode_run_numbers, key=key, append_to_error_message=err_message) def _get_current_mode_dictionary(run_number_string, inst_settings): mapping_dict = get_cal_mapping_dict(run_number_string, inst_settings.cal_mapping_path) if inst_settings.mode is None: ws = mantid.Load('POLARIS'+run_number_string+'.nxs') mode, cropping_vals = _determine_chopper_mode(ws) inst_settings.mode = mode inst_settings.focused_cropping_values = cropping_vals mantid.DeleteWorkspace(ws) # Get the current mode "Rietveld" or "PDF" run numbers return common.cal_map_dictionary_key_helper(mapping_dict, inst_settings.mode) def get_run_details(run_number_string, inst_settings, is_vanadium_run): mode_run_numbers = _get_current_mode_dictionary(run_number_string, inst_settings) # Get empty and vanadium err_message = "this must be under the relevant Rietveld or PDF mode." empty_runs = common.cal_map_dictionary_key_helper(mode_run_numbers, key="empty_run_numbers", append_to_error_message=err_message) vanadium_runs = common.cal_map_dictionary_key_helper(mode_run_numbers, key="vanadium_run_numbers", append_to_error_message=err_message) grouping_file_name = inst_settings.grouping_file_name return create_run_details_object(run_number_string=run_number_string, inst_settings=inst_settings, is_vanadium_run=is_vanadium_run, empty_run_number=empty_runs, vanadium_string=vanadium_runs, grouping_file_name=grouping_file_name) def save_unsplined_vanadium(vanadium_ws, output_path): converted_workspaces = [] if vanadium_ws.id() != "Workspace2D": for ws_index in range(vanadium_ws.getNumberOfEntries()): ws = vanadium_ws.getItem(ws_index) previous_units = ws.getAxis(0).getUnit().unitID() if previous_units != WORKSPACE_UNITS.tof: ws = mantid.ConvertUnits(InputWorkspace=ws, Target=WORKSPACE_UNITS.tof) ws = mantid.RenameWorkspace(InputWorkspace=ws, OutputWorkspace="van_bank_{}".format(ws_index + 1)) converted_workspaces.append(ws) converted_group = mantid.GroupWorkspaces(",".join(ws.name() for ws in converted_workspaces)) mantid.SaveNexus(InputWorkspace=converted_group, Filename=output_path, Append=False) mantid.DeleteWorkspace(converted_group) else: mantid.SaveNexus(InputWorkspace=vanadium_ws, Filename=output_path, Append=False) def generate_ts_pdf(run_number, focus_file_path, merge_banks=False, q_lims=None, cal_file_name=None, sample_details=None): focused_ws = _obtain_focused_run(run_number, focus_file_path) if merge_banks: pdf_output = _generate_grouped_ts_pdf(run_number, focused_ws, q_lims, cal_file_name, sample_details) else: focused_ws = mantid.ConvertUnits(InputWorkspace=focused_ws.name(), Target="MomentumTransfer") pdf_output = mantid.PDFFourierTransform(Inputworkspace=focused_ws, InputSofQType="S(Q)", PDFType="G(r)", Filter=True) pdf_output = mantid.RebinToWorkspace(WorkspaceToRebin=pdf_output, WorkspaceToMatch=pdf_output[4], PreserveEvents=True) common.remove_intermediate_workspace('focused_ws') return pdf_output def _obtain_focused_run(run_number, focus_file_path): """ Searches for the focused workspace to use (based on user specified run number) in the ADS and then the output directory. If unsuccessful, a ValueError exception is thrown. :param run_number: The run number to search for. :param focus_file_path: The expected file path for the focused file. :return: The focused workspace. """ # Try the ADS first to avoid undesired loading if mantid.mtd.doesExist('%s-Results-TOF-Grp' % run_number): focused_ws = mantid.mtd['%s-Results-TOF-Grp' % run_number] elif mantid.mtd.doesExist('%s-Results-D-Grp' % run_number): focused_ws = mantid.mtd['%s-Results-D-Grp' % run_number] else: # Check output directory print('No loaded focused files found. Searching in output directory...') try: focused_ws = mantid.LoadNexus(Filename=focus_file_path, OutputWorkspace='focused_ws').OutputWorkspace except ValueError: raise ValueError("Could not find focused file for run number:%s\n" "Please ensure a focused file has been produced and is located in the output directory." % run_number) return focused_ws def _generate_grouped_ts_pdf(run_number, focused_ws, q_lims, cal_file_name, sample_details): focused_ws = mantid.ConvertUnits(InputWorkspace=focused_ws, Target="MomentumTransfer", EMode='Elastic') min_x = np.inf max_x = -np.inf num_x = -np.inf for ws in focused_ws: x_data = ws.dataX(0) min_x = min(np.min(x_data), min_x) max_x = max(np.max(x_data), max_x) num_x = max(x_data.size, num_x) width_x = (max_x-min_x)/num_x binning = [min_x, width_x, max_x] focused_ws = mantid.Rebin(InputWorkspace=focused_ws, Params=binning) focused_data_combined = mantid.ConjoinSpectra(InputWorkspaces=focused_ws) mantid.ConvertFromDistribution(Workspace=focused_data_combined) raw_ws = mantid.LoadRaw(Filename='POL'+str(run_number)) mantid.SetSample(InputWorkspace=raw_ws, Geometry=common.generate_sample_geometry(sample_details), Material=common.generate_sample_material(sample_details)) monitor = mantid.ExtractSpectra(InputWorkspace=raw_ws, WorkspaceIndexList=[11]) monitor = mantid.ConvertUnits(InputWorkspace=monitor, Target="Wavelength") x_data = monitor.dataX(0) min_x = np.min(x_data) max_x = np.max(x_data) width_x = (max_x-min_x)/x_data.size fit_spectra = mantid.FitIncidentSpectrum(InputWorkspace=monitor, BinningForCalc=[min_x, 1*width_x, max_x], BinningForFit=[min_x, 10*width_x, max_x], FitSpectrumWith="CubicSpline") placzek = mantid.CalculatePlaczekSelfScattering(InputWorkspace=raw_ws, IncidentSpecta=fit_spectra) cal_workspace = mantid.LoadCalFile(InputWorkspace=placzek, CalFileName=cal_file_name, Workspacename='cal_workspace', MakeOffsetsWorkspace=False, MakeMaskWorkspace=False) placzek = mantid.DiffractionFocussing(InputWorkspace=placzek, GroupingFilename=cal_file_name) n_pixel = np.zeros(placzek.getNumberHistograms()) for i in range(cal_workspace.getNumberHistograms()): grouping = cal_workspace.dataY(i) if grouping[0] > 0: n_pixel[int(grouping[0]-1)] += 1 correction_ws = mantid.CreateWorkspace(DataY=n_pixel, DataX=[0, 1], NSpec=placzek.getNumberHistograms()) placzek = mantid.Divide(LHSWorkspace=placzek, RHSWorkspace=correction_ws) mantid.ConvertToDistribution(Workspace=placzek) placzek = mantid.ConvertUnits(InputWorkspace=placzek, Target="MomentumTransfer", EMode='Elastic') placzek = mantid.RebinToWorkspace(WorkspaceToRebin=placzek, WorkspaceToMatch=focused_data_combined) mantid.ConvertFromDistribution(Workspace=placzek) mantid.Subtract(LHSWorkspace=focused_data_combined, RHSWorkspace=placzek, OutputWorkspace=focused_data_combined) if type(q_lims) == str: q_min = [] q_max = [] try: with open(q_lims, 'r') as f: line_list = [line.rstrip('\n') for line in f] for line in line_list[:-1]: value_list = line.split() q_min.append(value_list[2]) q_max.append(value_list[3]) except IOError: raise RuntimeError("q_lims is not valid") elif type(q_lims) == list or type(q_lims) == np.ndarray: q_min = q_lims[0, :] q_max = q_lims[1, :] else: raise RuntimeError("q_lims is not valid") bin_width = np.inf for i in range(q_min.size): pdf_x_array = focused_data_combined.readX(i) q_min[i] = pdf_x_array[np.amin(np.where(pdf_x_array >= q_min[i]))] q_max[i] = pdf_x_array[np.amax(np.where(pdf_x_array <= q_max[i]))] bin_width = min(pdf_x_array[1] - pdf_x_array[0], bin_width) mantid.MatchSpectra(InputWorkspace=focused_data_combined, OutputWorkspace=focused_data_combined, ReferenceSpectrum=1) focused_data_combined = mantid.CropWorkspaceRagged(InputWorkspace=focused_data_combined, XMin=q_min, XMax=q_max) focused_data_combined = mantid.Rebin(InputWorkspace=focused_data_combined, Params=[min(q_min), bin_width, max(q_max)]) focused_data_combined = mantid.SumSpectra(InputWorkspace=focused_data_combined, WeightedSum=True, MultiplyBySpectra=False) pdf_output = mantid.PDFFourierTransform(Inputworkspace=focused_data_combined, InputSofQType="S(Q)", PDFType="G(r)", Filter=True) common.remove_intermediate_workspace(fit_spectra) common.remove_intermediate_workspace(monitor) return pdf_output def _determine_chopper_mode(ws): if ws.getRun().hasProperty('Frequency'): frequency = ws.getRun()['Frequency'].lastValue() print("No chopper mode provided") if frequency == 50: print("automatically chose Rietveld") return 'Rietveld', polaris_advanced_config.rietveld_focused_cropping_values if frequency == 0: print("automatically chose PDF") return 'PDF', polaris_advanced_config.pdf_focused_cropping_values else: raise ValueError("Chopper frequency not in log data. Please specify a chopper mode")