/*WIKI* Separates background from signal for spectra of a workspace. *WIKI*/ #include "MantidAlgorithms/SeparateBackgroundFromSignal.h" #include "MantidAPI/WorkspaceProperty.h" #include "MantidAPI/MatrixWorkspace.h" #include "MantidAPI/WorkspaceFactory.h" #include "MantidKernel/ArrayProperty.h" #include "MantidKernel/Statistics.h" #include "MantidDataObjects/Workspace2D.h" #include <sstream> using namespace Mantid; using namespace Mantid::API; using namespace Mantid::Kernel; using namespace Mantid::DataObjects; using namespace std; namespace Mantid { namespace Algorithms { DECLARE_ALGORITHM(SeparateBackgroundFromSignal) //---------------------------------------------------------------------------------------------- /** Constructor */ SeparateBackgroundFromSignal::SeparateBackgroundFromSignal() { } //---------------------------------------------------------------------------------------------- /** Destructor */ SeparateBackgroundFromSignal::~SeparateBackgroundFromSignal() { } //---------------------------------------------------------------------------------------------- /** WIKI: */ void SeparateBackgroundFromSignal::initDocs() { setWikiSummary("Separates background from signal for spectra of a workspace."); setOptionalMessage("Separates background from signal for spectra of a workspace."); } //---------------------------------------------------------------------------------------------- /** Define properties */ void SeparateBackgroundFromSignal::init() { auto inwsprop = new WorkspaceProperty<MatrixWorkspace>("InputWorkspace", "Anonymous", Direction::Input); declareProperty(inwsprop, "Name of input MatrixWorkspace to have Z-score calculated."); auto outwsprop = new WorkspaceProperty<Workspace2D>("OutputWorkspace", "", Direction::Output); declareProperty(outwsprop, "Name of the output Workspace2D containing the Z-scores."); declareProperty("WorkspaceIndex", EMPTY_INT(), "Index of the spectrum to have Z-score calculated. " "Default is to calculate for all spectra."); } //---------------------------------------------------------------------------------------------- /** Execute body */ void SeparateBackgroundFromSignal::exec() { // 1. Get input and validate MatrixWorkspace_const_sptr inpWS = getProperty("InputWorkspace"); int inpwsindex = getProperty("WorkspaceIndex"); bool separateall = false; if (inpwsindex == EMPTY_INT()) { separateall = true; } // 2. Generate output size_t numspec; if (separateall) { numspec = inpWS->getNumberHistograms(); } else { numspec = 1; } size_t sizex = inpWS->readX(0).size(); size_t sizey = inpWS->readY(0).size(); Workspace2D_sptr outWS = boost::dynamic_pointer_cast<Workspace2D>(WorkspaceFactory::Instance().create( "Workspace2D", numspec, sizex, sizey)); // 3. Get Z values for (size_t i = 0; i < numspec; ++i) { // a) figure out wsindex size_t wsindex; if (separateall) { // Update wsindex to index in input workspace wsindex = i; } else { // Use the wsindex as the input wsindex = static_cast<size_t>(inpwsindex); if (wsindex >= inpWS->getNumberHistograms()) { stringstream errmsg; errmsg << "Input workspace index " << inpwsindex << " is out of input workspace range = " << inpWS->getNumberHistograms() << endl; } } // Find background const MantidVec& inpX = inpWS->readX(wsindex); const MantidVec& inpY = inpWS->readY(wsindex); const MantidVec& inpE = inpWS->readE(wsindex); MantidVec& vecX = outWS->dataX(i); MantidVec& vecY = outWS->dataY(i); MantidVec& vecE = outWS->dataE(i); double Ymean, Yvariance, Ysigma; MantidVec maskedY = inpWS->readY(wsindex); size_t n = maskedY.size(); MantidVec mask(n,0.0); double xn = static_cast<double>(n); double k = 1.0; do { Statistics stats = getStatistics(maskedY); Ymean = stats.mean; Yvariance = stats.standard_deviation * stats.standard_deviation; Ysigma = std::sqrt((moment(maskedY,n,Ymean,4)-(xn-3.0)/(xn-1.0) * moment(maskedY,n,Ymean,2))/xn); MantidVec::const_iterator it = std::max_element(maskedY.begin(), maskedY.end()); const size_t pos = it - maskedY.begin(); maskedY[pos] = 0; mask[pos] = 1.0; } while (std::abs(Ymean-Yvariance) > k * Ysigma); if(n > 5) { // remove single outliers if (mask[1] == mask[2] && mask[2] == mask[3]) mask[0] = mask[1]; if (mask[0] == mask[2] && mask[2] == mask[3]) mask[1] = mask[2]; for (size_t l = 2; l < n-3; ++l) { if (mask[l-1] == mask[l+1] && (mask[l-1] == mask[l-2] || mask[l+1] == mask[l+2])) { mask[l] = mask[l+1]; } } if (mask[n-2] == mask[n-3] && mask[n-3] == mask[n-4]) mask[n-1] = mask[n-2]; if (mask[n-1] == mask[n-3] && mask[n-3] == mask[n-4]) mask[n-2] = mask[n-1]; // mask regions not connected to largest region // for loop can start > 1 for multiple peaks vector<cont_peak> peaks; for (size_t l = 1; l < n; ++l) { if (mask[l] != mask[l-1] && mask[l] == 1) { peaks.push_back(cont_peak()); peaks[peaks.size()-1].start = l; } if (peaks.size() > 0) { size_t ipeak = peaks.size()-1; if (mask[l] != mask[l-1] && mask[l] == 0) { peaks[ipeak].stop = l-1; } if (inpY[l] > peaks[ipeak].maxY) peaks[ipeak].maxY = inpY[l]; } } if(peaks.size()> 0) { if(peaks[peaks.size()-1].stop == 0) peaks[peaks.size()-1].stop = n-1; std::sort(peaks.begin(), peaks.end(), by_len()); for (size_t l = 1; l < peaks.size(); ++l) { for (size_t j = peaks[l].start; j <= peaks[l].stop; ++j) { mask[j] = 0; } } } } // save output of mask * Y vecX = inpX; std::transform(mask.begin(), mask.end(), inpY.begin(), vecY.begin(), std::multiplies<double>()); std::transform(mask.begin(), mask.end(), inpE.begin(), vecE.begin(), std::multiplies<double>()); } // ENDFOR // 4. Set the output setProperty("OutputWorkspace", outWS); return; } double SeparateBackgroundFromSignal::moment(MantidVec& X, size_t n, double mean, int k) { double sum=0.0; for (size_t i = 0; i < n; ++i) { sum += std::pow(X[i]-mean, k); } sum /= static_cast<double>(n); return sum; } } // namespace Algorithms } // namespace Mantid