#include "MantidAlgorithms/ConvertUnitsUsingDetectorTable.h" #include "MantidDataObjects/EventWorkspace.h" #include "MantidDataObjects/TableWorkspace.h" #include "MantidAPI/ISpectrum.h" #include "MantidAPI/HistogramValidator.h" #include "MantidAPI/SpectrumInfo.h" #include "MantidAPI/WorkspaceUnitValidator.h" #include "MantidGeometry/IDetector.h" #include "MantidKernel/CompositeValidator.h" #include "MantidKernel/ListValidator.h" #include "MantidKernel/Unit.h" #include "MantidKernel/UnitFactory.h" #include <boost/bind.hpp> #include <boost/function.hpp> #include <algorithm> #include <numeric> #include <cfloat> namespace Mantid { namespace Algorithms { using Mantid::Kernel::Direction; using Mantid::API::WorkspaceProperty; using namespace Kernel; using namespace API; using namespace DataObjects; using namespace HistogramData; // Register the algorithm into the AlgorithmFactory DECLARE_ALGORITHM(ConvertUnitsUsingDetectorTable) /// Algorithms name for identification. @see Algorithm::name const std::string ConvertUnitsUsingDetectorTable::name() const { return "ConvertUnitsUsingDetectorTable"; } /// Algorithm's version for identification. @see Algorithm::version int ConvertUnitsUsingDetectorTable::version() const { return 1; } /// Algorithm's category for identification. @see Algorithm::category const std::string ConvertUnitsUsingDetectorTable::category() const { return "Utility\\Development"; } /// Algorithm's summary for use in the GUI and help. @see Algorithm::summary const std::string ConvertUnitsUsingDetectorTable::summary() const { return "Performs a unit change on the X values of a workspace"; } /** Initialize the algorithm's properties. */ void ConvertUnitsUsingDetectorTable::init() { auto wsValidator = boost::make_shared<CompositeValidator>(); wsValidator->add<API::WorkspaceUnitValidator>(); wsValidator->add<API::HistogramValidator>(); declareProperty(make_unique<WorkspaceProperty<API::MatrixWorkspace>>( "InputWorkspace", "", Direction::Input, wsValidator), "Name of the input workspace"); declareProperty(make_unique<WorkspaceProperty<API::MatrixWorkspace>>( "OutputWorkspace", "", Direction::Output), "Name of the output workspace, can be the same as the input"); declareProperty("Target", "", boost::make_shared<StringListValidator>( UnitFactory::Instance().getKeys()), "The name of the units to convert to (must be one of those " "registered in\n" "the Unit Factory)"); declareProperty( make_unique<WorkspaceProperty<TableWorkspace>>( "DetectorParameters", "", Direction::Input, PropertyMode::Optional), "Name of a TableWorkspace containing the detector parameters " "to use instead of the IDF."); declareProperty("AlignBins", false, "If true (default is false), rebins after conversion to " "ensure that all spectra in the output workspace\n" "have identical bin boundaries. This option is not " "recommended (see " "http://www.mantidproject.org/ConvertUnits)."); declareProperty( "ConvertFromPointData", true, "When checked, if the Input Workspace contains Points\n" "the algorithm ConvertToHistogram will be run to convert\n" "the Points to Bins. The Output Workspace will contains Bins."); } /** This implementation does NOT stores the emode in the provided workspace * @param outputWS The workspace */ void ConvertUnitsUsingDetectorTable::storeEModeOnWorkspace( API::MatrixWorkspace_sptr outputWS) { // do nothing here - don't store this value UNUSED_ARG(outputWS); } /** Convert the workspace units using TOF as an intermediate step in the * conversion * @param fromUnit :: The unit of the input workspace * @param inputWS :: The input workspace * @returns A shared pointer to the output workspace */ MatrixWorkspace_sptr ConvertUnitsUsingDetectorTable::convertViaTOF( Kernel::Unit_const_sptr fromUnit, API::MatrixWorkspace_const_sptr inputWS) { using namespace Geometry; // Let's see if we are using a TableWorkspace to override parameters TableWorkspace_sptr paramWS = getProperty("DetectorParameters"); // See if we have supplied a DetectorParameters Workspace // TODO: Check if paramWS is NULL and if so throw an exception // const std::string l1ColumnLabel("l1"); // Let's check all the columns exist and are readable try { auto spectraColumnTmp = paramWS->getColumn("spectra"); auto l1ColumnTmp = paramWS->getColumn("l1"); auto l2ColumnTmp = paramWS->getColumn("l2"); auto twoThetaColumnTmp = paramWS->getColumn("twotheta"); auto efixedColumnTmp = paramWS->getColumn("efixed"); auto emodeColumnTmp = paramWS->getColumn("emode"); } catch (...) { throw Exception::InstrumentDefinitionError( "DetectorParameter TableWorkspace is not defined correctly."); } // Now let's take a reference to the vectors. const auto &l1Column = paramWS->getColVector<double>("l1"); const auto &l2Column = paramWS->getColVector<double>("l2"); const auto &twoThetaColumn = paramWS->getColVector<double>("twotheta"); const auto &efixedColumn = paramWS->getColVector<double>("efixed"); const auto &emodeColumn = paramWS->getColVector<int>("emode"); const auto &spectraColumn = paramWS->getColVector<int>("spectra"); Progress prog(this, 0.2, 1.0, m_numberOfSpectra); int64_t numberOfSpectra_i = static_cast<int64_t>(m_numberOfSpectra); // cast to make openmp happy // Get the unit object for each workspace Kernel::Unit_const_sptr outputUnit = m_outputUnit; std::vector<double> emptyVec; int failedDetectorCount = 0; // Perform Sanity Validation before creating workspace size_t checkIndex = 0; int checkSpecNo = inputWS->getSpectrum(checkIndex).getSpectrumNo(); auto checkSpecIter = std::find(spectraColumn.begin(), spectraColumn.end(), checkSpecNo); if (checkSpecIter != spectraColumn.end()) { size_t detectorRow = std::distance(spectraColumn.begin(), checkSpecIter); // copy the X values for the check auto checkXValues = inputWS->readX(checkIndex); // Convert the input unit to time-of-flight auto checkFromUnit = std::unique_ptr<Unit>(fromUnit->clone()); auto checkOutputUnit = std::unique_ptr<Unit>(outputUnit->clone()); double checkdelta = 0; checkFromUnit->toTOF(checkXValues, emptyVec, l1Column[detectorRow], l2Column[detectorRow], twoThetaColumn[detectorRow], emodeColumn[detectorRow], efixedColumn[detectorRow], checkdelta); // Convert from time-of-flight to the desired unit checkOutputUnit->fromTOF(checkXValues, emptyVec, l1Column[detectorRow], l2Column[detectorRow], twoThetaColumn[detectorRow], emodeColumn[detectorRow], efixedColumn[detectorRow], checkdelta); } // create the output workspace MatrixWorkspace_sptr outputWS = this->setupOutputWorkspace(inputWS); EventWorkspace_sptr eventWS = boost::dynamic_pointer_cast<EventWorkspace>(outputWS); assert(static_cast<bool>(eventWS) == m_inputEvents); // Sanity check auto &spectrumInfo = outputWS->mutableSpectrumInfo(); // Loop over the histograms (detector spectra) for (int64_t i = 0; i < numberOfSpectra_i; ++i) { // Lets find what row this spectrum Number appears in our detector table. std::size_t wsid = i; if (spectrumInfo.hasDetectors(i)) { double deg2rad = M_PI / 180.; auto &det = spectrumInfo.detector(i); int specNo = det.getID(); // int spectraNumber = static_cast<int>(spectraColumn->toDouble(i)); // wsid = outputWS->getIndexFromSpectrumNumber(spectraNumber); g_log.debug() << "###### Spectra #" << specNo << " ==> Workspace ID:" << wsid << '\n'; // Now we need to find the row that contains this spectrum std::vector<int>::const_iterator specIter; specIter = std::find(spectraColumn.begin(), spectraColumn.end(), specNo); if (specIter != spectraColumn.end()) { const size_t detectorRow = std::distance(spectraColumn.begin(), specIter); const double l1 = l1Column[detectorRow]; const double l2 = l2Column[detectorRow]; const double twoTheta = twoThetaColumn[detectorRow] * deg2rad; const double efixed = efixedColumn[detectorRow]; const int emode = emodeColumn[detectorRow]; if (g_log.is(Logger::Priority::PRIO_DEBUG)) { g_log.debug() << "specNo from detector table = " << spectraColumn[detectorRow] << '\n'; g_log.debug() << "###### Spectra #" << specNo << " ==> Det Table Row:" << detectorRow << '\n'; g_log.debug() << "\tL1=" << l1 << ",L2=" << l2 << ",TT=" << twoTheta << ",EF=" << efixed << ",EM=" << emode << '\n'; } // Make local copies of the units. This allows running the loop in // parallel auto localFromUnit = std::unique_ptr<Unit>(fromUnit->clone()); auto localOutputUnit = std::unique_ptr<Unit>(outputUnit->clone()); /// @todo Don't yet consider hold-off (delta) const double delta = 0.0; std::vector<double> values(outputWS->x(wsid).begin(), outputWS->x(wsid).end()); // Convert the input unit to time-of-flight localFromUnit->toTOF(values, emptyVec, l1, l2, twoTheta, emode, efixed, delta); // Convert from time-of-flight to the desired unit localOutputUnit->fromTOF(values, emptyVec, l1, l2, twoTheta, emode, efixed, delta); outputWS->mutableX(wsid) = std::move(values); // EventWorkspace part, modifying the EventLists. if (m_inputEvents) { eventWS->getSpectrum(wsid) .convertUnitsViaTof(localFromUnit.get(), localOutputUnit.get()); } } else { // Not found failedDetectorCount++; outputWS->getSpectrum(wsid).clearData(); if (spectrumInfo.hasDetectors(wsid)) spectrumInfo.setMasked(wsid, true); } } else { // Get to here if exception thrown when calculating distance to detector failedDetectorCount++; // Since you usually (always?) get to here when there's no attached // detectors, this call is // the same as just zeroing out the data (calling clearData on the // spectrum) outputWS->getSpectrum(i).clearData(); } prog.report("Convert to " + m_outputUnit->unitID()); } // loop over spectra if (failedDetectorCount != 0) { g_log.information() << "Something went wrong for " << failedDetectorCount << " spectra. Masking spectrum.\n"; } if (m_inputEvents) eventWS->clearMRU(); return outputWS; } } // namespace Algorithms } // namespace Mantid