diff --git a/Framework/PythonInterface/mantid/api/src/Exports/ADSValidator.cpp b/Framework/PythonInterface/mantid/api/src/Exports/ADSValidator.cpp
index 21ff2b4bfc6a0b5c6c1538de3e1eeeae7eb707d4..07d4ae5cae4eb71ff9dc324ec38b06eea737c18d 100644
--- a/Framework/PythonInterface/mantid/api/src/Exports/ADSValidator.cpp
+++ b/Framework/PythonInterface/mantid/api/src/Exports/ADSValidator.cpp
@@ -16,9 +16,10 @@ using namespace boost::python;
 
 /// This is the base TypedValidator for most of the WorkspaceValidators
 void export_ADSValidator() {
-  TypedValidatorExporter<std::string>::define("StringTypedValidator");
+  TypedValidatorExporter<std::vector<std::string>>
+      ::define("StringTypedValidator");
 
-  class_<ADSValidator, bases<TypedValidator<std::string>>, boost::noncopyable>(
+  class_<ADSValidator, bases<TypedValidator<std::vector<std::string>>>, boost::noncopyable>(
       "ADSValidator", init<>("Default constructor"))
       .def(init<const bool, const bool>(
           "Constructor setting allowMultiple and isOptional.",
diff --git a/Framework/PythonInterface/plugins/algorithms/WorkflowAlgorithms/MergeWorkspacesWithLimits.py b/Framework/PythonInterface/plugins/algorithms/WorkflowAlgorithms/MergeWorkspacesWithLimits.py
index 80a20411a7eb4e336ccb5ffa5b1ce0924c9f8ce1..eacd90f3955b25ca258983f166b1186f9a5186cc 100644
--- a/Framework/PythonInterface/plugins/algorithms/WorkflowAlgorithms/MergeWorkspacesWithLimits.py
+++ b/Framework/PythonInterface/plugins/algorithms/WorkflowAlgorithms/MergeWorkspacesWithLimits.py
@@ -6,9 +6,12 @@
 # SPDX - License - Identifier: GPL - 3.0 +
 from __future__ import (absolute_import, division, print_function)
 
-from mantid.simpleapi import (ConjoinWorkspaces, CropWorkspaceRagged, DeleteWorkspace, MatchSpectra, Rebin, SumSpectra)
-from mantid.api import (DataProcessorAlgorithm, AlgorithmFactory, WorkspaceProperty, WorkspaceGroupProperty)
-from mantid.kernel import (Direction, FloatArrayProperty)
+from mantid.simpleapi import (AnalysisDataService, CloneWorkspace, ConjoinWorkspaces, CropWorkspaceRagged,
+                              DeleteWorkspace, GroupWorkspaces, MatchSpectra, Rebin, SumSpectra)
+from mantid.api import (AlgorithmFactory, DataProcessorAlgorithm, WorkspaceProperty, WorkspaceGroup,
+                        WorkspaceGroupProperty, ADSValidator)
+from mantid.dataobjects import Workspace2D
+from mantid.kernel import (Direction, FloatArrayProperty, StringArrayProperty)
 import numpy as np
 
 
@@ -36,66 +39,109 @@ class MergeWorkspacesWithLimits(DataProcessorAlgorithm):
         # given workspaces must exist
         # and must be public of ExperimentInfo
         issues = dict()
-        ws_group = self.getProperty('InputWorkspaces').value
+        ws_list = self.getProperty('InputWorkspaces').value
+        if not self.validate_ws(ws_list):
+            issues['InputWorkspaces'] = 'InputWorkspaces is not a list of workspaces or group workspace'
+        spectra_count = 0
+        for name_in_list in ws_list:
+            ws_in_list = AnalysisDataService.retrieve(name_in_list)
+            if type(ws_in_list) == Workspace2D:
+                spectra_count += ws_in_list.getNumberHistograms()
+            if type(ws_in_list) == WorkspaceGroup:
+                for ws_in_group in ws_in_list:
+                    spectra_count += ws_in_group.getNumberHistograms()
+
         x_min = self.getProperty('XMin').value
+        if not x_min.size == spectra_count:
+            issues['XMin'] = 'XMin entries does not match size of workspace group'
+
         x_max = self.getProperty('XMax').value
-        if not x_min.size == ws_group.size():
-            issues['x_min'] = 'x_min entries does not match size of workspace group'
-        if not x_max.size == ws_group.size():
-            issues['x_max'] = 'x_max entries does not match size of workspace group'
+        if not x_max.size == spectra_count:
+            issues['XMax'] = 'XMax entries does not match size of workspace group'
+
         return issues
 
+    @staticmethod
+    def validate_ws(ws_in):
+        for ws in ws_in:
+            try:
+                AnalysisDataService.retrieve(ws)
+            except KeyError:
+                return False
+        return True
+
     def PyInit(self):
-        self.declareProperty(WorkspaceGroupProperty('InputWorkspaces', '', direction=Direction.Input),
-                             doc='The group workspace containing workspaces to be merged.')
+        self.declareProperty(StringArrayProperty('InputWorkspaces', direction=Direction.Input, validator=ADSValidator()),
+                             doc='List of workspaces or group workspace containing workspaces to be merged.')
         self.declareProperty(WorkspaceProperty('OutputWorkspace', '', direction=Direction.Output),
-                             doc='The merged workspace')
-        self.declareProperty(FloatArrayProperty('XMin', [],),
-                             doc='Array of minimum X values for each workspace')
-        self.declareProperty(FloatArrayProperty('XMax', [],),
-                             doc='Array of maximum X values for each workspace')
+                             doc='The merged workspace.')
+        self.declareProperty(FloatArrayProperty('XMin', [], direction=Direction.Input),
+                             doc='Array of minimum X values for each workspace.')
+        self.declareProperty(FloatArrayProperty('XMax', [], direction=Direction.Input),
+                             doc='Array of maximum X values for each workspace.')
+        self.declareProperty('CalculateScale', True,
+                             doc='Calculate scale factor when matching spectra.')
+        self.declareProperty('CalculateOffset', True,
+                             doc='Calculate vertical shift when matching spectra.')
 
     def PyExec(self):
-        ws_group = self.getProperty('InputWorkspaces').value
+        ws_list = self.getProperty('InputWorkspaces').value
         x_min = self.getProperty('XMin').value
         x_max = self.getProperty('XMax').value
-        largest_range_spectrum, rebin_param = self.get_common_bin_range_and_largest_spectra(ws_group)
-        ws_group = Rebin(InputWorkspace=ws_group,
-                         Params=rebin_param,
-                         StoreInADS=False)
-        while ws_group.size() > 1:
-            ConjoinWorkspaces(InputWorkspace1=ws_group[0],
-                              InputWorkspace2=ws_group[1],
+        scale_bool = self.getProperty('CalculateScale').value
+        offset_bool = self.getProperty('CalculateOffset').value
+        flattened_list = self.unwrap_groups(ws_list)
+        largest_range_spectrum, rebin_param = self.get_common_bin_range_and_largest_spectra(flattened_list)
+        CloneWorkspace(InputWorkspace=flattened_list[0], OutputWorkspace='ws_conjoined')
+        Rebin(InputWorkspace='ws_conjoined', OutputWorkspace='ws_conjoined', Params=rebin_param)
+        for ws in flattened_list[1:]:
+            temp = CloneWorkspace(InputWorkspace=ws)
+            temp = Rebin(InputWorkspace=temp, Params=rebin_param)
+            ConjoinWorkspaces(InputWorkspace1='ws_conjoined',
+                              InputWorkspace2=temp,
                               CheckOverlapping=False)
-
-        ws_conjoined, offset, scale, chisq = MatchSpectra(InputWorkspace=ws_group[0],
-                                                          ReferenceSpectrum=largest_range_spectrum,
-                                                          CalculateScale=False)
+        ws_conjoined = AnalysisDataService.retrieve('ws_conjoined')
+        ref_spec = ws_conjoined.getSpectrum(largest_range_spectrum).getSpectrumNo()
+        ws_conjoined, offset, scale, chisq = MatchSpectra(InputWorkspace=ws_conjoined,
+                                                          ReferenceSpectrum=ref_spec,
+                                                          CalculateScale=scale_bool,
+                                                          CalculateOffset=offset_bool)
         x_min, x_max, bin_width = self.fit_x_lims_to_match_histogram_bins(ws_conjoined, x_min, x_max)
 
         ws_conjoined = CropWorkspaceRagged(InputWorkspace=ws_conjoined, XMin=x_min, XMax=x_max)
         ws_conjoined = Rebin(InputWorkspace=ws_conjoined, Params=[min(x_min), bin_width, max(x_max)])
         merged_ws = SumSpectra(InputWorkspace=ws_conjoined, WeightedSum=True, MultiplyBySpectra=False, StoreInADS=False)
-        DeleteWorkspace(ws_group)
         DeleteWorkspace(ws_conjoined)
         self.setProperty('OutputWorkspace', merged_ws)
 
+    def unwrap_groups(self, inputs):
+        output = []
+        for name_in_list in inputs:
+            ws_in_list = AnalysisDataService.retrieve(name_in_list)
+            if type(ws_in_list) == Workspace2D:
+                output.append(ws_in_list)
+            if type(ws_in_list) == WorkspaceGroup:
+                for ws_in_group in ws_in_list:
+                    output.append(ws_in_group)
+        return output
+
     @staticmethod
-    def get_common_bin_range_and_largest_spectra(ws_group):
+    def get_common_bin_range_and_largest_spectra(ws_list):
         x_min = np.inf
         x_max = -np.inf
         x_num = -np.inf
         ws_max_range = 0
         largest_range_spectrum = 0
-        for i in range(ws_group.size()):
-            x_data = ws_group[i].dataX(0)
-            x_min = min(np.min(x_data), x_min)
-            x_max = max(np.max(x_data), x_max)
-            x_num = max(x_data.size, x_num)
-            ws_range = np.max(x_data) - np.min(x_data)
-            if ws_range > ws_max_range:
-                largest_range_spectrum = i + 1
-                ws_max_range = ws_range
+        for i in range(len(ws_list)):
+            for j in range(ws_list[i].getNumberHistograms()):
+                x_data = ws_list[i].dataX(j)
+                x_min = min(np.min(x_data), x_min)
+                x_max = max(np.max(x_data), x_max)
+                x_num = max(x_data.size, x_num)
+                ws_range = np.max(x_data) - np.min(x_data)
+                if ws_range > ws_max_range:
+                    largest_range_spectrum = i
+                    ws_max_range = ws_range
         if x_min.any() == -np.inf or x_min.any() == np.inf:
             raise AttributeError("Workspace x range contains an infinite value.")
         return largest_range_spectrum, [x_min, (x_max - x_min) / x_num, x_max]
diff --git a/scripts/Diffraction/isis_powder/polaris_routines/polaris_algs.py b/scripts/Diffraction/isis_powder/polaris_routines/polaris_algs.py
index a5588fb11b516f3810075b1d3f206576eeb7bb4d..6fa87c21b96ce1ebb1118d31f8a81e3e9e5e0e3e 100644
--- a/scripts/Diffraction/isis_powder/polaris_routines/polaris_algs.py
+++ b/scripts/Diffraction/isis_powder/polaris_routines/polaris_algs.py
@@ -105,7 +105,8 @@ def generate_ts_pdf(run_number, focus_file_path, merge_banks=False, q_lims=None,
 
     if merge_banks:
         q_min, q_max = _load_qlims(q_lims)
-        merged_ws = mantid.MergeWorkspacesWithLimits(InputWorkspaces=focused_ws, XMin=q_min, XMax=q_max)
+        merged_ws = mantid.MergeWorkspacesWithLimits(InputWorkspaces=focused_ws, XMin=q_min, XMax=q_max,
+                                                     CalculateScale=False)
         pdf_output = mantid.PDFFourierTransform(Inputworkspace=merged_ws, InputSofQType="S(Q)-1", PDFType="G(r)",
                                                 Filter=True)
     else: