Commit f243bf9f by Dominik Arominski

### Replaced embedding symbols in text{} command with symbol return

 ... ... @@ -116,7 +116,9 @@ The sample data normalisation is the final step of data reduction of D7 sample, There are three options for the normalisation; it uses either the input from a reference sample with a well-known cross-section, namely vanadium, or the output from the cross-section separation, either magnetic or spin-incoherent cross-sections. A relative normalisation of the sample workspace to the detector with the highest counts is always performed. .. math:: S \text{(#,} \pm \text{, chn/t/meV)} = I \text{(#,} \pm \text{, chn/t/meV)} \cdot D \text{(#,} \pm \text{, chn/t/meV)}, .. math:: S (\#, \pm \text{, chn/t/meV)} = I (\#, \pm \text{, chn/t/meV)} \cdot D (\#, \pm \text{, chn/t/meV)}, where I is the sample intensity distribution corrected for all effects, and D is the normalisation factor. ... ... @@ -124,17 +126,17 @@ where I is the sample intensity distribution corrected for all effects, and D If the data is to be expressed in absolute units, the normalisation factor is the reduced vanadium data, normalised by the number of formula units in the sample :math:N_{S}: .. math:: D \text{(#,} \pm \text{, chn/t/meV)} = \frac{1}{N_{S}} \cdot V \text{(#,} \pm \text{, chn/t/meV)} .. math:: D (\#, \pm \text{, chn/t/meV)} = \frac{1}{N_{S}} \cdot V (\#, \pm \text{, chn/t/meV)} If data is not to be expressed in absolute units, the normalisation factor depends only on the vanadium input: .. math:: D \text{(#,} \pm \text{, chn/t/meV)} = \frac{V \text{(#,} \pm \text{, chn/t/meV)}}{\text{max}(V \text{(#,} \pm \text{, chn/t/meV)})} .. math:: D (\#, \pm \text{, chn/t/meV)} = \frac{V (\#, \pm \text{, chn/t/meV)}}{\text{max}(V (\#, \pm \text{, chn/t/meV)})} 2. Paramagnetic This normalisation is not valid for TOF data, and requires input from XYZ or 10-point cross-section separation. The paramagnetic measurement does not need to have background subtracted, as the background is self-subtracted in an XYZ measurement. .. math:: D \text{(#)} = \frac{2}{3} \frac{(\gamma r_{0})^{2} S(S+1)}{P \text{(#)}}, .. math:: D (\#) = \frac{2}{3} \frac{(\gamma r_{0})^{2} S(S+1)}{P (\#)}, where :math:\gamma is the neutron gyromagnetic ratio, :math:r_{0}` is the electron's classical radius, and S is the spin of the sample. ... ... @@ -144,11 +146,11 @@ Similarly to the paramagnetic normalisation, it is also not valid for TOF data, The data can be put on absolute scale if the nuclear-spin-incoherent (NSI) cross-section for the sample is known, then: .. math:: D \text{(#)} = \frac{\text{d} \sigma_{NSI}}{\text{d} \Omega} \frac{1}{NSI \text{(#)}}. .. math:: D (\#) = \frac{\text{d} \sigma_{NSI}}{\text{d} \Omega} \frac{1}{NSI (\#)}. If only the detector efficiency is to be corrected, then it is sufficient to use only the nuclear-spin-incoherent cross-section input: .. math:: D \text{(#)} = \frac{\text{max}(NSI \text{(#)})}{NSI \text{(#)}}. .. math:: D (\#) = \frac{\text{max}(NSI (\#))}{NSI (\#)}. Usage ... ...