diff --git a/Code/Mantid/Framework/PythonInterface/plugins/algorithms/RefLReduction.py b/Code/Mantid/Framework/PythonInterface/plugins/algorithms/RefLReduction.py index 3f2140113243ab525b14a21b7698dcd43677e575..8123bdf230eda1c0779724dc313c0910cf6b975f 100644 --- a/Code/Mantid/Framework/PythonInterface/plugins/algorithms/RefLReduction.py +++ b/Code/Mantid/Framework/PythonInterface/plugins/algorithms/RefLReduction.py @@ -177,7 +177,10 @@ class RefLReduction(PythonAlgorithm): [dMD, dSD] = wks_utility.getDistances(ws_event_data) # get theta theta = wks_utility.getTheta(ws_event_data, angleOffsetDeg) - + # get proton charge + pc = wks_utility.getProtonCharge(ws_event_data) + error_0 = 1. / pc + # rebin data ws_histo_data = wks_utility.rebinNeXus(ws_event_data, [binTOFrange[0], binTOFsteps, binTOFrange[1]], @@ -194,7 +197,7 @@ class RefLReduction(PythonAlgorithm): TOFrange[0], TOFrange[1], 'data') - + # normalize by current proton charge ws_histo_data = wks_utility.normalizeNeXus(ws_histo_data, 'data') @@ -203,6 +206,12 @@ class RefLReduction(PythonAlgorithm): dataLowResRange, 'data') +# #DEBUG ONLY +# wks_utility.ouput_big_ascii_file('/mnt/hgfs/j35/Matlab/DebugMantid/Strange0ValuesToData/data_file_after_low_resolution_integration.txt', +# data_tof_axis, +# data_y_axis, +# data_y_error_axis) + tof_axis = data_tof_axis[0:-1].copy() tof_axis_full = data_tof_axis.copy() @@ -216,13 +225,23 @@ class RefLReduction(PythonAlgorithm): dataPeakRange, dataBackFlag, dataBackRange, + error_0, 'data') - +# #DEBUG ONLY +# wks_utility.ouput_big_ascii_file('/mnt/hgfs/j35/Matlab/DebugMantid/Strange0ValuesToData/data_file_back_sub_not_integrated.txt', +# data_tof_axis, +# data_y_axis, +# data_y_error_axis) + # work with normalization # load normalization ws_event_norm = wks_utility.loadNeXus(int(normalizationRunNumber), 'normalization') + # get proton charge + pc = wks_utility.getProtonCharge(ws_event_norm) + error_0 = 1. / pc + # rebin normalization ws_histo_norm = wks_utility.rebinNeXus(ws_event_norm, [binTOFrange[0], binTOFsteps, binTOFrange[1]], @@ -249,16 +268,29 @@ class RefLReduction(PythonAlgorithm): normPeakRange, normBackFlag, normBackRange, + error_0, 'normalization') [av_norm, av_norm_error] = wks_utility.fullSumWithError(norm_y_axis, norm_y_error_axis) +# ## DEBUGGING ONLY +# wks_utility.ouput_ascii_file('/mnt/hgfs/j35/Matlab/DebugMantid/Strange0ValuesToData/norm_file_back_sub_not_integrated.txt', +# norm_tof_axis, +# av_norm, +# av_norm_error) + [final_data_y_axis, final_data_y_error_axis] = wks_utility.divideDataByNormalization(data_y_axis, data_y_error_axis, av_norm, av_norm_error) +# #DEBUG ONLY +# wks_utility.ouput_big_ascii_file('/mnt/hgfs/j35/Matlab/DebugMantid/Strange0ValuesToData/data_divided_by_norm_not_integrated.txt', +# data_tof_axis, +# final_data_y_axis, +# final_data_y_error_axis) + # apply Scaling factor [tof_axis_full, y_axis, y_error_axis] = wks_utility.applyScalingFactor(tof_axis_full, final_data_y_axis, @@ -268,6 +300,11 @@ class RefLReduction(PythonAlgorithm): slitsValuePrecision, slitsWidthFlag) +# #DEBUG ONLY +# wks_utility.ouput_big_ascii_file('/mnt/hgfs/j35/Matlab/DebugMantid/Strange0ValuesToData/after_applying_scaling_factor.txt', +# data_tof_axis, +# y_axis, +# y_error_axis) if geometryCorrectionFlag: # convert To Q with correction [q_axis, y_axis, y_error_axis] = wks_utility.convertToQ(tof_axis_full, @@ -294,6 +331,11 @@ class RefLReduction(PythonAlgorithm): first_slit_size = first_slit_size, last_slit_size = last_slit_size) + +# wks_utility.ouput_big_Q_ascii_file('/mnt/hgfs/j35/Matlab/DebugMantid/Strange0ValuesToData/after_conversion_to_q.txt', +# q_axis, +# y_axis, +# y_error_axis) sz = q_axis.shape nbr_pixel = sz[0] diff --git a/Code/Mantid/scripts/reduction/instruments/reflectometer/wks_utility.py b/Code/Mantid/scripts/reduction/instruments/reflectometer/wks_utility.py index d54d9b0d2e7f79eb0630aa125c418a300171683b..f64e2399942d2d5616fc404b1790cc4746ce12f6 100644 --- a/Code/Mantid/scripts/reduction/instruments/reflectometer/wks_utility.py +++ b/Code/Mantid/scripts/reduction/instruments/reflectometer/wks_utility.py @@ -1,4 +1,4 @@ -from numpy import zeros, arctan2, arange, shape, sqrt, fliplr, asfarray, where, mean, sum +from numpy import zeros, ones, arctan2, arange, shape, sqrt, fliplr, asfarray, where, mean, sum from mantid.simpleapi import * # from MantidFramework import * import math @@ -40,8 +40,8 @@ def getProtonCharge(st=None): if st is not None: mt_run = st.getRun() proton_charge_mtd_unit = mt_run.getProperty('gd_prtn_chrg').value - proton_charge = proton_charge_mtd_unit / 2.77777778e-10 - return proton_charge +# proton_charge = proton_charge_mtd_unit / 2.77777778e-10 + return proton_charge_mtd_unit return None def getIndex(value, array): @@ -1048,7 +1048,7 @@ def integrateOverLowResRange(mt1, def substractBackground(tof_axis, y_axis, y_error_axis, peakRange, backFlag, backRange, - type): + error_0, type): """ shape of y_axis : [256, nbr_tof] This routine will calculate the background, remove it from the peak @@ -1072,11 +1072,7 @@ def substractBackground(tof_axis, y_axis, y_error_axis, # retrieve data _tofAxis = tof_axis nbrTof = len(_tofAxis) - - # by default, no space for background subtraction below and above peak - bMinBack = False - bMaxBack = False - + # size peak szPeak = peakMax - peakMin + 1 @@ -1094,19 +1090,22 @@ def substractBackground(tof_axis, y_axis, y_error_axis, for t in range(nbrTof): + # by default, no space for background subtraction below and above peak + bMinBack = False + bMaxBack = False + if backMin < (peakMin): bMinBack = True _backMinArray = y_axis[backMin:peakMin, t] _backMinErrorArray = y_error_axis[backMin:peakMin, t] [_backMin, _backMinError] = weightedMean(_backMinArray, - _backMinErrorArray) + _backMinErrorArray, error_0) if (peakMax) < backMax: bMaxBack = True _backMaxArray = y_axis[peakMax+1:backMax+1, t] - _backMaxErrorArray = y_error_axis[peakMax+1:backMax+1, t] - [_backMax, _backMaxError] = weightedMean(_backMaxArray, _backMaxErrorArray) + [_backMax, _backMaxError] = weightedMean(_backMaxArray, _backMaxErrorArray, error_0) # if no max background use min background if not bMaxBack: @@ -1119,7 +1118,7 @@ def substractBackground(tof_axis, y_axis, y_error_axis, background_error = _backMaxError if bMinBack and bMaxBack: - [background, background_error] = weightedMean([_backMin, _backMax], [_backMinError, _backMaxError]) + [background, background_error] = weightedMean([_backMin, _backMax], [_backMinError, _backMaxError], error_0) # remove background for each pixel of the peak for x in range(szPeak): @@ -1131,32 +1130,35 @@ def substractBackground(tof_axis, y_axis, y_error_axis, return [final_y_axis, final_y_error_axis] -def weightedMean(data_array, error_array): +def weightedMean(data_array, error_array, error_0): sz = len(data_array) # calculate the numerator of mean dataNum = 0; for i in range(sz): - if not (data_array[i] == 0): - tmpFactor = float(data_array[i]) / float((pow(error_array[i],2))) - dataNum += tmpFactor + if (error_array[i] == 0): + error_array[i] = error_0 + + tmpFactor = float(data_array[i]) / float((pow(error_array[i],2))) + dataNum += tmpFactor # calculate denominator dataDen = 0; for i in range(sz): - if not (error_array[i] == 0): - tmpFactor = 1./float((pow(error_array[i],2))) - dataDen += tmpFactor + if (error_array[i] == 0): + error_array[i] = error_0 + tmpFactor = 1./float((pow(error_array[i],2))) + dataDen += tmpFactor if dataDen == 0: - mean = 0 + data_mean = 0 mean_error = 0 else: - mean = float(dataNum) / float(dataDen) + data_mean = float(dataNum) / float(dataDen) mean_error = math.sqrt(1/dataDen) - return [mean, mean_error] + return [data_mean, mean_error] def weightedMeanOfRange(norm_y_axis, norm_y_error_axis): """ @@ -1325,11 +1327,6 @@ def ouput_big_Q_ascii_file(file_name, y_axis, y_error_axis): - print x_axis.shape - print y_axis.shape - print y_error_axis.shape - - f=open(file_name,'w') sz = y_axis.shape # (nbr_pixel, nbr_tof)