diff --git a/docs/source/algorithms/Fit-v1.rst b/docs/source/algorithms/Fit-v1.rst
index e8cafc709b5b69bc70ee8d06b66280cecac3f4c3..20673be76be7afef59625939c52d5a405d8fd377 100644
--- a/docs/source/algorithms/Fit-v1.rst
+++ b/docs/source/algorithms/Fit-v1.rst
@@ -382,7 +382,7 @@ Usage
 
 .. testcode:: ExFitPeak
 
-    from __future__ import print_function
+   from __future__ import print_function
    # create a workspace with a gaussian peak sitting on top of a linear (here flat) background
    ws = CreateSampleWorkspace(Function="User Defined", UserDefinedFunction="name=LinearBackground, \
       A0=0.3;name=Gaussian, PeakCentre=5, Height=10, Sigma=0.7", NumBanks=1, BankPixelWidth=1, XMin=0, XMax=10, BinWidth=0.1)
@@ -463,90 +463,92 @@ Output:
 
 .. testoutput:: simFit
 
-	Constant 1: 2.00
-	Constant 2: 5.00
+    Constant 1: 2.00
+    Constant 2: 5.00
    
 **Example - Fit to two data sets with shared parameter:**
 
 .. testcode:: shareFit
-   
-	import math
-	import numpy as np
-
-	# create data
-	xData=np.linspace(start=0,stop=10,num=22)
-	yData=[]
-	for x in xData:
-		yData.append(2.0)
-	yData2=[]
-	for x in xData:
-		yData2.append(5.0)
-	# create workspaces
-	input = CreateWorkspace(xData,yData)
-	input2 = CreateWorkspace(xData,yData2)
-	# create function
-	myFunc=';name=FlatBackground,$domains=i,A0=0'
-	multiFunc='composite=MultiDomainFunction,NumDeriv=1'+myFunc+myFunc+';ties=(f0.A0=f1.A0)'
-	# do fit
-	fitStatus, chiSq, covarianceTable, paramTable, fitWorkspace = Fit( Function=multiFunc,\
-				InputWorkspace=input, WorkspaceIndex=0, \
-				InputWorkspace_1=input2, WorkspaceIndex_1=0, \
-				StartX = 0.1, EndX=9.5, StartX_1 = 0.1, EndX_1=9.5,Output='fit' )
-	# print results
-	print "Constant 1: {0:.2f}".format(paramTable.column(1)[0])
-	print "Constant 2: {0:.2f}".format(paramTable.column(1)[1])
+
+    from __future__ import print_function
+    import math
+    import numpy as np
+
+    # create data
+    xData=np.linspace(start=0,stop=10,num=22)
+    yData=[]
+    for x in xData:
+        yData.append(2.0)
+    yData2=[]
+    for x in xData:
+        Data2.append(5.0)
+    # create workspaces
+    input = CreateWorkspace(xData,yData)
+    input2 = CreateWorkspace(xData,yData2)
+    # create function
+    myFunc=';name=FlatBackground,$domains=i,A0=0'
+    multiFunc='composite=MultiDomainFunction,NumDeriv=1'+myFunc+myFunc+';ties=(f0.A0=f1.A0)'
+    # do fit
+    fit_output = Fit(Function=multiFunc, InputWorkspace=input, WorkspaceIndex=0, \
+                     InputWorkspace_1=input2, WorkspaceIndex_1=0, \
+                     StartX = 0.1, EndX=9.5, StartX_1 = 0.1, EndX_1=9.5,Output='fit')
+    paramTable = fit_output.OutputParameters  # table containing the optimal fit parameters
+    # print results
+    print("Constant 1: {0:.2f}".format(paramTable.column(1)[0]))
+    print("Constant 2: {0:.2f}".format(paramTable.column(1)[1]))
    
 Output:
 
 .. testoutput:: shareFit
 
-	Constant 1: 3.50
-	Constant 2: 3.50
-	
+    Constant 1: 3.50
+    Constant 2: 3.50
+
 **Example - Fit to two data sets with one shared parameter:**
 
 .. testcode:: shareFit2
-	
-	import math
-	import numpy as np
-
-	# create data
-	xData=np.linspace(start=0,stop=10,num=22)
-	yData=[]
-	for x in xData:
-		yData.append(2.0*x+10.)
-	yData2=[]
-	for x in xData:
-		yData2.append(5.0*x+7.)
-	# create workspaces
-	input = CreateWorkspace(xData,yData)
-	input2 = CreateWorkspace(xData,yData2)
-	# create function
-	myFunc=';name=LinearBackground,$domains=i,A0=0,A1=0'
-	multiFunc='composite=MultiDomainFunction,NumDeriv=1'+myFunc+myFunc+';ties=(f0.A1=f1.A1)'
-	# do fit
-	fitStatus, chiSq, covarianceTable, paramTable, fitWorkspace = Fit( Function=multiFunc,\
-				InputWorkspace=input, WorkspaceIndex=0, \
-				InputWorkspace_1=input2, WorkspaceIndex_1=0, \
-				StartX = 0.1, EndX=9.5, StartX_1 = 0.1, EndX_1=9.5,Output='fit' )
-	# print results
-	print 'Gradients (shared):'
-	print "Gradient 1: {0:.2f}".format(paramTable.column(1)[3])
-	print "Gradient 2: {0:.2f}".format(paramTable.column(1)[1])
-	print 'offsets:'
-	print "Constant 1: {0:.2f}".format(paramTable.column(1)[0])
-	print "Constant 2: {0:.2f}".format(paramTable.column(1)[2])
-	   
+
+    from __future__ import print_function
+    import math
+    import numpy as np
+
+    # create data
+    xData=np.linspace(start=0,stop=10,num=22)
+    yData=[]
+    for x in xData:
+        yData.append(2.0*x+10.)
+    yData2=[]
+    for x in xData:
+        yData2.append(5.0*x+7.)
+    # create workspaces
+    input = CreateWorkspace(xData,yData)
+    input2 = CreateWorkspace(xData,yData2)
+    # create function
+    myFunc=';name=LinearBackground,$domains=i,A0=0,A1=0'
+    multiFunc='composite=MultiDomainFunction,NumDeriv=1'+myFunc+myFunc+';ties=(f0.A1=f1.A1)'
+    # do fit
+    fit_output = Fit(Function=multiFunc, InputWorkspace=input, WorkspaceIndex=0, \
+                     InputWorkspace_1=input2, WorkspaceIndex_1=0, \
+                     StartX = 0.1, EndX=9.5, StartX_1 = 0.1, EndX_1=9.5,Output='fit')
+    paramTable = fit_output.OutputParameters  # table containing the optimal fit parameters
+    # print results
+    print('Gradients (shared):')
+    print("Gradient 1: {0:.2f}".format(paramTable.column(1)[3]))
+    print("Gradient 2: {0:.2f}".format(paramTable.column(1)[1]))
+    print('offsets:')
+    print("Constant 1: {0:.2f}".format(paramTable.column(1)[0]))
+    print("Constant 2: {0:.2f}".format(paramTable.column(1)[2]))
+
 Output:
 
 .. testoutput:: shareFit2
 
-	Gradients (shared):
-	Gradient 1: 3.50
-	Gradient 2: 3.50
-	offsets:
-	Constant 1: 2.86
-	Constant 2: 14.14
+    Gradients (shared):
+    Gradient 1: 3.50
+    Gradient 2: 3.50
+    offsets:
+    Constant 1: 2.86
+    Constant 2: 14.14
 
 .. categories::
 
diff --git a/docs/source/algorithms/LoadSassena-v1.rst b/docs/source/algorithms/LoadSassena-v1.rst
index 6209e30f95c515a5951bddb66ab72cc80e6ce8e8..49dbebc86262b2c55d8379b3e7aa510f3d952277 100644
--- a/docs/source/algorithms/LoadSassena-v1.rst
+++ b/docs/source/algorithms/LoadSassena-v1.rst
@@ -56,7 +56,7 @@ Usage
 
     from __future__ import print_function
     ws = LoadSassena("loadSassenaExample.h5", TimeUnit=1.0)
-    print 'workspaces instantiated: ', ', '.join(ws.getNames())
+    print('workspaces instantiated: ', ', '.join(ws.getNames()))
     fqtReal = ws[1] # Real part of F(Q,t)
     # Let's fit it to a Gaussian. We start with an initial guess
     intensity = 0.5
diff --git a/docs/source/algorithms/SassenaFFT-v1.rst b/docs/source/algorithms/SassenaFFT-v1.rst
index fe370667e0b1f44f2aa7c0df96da2a16e7e993bf..1c960cfb2a711104ea0cd41e75508e3e77e0e4b6 100644
--- a/docs/source/algorithms/SassenaFFT-v1.rst
+++ b/docs/source/algorithms/SassenaFFT-v1.rst
@@ -70,7 +70,7 @@ Usage
     ws = LoadSassena("loadSassenaExample.h5", TimeUnit=1.0)
     SassenaFFT(ws, FFTonlyRealPart=1, Temp=1000, DetailedBalance=1)
 
-    print 'workspaces instantiated: ', ', '.join(ws.getNames())
+    print('workspaces instantiated: ', ', '.join(ws.getNames()))
 
     sqt = ws[3] # S(Q,E)
     # I(Q,t) is a Gaussian, thus S(Q,E) is a Gaussian too (at high temperatures)
diff --git a/docs/source/fitfunctions/TabulatedFunction.rst b/docs/source/fitfunctions/TabulatedFunction.rst
index 09771f6365b09300564df17c0f50e9c896b1a74c..dccc781ceb156138fb1ddf5c9e10d86ade94c86d 100644
--- a/docs/source/fitfunctions/TabulatedFunction.rst
+++ b/docs/source/fitfunctions/TabulatedFunction.rst
@@ -43,9 +43,6 @@ Usage
     # Call the Fit algorithm and perform the fit
     myFunc='name=TabulatedFunction,Workspace=ws1,WorkspaceIndex=0,Scaling=1.0,Shift=0.0'
     fit_output = Fit(Function=myFunc, InputWorkspace=ws2, Output='fit')
-
-    fitStatus, chiSq, covarianceTable, paramTable, fitWorkspace =\
-    Fit(Function=myFunc, InputWorkspace=ws2, Output='fit')
     paramTable = fit_output.OutputParameters  # table containing the optimal fit parameters
     fitWorkspace = fit_output.OutputWorkspace