diff --git a/docs/source/algorithms/Fit-v1.rst b/docs/source/algorithms/Fit-v1.rst index e8cafc709b5b69bc70ee8d06b66280cecac3f4c3..20673be76be7afef59625939c52d5a405d8fd377 100644 --- a/docs/source/algorithms/Fit-v1.rst +++ b/docs/source/algorithms/Fit-v1.rst @@ -382,7 +382,7 @@ Usage .. testcode:: ExFitPeak - from __future__ import print_function + from __future__ import print_function # create a workspace with a gaussian peak sitting on top of a linear (here flat) background ws = CreateSampleWorkspace(Function="User Defined", UserDefinedFunction="name=LinearBackground, \ A0=0.3;name=Gaussian, PeakCentre=5, Height=10, Sigma=0.7", NumBanks=1, BankPixelWidth=1, XMin=0, XMax=10, BinWidth=0.1) @@ -463,90 +463,92 @@ Output: .. testoutput:: simFit - Constant 1: 2.00 - Constant 2: 5.00 + Constant 1: 2.00 + Constant 2: 5.00 **Example - Fit to two data sets with shared parameter:** .. testcode:: shareFit - - import math - import numpy as np - - # create data - xData=np.linspace(start=0,stop=10,num=22) - yData=[] - for x in xData: - yData.append(2.0) - yData2=[] - for x in xData: - yData2.append(5.0) - # create workspaces - input = CreateWorkspace(xData,yData) - input2 = CreateWorkspace(xData,yData2) - # create function - myFunc=';name=FlatBackground,$domains=i,A0=0' - multiFunc='composite=MultiDomainFunction,NumDeriv=1'+myFunc+myFunc+';ties=(f0.A0=f1.A0)' - # do fit - fitStatus, chiSq, covarianceTable, paramTable, fitWorkspace = Fit( Function=multiFunc,\ - InputWorkspace=input, WorkspaceIndex=0, \ - InputWorkspace_1=input2, WorkspaceIndex_1=0, \ - StartX = 0.1, EndX=9.5, StartX_1 = 0.1, EndX_1=9.5,Output='fit' ) - # print results - print "Constant 1: {0:.2f}".format(paramTable.column(1)[0]) - print "Constant 2: {0:.2f}".format(paramTable.column(1)[1]) + + from __future__ import print_function + import math + import numpy as np + + # create data + xData=np.linspace(start=0,stop=10,num=22) + yData=[] + for x in xData: + yData.append(2.0) + yData2=[] + for x in xData: + Data2.append(5.0) + # create workspaces + input = CreateWorkspace(xData,yData) + input2 = CreateWorkspace(xData,yData2) + # create function + myFunc=';name=FlatBackground,$domains=i,A0=0' + multiFunc='composite=MultiDomainFunction,NumDeriv=1'+myFunc+myFunc+';ties=(f0.A0=f1.A0)' + # do fit + fit_output = Fit(Function=multiFunc, InputWorkspace=input, WorkspaceIndex=0, \ + InputWorkspace_1=input2, WorkspaceIndex_1=0, \ + StartX = 0.1, EndX=9.5, StartX_1 = 0.1, EndX_1=9.5,Output='fit') + paramTable = fit_output.OutputParameters # table containing the optimal fit parameters + # print results + print("Constant 1: {0:.2f}".format(paramTable.column(1)[0])) + print("Constant 2: {0:.2f}".format(paramTable.column(1)[1])) Output: .. testoutput:: shareFit - Constant 1: 3.50 - Constant 2: 3.50 - + Constant 1: 3.50 + Constant 2: 3.50 + **Example - Fit to two data sets with one shared parameter:** .. testcode:: shareFit2 - - import math - import numpy as np - - # create data - xData=np.linspace(start=0,stop=10,num=22) - yData=[] - for x in xData: - yData.append(2.0*x+10.) - yData2=[] - for x in xData: - yData2.append(5.0*x+7.) - # create workspaces - input = CreateWorkspace(xData,yData) - input2 = CreateWorkspace(xData,yData2) - # create function - myFunc=';name=LinearBackground,$domains=i,A0=0,A1=0' - multiFunc='composite=MultiDomainFunction,NumDeriv=1'+myFunc+myFunc+';ties=(f0.A1=f1.A1)' - # do fit - fitStatus, chiSq, covarianceTable, paramTable, fitWorkspace = Fit( Function=multiFunc,\ - InputWorkspace=input, WorkspaceIndex=0, \ - InputWorkspace_1=input2, WorkspaceIndex_1=0, \ - StartX = 0.1, EndX=9.5, StartX_1 = 0.1, EndX_1=9.5,Output='fit' ) - # print results - print 'Gradients (shared):' - print "Gradient 1: {0:.2f}".format(paramTable.column(1)[3]) - print "Gradient 2: {0:.2f}".format(paramTable.column(1)[1]) - print 'offsets:' - print "Constant 1: {0:.2f}".format(paramTable.column(1)[0]) - print "Constant 2: {0:.2f}".format(paramTable.column(1)[2]) - + + from __future__ import print_function + import math + import numpy as np + + # create data + xData=np.linspace(start=0,stop=10,num=22) + yData=[] + for x in xData: + yData.append(2.0*x+10.) + yData2=[] + for x in xData: + yData2.append(5.0*x+7.) + # create workspaces + input = CreateWorkspace(xData,yData) + input2 = CreateWorkspace(xData,yData2) + # create function + myFunc=';name=LinearBackground,$domains=i,A0=0,A1=0' + multiFunc='composite=MultiDomainFunction,NumDeriv=1'+myFunc+myFunc+';ties=(f0.A1=f1.A1)' + # do fit + fit_output = Fit(Function=multiFunc, InputWorkspace=input, WorkspaceIndex=0, \ + InputWorkspace_1=input2, WorkspaceIndex_1=0, \ + StartX = 0.1, EndX=9.5, StartX_1 = 0.1, EndX_1=9.5,Output='fit') + paramTable = fit_output.OutputParameters # table containing the optimal fit parameters + # print results + print('Gradients (shared):') + print("Gradient 1: {0:.2f}".format(paramTable.column(1)[3])) + print("Gradient 2: {0:.2f}".format(paramTable.column(1)[1])) + print('offsets:') + print("Constant 1: {0:.2f}".format(paramTable.column(1)[0])) + print("Constant 2: {0:.2f}".format(paramTable.column(1)[2])) + Output: .. testoutput:: shareFit2 - Gradients (shared): - Gradient 1: 3.50 - Gradient 2: 3.50 - offsets: - Constant 1: 2.86 - Constant 2: 14.14 + Gradients (shared): + Gradient 1: 3.50 + Gradient 2: 3.50 + offsets: + Constant 1: 2.86 + Constant 2: 14.14 .. categories:: diff --git a/docs/source/algorithms/LoadSassena-v1.rst b/docs/source/algorithms/LoadSassena-v1.rst index 6209e30f95c515a5951bddb66ab72cc80e6ce8e8..49dbebc86262b2c55d8379b3e7aa510f3d952277 100644 --- a/docs/source/algorithms/LoadSassena-v1.rst +++ b/docs/source/algorithms/LoadSassena-v1.rst @@ -56,7 +56,7 @@ Usage from __future__ import print_function ws = LoadSassena("loadSassenaExample.h5", TimeUnit=1.0) - print 'workspaces instantiated: ', ', '.join(ws.getNames()) + print('workspaces instantiated: ', ', '.join(ws.getNames())) fqtReal = ws[1] # Real part of F(Q,t) # Let's fit it to a Gaussian. We start with an initial guess intensity = 0.5 diff --git a/docs/source/algorithms/SassenaFFT-v1.rst b/docs/source/algorithms/SassenaFFT-v1.rst index fe370667e0b1f44f2aa7c0df96da2a16e7e993bf..1c960cfb2a711104ea0cd41e75508e3e77e0e4b6 100644 --- a/docs/source/algorithms/SassenaFFT-v1.rst +++ b/docs/source/algorithms/SassenaFFT-v1.rst @@ -70,7 +70,7 @@ Usage ws = LoadSassena("loadSassenaExample.h5", TimeUnit=1.0) SassenaFFT(ws, FFTonlyRealPart=1, Temp=1000, DetailedBalance=1) - print 'workspaces instantiated: ', ', '.join(ws.getNames()) + print('workspaces instantiated: ', ', '.join(ws.getNames())) sqt = ws[3] # S(Q,E) # I(Q,t) is a Gaussian, thus S(Q,E) is a Gaussian too (at high temperatures) diff --git a/docs/source/fitfunctions/TabulatedFunction.rst b/docs/source/fitfunctions/TabulatedFunction.rst index 09771f6365b09300564df17c0f50e9c896b1a74c..dccc781ceb156138fb1ddf5c9e10d86ade94c86d 100644 --- a/docs/source/fitfunctions/TabulatedFunction.rst +++ b/docs/source/fitfunctions/TabulatedFunction.rst @@ -43,9 +43,6 @@ Usage # Call the Fit algorithm and perform the fit myFunc='name=TabulatedFunction,Workspace=ws1,WorkspaceIndex=0,Scaling=1.0,Shift=0.0' fit_output = Fit(Function=myFunc, InputWorkspace=ws2, Output='fit') - - fitStatus, chiSq, covarianceTable, paramTable, fitWorkspace =\ - Fit(Function=myFunc, InputWorkspace=ws2, Output='fit') paramTable = fit_output.OutputParameters # table containing the optimal fit parameters fitWorkspace = fit_output.OutputWorkspace