From cb858c79341fc48cbd959f431b6f792614ca68de Mon Sep 17 00:00:00 2001 From: Antti Soininen <soininen@ill.fr> Date: Wed, 20 Sep 2017 13:35:23 +0200 Subject: [PATCH] Use named variables for slices instead of random-looking numbers. Re #20472 --- .../ComputeCalibrationCoefVanTest.py | 23 +++++++++++-------- 1 file changed, 14 insertions(+), 9 deletions(-) diff --git a/Framework/PythonInterface/test/python/plugins/algorithms/ComputeCalibrationCoefVanTest.py b/Framework/PythonInterface/test/python/plugins/algorithms/ComputeCalibrationCoefVanTest.py index d1b14ec7adb..c3b6500598e 100644 --- a/Framework/PythonInterface/test/python/plugins/algorithms/ComputeCalibrationCoefVanTest.py +++ b/Framework/PythonInterface/test/python/plugins/algorithms/ComputeCalibrationCoefVanTest.py @@ -22,6 +22,10 @@ class ComputeCalibrationCoefVanTest(unittest.TestCase): self._table = FindEPP(input_ws, OutputWorkspace="table") AddSampleLog(self._input_ws, LogName='wavelength', LogText='4.0', LogType='Number', LogUnit='Angstrom') + # These ranges correspond to 6*FWHM of the gaussian above, + # the integration ranges of ComputeCalibrationCoefVan. + self._lowerBoundRange = slice(28, 73) + self._upperBoundRange = slice(27, 74) def test_output(self): outputWorkspaceName = "output_ws" @@ -52,11 +56,12 @@ class ComputeCalibrationCoefVanTest(unittest.TestCase): self.assertTrue(alg_test.isExecuted()) wsoutput = AnalysisDataService.retrieve(outputWorkspaceName) - # check whether sum is calculated correctly, for theta=0, dwf=1 - y_sumMin = np.sum(self._input_ws.readY(0)[28:73]) - y_sumMax = np.sum(self._input_ws.readY(0)[27:74]) - e_sumMin = np.sqrt(np.sum(np.square(self._input_ws.readE(0)[28:73]))) - e_sumMax = np.sqrt(np.sum(np.square(self._input_ws.readE(0)[27:74]))) + # Check whether the sum is calculated correctly, for theta=0, dwf=1 + # The result should be somewhere between the full bin sums. + y_sumMin = np.sum(self._input_ws.readY(0)[self._lowerBoundRange]) + y_sumMax = np.sum(self._input_ws.readY(0)[self._upperBoundRange]) + e_sumMin = np.sqrt(np.sum(np.square(self._input_ws.readE(0)[self._lowerBoundRange]))) + e_sumMax = np.sqrt(np.sum(np.square(self._input_ws.readE(0)[self._upperBoundRange]))) self.assertLess(y_sumMin, wsoutput.readY(0)[0]) self.assertGreater(y_sumMax, wsoutput.readY(0)[0]) self.assertLess(e_sumMin, wsoutput.readE(0)[0]) @@ -140,10 +145,10 @@ class ComputeCalibrationCoefVanTest(unittest.TestCase): else: raise RuntimeError("Unsupported temperature supplied to " + "_checkDWF(). Use 0K or 293K only.") - y_sumMin = np.sum(self._input_ws.readY(1)[28:73]) - y_sumMax = np.sum(self._input_ws.readY(1)[27:74]) - e_sumMin = np.sqrt(np.sum(np.square(self._input_ws.readE(1)[28:73]))) - e_sumMax = np.sqrt(np.sum(np.square(self._input_ws.readE(1)[27:74]))) + y_sumMin = np.sum(self._input_ws.readY(1)[self._lowerBoundRange]) + y_sumMax = np.sum(self._input_ws.readY(1)[self._upperBoundRange]) + e_sumMin = np.sqrt(np.sum(np.square(self._input_ws.readE(1)[self._lowerBoundRange]))) + e_sumMax = np.sqrt(np.sum(np.square(self._input_ws.readE(1)[self._upperBoundRange]))) mvan = 0.001*50.942/N_A Bcoef = 3.0*integral*1e+20*hbar*hbar/(2.0*mvan*k*389.0) dwf = np.exp( -- GitLab