diff --git a/Framework/PythonInterface/plugins/algorithms/WorkflowAlgorithms/DetectorFloodWeighting.py b/Framework/PythonInterface/plugins/algorithms/WorkflowAlgorithms/DetectorFloodWeighting.py
new file mode 100644
index 0000000000000000000000000000000000000000..4c3bca66611ccf2251caed99c25e0f9febe0246f
--- /dev/null
+++ b/Framework/PythonInterface/plugins/algorithms/WorkflowAlgorithms/DetectorFloodWeighting.py
@@ -0,0 +1,111 @@
+from mantid.api import DataProcessorAlgorithm, AlgorithmFactory, MatrixWorkspaceProperty, WorkspaceUnitValidator
+
+from mantid.kernel import Direction, FloatArrayProperty, FloatArrayBoundedValidator
+
+import numpy as np
+
+
+class DetectorFloodWeighting(DataProcessorAlgorithm):
+
+    def category(self):
+        return 'Workflow\\SANS'
+
+
+    def summary(self):
+        return 'Generates a Detector flood weighting, or sensitivity workspace'
+
+
+    def PyInit(self):
+
+        self.declareProperty(MatrixWorkspaceProperty('InputWorkspace', '',
+                                                     direction=Direction.Input, validator=WorkspaceUnitValidator("Wavelength")),
+                             doc='Flood weighting measurement')
+
+        validator = FloatArrayBoundedValidator()
+        validator.setLower(0.)
+        self.declareProperty(FloatArrayProperty('Bands', [], direction=Direction.Input, validator=validator),
+                             doc='Wavelength bands to use. Single pair min to max.')
+
+        self.declareProperty(MatrixWorkspaceProperty('OutputWorkspace', '',
+                                                     direction=Direction.Output),
+                             doc='Normalized flood weighting measurement')
+
+
+    def validateInputs(self):
+        """
+        Validates input ranges.
+        """
+        issues = dict()
+
+        bands = self.getProperty('Bands').value
+
+        if not any(bands):
+            issues['Bands'] = 'Bands must be supplied'
+
+
+        if not len(bands)%2 == 0:
+            issues['Bands'] = 'Even number of Bands boundaries expected'
+
+        if len(bands) > 2:
+            issues['Bands'] = 'Presently this algorithm only supports one pair of bands'
+
+        all_limits=list()
+        for i in range(0, len(bands), 2):
+            lower = bands[i]
+            upper = bands[i+1]
+            limits = np.arange(lower, upper)
+            unique = set(limits)
+            for existing_lims in all_limits:
+                if unique.intersection(set(existing_lims)):
+                    issues['Bands'] = 'Bands must not intersect'
+                    break
+
+            all_limits.append(limits)
+            if lower >= upper:
+                issues['Bands'] = 'Bands should form lower, upper pairs'
+
+        return issues
+
+
+    def PyExec(self):
+
+        in_ws = self.getProperty('InputWorkspace').value
+        bands = self.getProperty('Bands').value
+
+        # Formulate bands
+        params = list()
+        for i in range(0, len(bands), 2):
+            lower = bands[i]
+            upper = bands[i+1]
+            step = upper - lower
+            params.append((lower, step, upper))
+
+        accumulated_output = None
+        rebin = self.createChildAlgorithm("Rebin")
+        rebin.setProperty("Params", params[0])
+        rebin.setProperty("InputWorkspace", in_ws)
+        rebin.execute()
+        accumulated_output = rebin.getProperty("OutputWorkspace").value
+
+        # Determine the max across all spectra
+        y_values = accumulated_output.extractY()
+        max = np.amax(y_values, axis=1)
+
+        # Create a workspace from the single max value
+        create = self.createChildAlgorithm("CreateSingleValuedWorkspace")
+        create.setProperty("DataValue", max[0])
+        create.execute()
+        max_ws = create.getProperty("OutputWorkspace").value
+
+        # Divide each entry by max
+        divide = self.createChildAlgorithm("Divide")
+        divide.setProperty("LHSWorkspace", accumulated_output)
+        divide.setProperty("RHSWorkspace", max_ws)
+        divide.execute()
+        normalized = divide.getProperty("OutputWorkspace").value
+
+        self.setProperty('OutputWorkspace', normalized) # HACK
+
+
+# Register algorithm with Mantid
+AlgorithmFactory.subscribe(DetectorFloodWeighting)
\ No newline at end of file
diff --git a/Framework/PythonInterface/test/python/plugins/algorithms/CMakeLists.txt b/Framework/PythonInterface/test/python/plugins/algorithms/CMakeLists.txt
index 64c61d26428868f5d92f66d5429a8fec00236de9..bb68b040a2e73b551095e18bf876be0abb92e83b 100644
--- a/Framework/PythonInterface/test/python/plugins/algorithms/CMakeLists.txt
+++ b/Framework/PythonInterface/test/python/plugins/algorithms/CMakeLists.txt
@@ -11,6 +11,7 @@ set ( TEST_PY_FILES
   CorrectLogTimesTest.py
   CreateLeBailFitInputTest.py
   CreateMDTest.py
+  DetectorFloodWeightingTest.py
   IndirectCalibrationTest.py
   CreateWorkspaceTest.py
   CylinderPaalmanPingsCorrectionTest.py
diff --git a/Framework/PythonInterface/test/python/plugins/algorithms/DetectorFloodWeightingTest.py b/Framework/PythonInterface/test/python/plugins/algorithms/DetectorFloodWeightingTest.py
new file mode 100644
index 0000000000000000000000000000000000000000..64167eec36dcf9ad6c674f1a367c0180d6965fe1
--- /dev/null
+++ b/Framework/PythonInterface/test/python/plugins/algorithms/DetectorFloodWeightingTest.py
@@ -0,0 +1,81 @@
+import unittest
+from mantid.api import AlgorithmManager
+
+
+class DetectorFloodWeightingTest(unittest.TestCase):
+
+    def _create_ws(self, units="TOF", signal_value=2, data_x=range(0,10), n_spec=1):
+        data_y=[signal_value]*(len(data_x) - 1)
+        alg = AlgorithmManager.create("CreateWorkspace")
+        alg.setChild(True)
+        alg.initialize()
+        alg.setProperty("DataX", data_x)
+        alg.setProperty("DataY", data_y)
+        alg.setProperty("NSpec", n_spec)
+        alg.setProperty("OutputWorkspace", "temp")
+        alg.setProperty("UnitX", units)
+        alg.execute()
+        return alg.getProperty("OutputWorkspace").value
+
+    def test_init(self):
+        alg = AlgorithmManager.create("DetectorFloodWeighting")
+        alg.initialize()
+        self.assertTrue(alg.isInitialized())
+
+    def test_input_must_be_wavelength(self):
+        tof_ws = self._create_ws(units="TOF")
+        alg = AlgorithmManager.create("DetectorFloodWeighting")
+        alg.setChild(True)
+        alg.initialize()
+        self.assertRaises(ValueError, alg.setProperty, "InputWorkspace", tof_ws)
+
+    def test_cannot_have_negative_wavlength_boundaries_in_bands(self):
+        alg = AlgorithmManager.create("DetectorFloodWeighting")
+        alg.setChild(True)
+        alg.initialize()
+        self.assertRaises(ValueError, alg.setProperty, "Bands", [-1,10])
+
+    def test_bands_must_not_overlap(self):
+        alg = AlgorithmManager.create("DetectorFloodWeighting")
+        alg.setChild(True)
+        alg.initialize()
+        signal_value = 2
+        in_ws = self._create_ws(units="Wavelength", signal_value=signal_value, data_x=range(0,10,1))
+        alg.setProperty("InputWorkspace", in_ws)
+        bands = [1,3,2,4] # Overlap!
+        alg.setProperty("Bands", bands) # One band
+        alg.setPropertyValue("OutputWorkspace", "dummy")
+        self.assertRaises(RuntimeError, alg.execute)
+
+    def test_execute_single(self):
+        alg = AlgorithmManager.create("DetectorFloodWeighting")
+        alg.setChild(True)
+        alg.initialize()
+        signal_value = 2
+        in_ws = self._create_ws(units="Wavelength", signal_value=signal_value, data_x=range(0,10,1))
+        alg.setProperty("InputWorkspace", in_ws)
+        bands = [1,10]
+        alg.setProperty("Bands", bands) # One band
+        alg.setPropertyValue("OutputWorkspace", "dummy")
+        alg.execute()
+
+        out_ws = alg.getProperty("OutputWorkspace").value
+        self.assertEqual(1, out_ws.blocksize())
+        self.assertEqual("Wavelength", out_ws.getAxis(0).getUnit().unitID())
+        self.assertEqual(in_ws.getNumberHistograms(), out_ws.getNumberHistograms(), msg="Number of histograms should be unchanged.")
+        x_axis = out_ws.readX(0)
+        self.assertEquals(x_axis[0], bands[0])
+        self.assertEquals(x_axis[-1], bands[-1])
+        print out_ws.readY(0)[0]
+        self.assertEquals(out_ws.readY(0)[0], 1.0)
+
+
+
+
+
+
+
+
+
+if __name__ == '__main__':
+    unittest.main()
diff --git a/docs/source/algorithms/DetectorFloodWeighting-v1.rst b/docs/source/algorithms/DetectorFloodWeighting-v1.rst
new file mode 100644
index 0000000000000000000000000000000000000000..a486509ad82a5a2535bd29a7d995c4db88b04bf5
--- /dev/null
+++ b/docs/source/algorithms/DetectorFloodWeighting-v1.rst
@@ -0,0 +1,45 @@
+.. algorithm::
+
+.. summary::
+
+.. alias::
+
+.. properties::
+
+Description
+-----------
+This algorithm is used to calculate the detector flood weighting workspace use for pixel flood corrections. It was originally developed for the ANSTO Bilby instrument.
+
+This algorithm crops the data over the specified wavelength region, then normalizes each spectrum to the workspace spectrum maxima.
+
+Usage
+-----
+
+**Example - Simple Generation **
+
+.. testcode:: DetectorFloodWeightingExample
+
+   import numpy as np
+   # create histogram workspace
+   dataX = range(0,10) # or use dataX=range(0,10)
+   dataY = [1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2] # or use dataY=[1]*9
+   ws = CreateWorkspace(dataX, dataY, NSpec=2, UnitX="Wavelength")
+   
+   out_ws = DetectorFloodWeighting(InputWorkspace=ws, Bands=[0,10])
+   
+   print 'Number Histograms',out_ws.getNumberHistograms()
+   print 'Min X:', out_ws.readX(0)[0], 'Max X:', out_ws.readX(0)[1]  
+   y_data = out_ws.extractY()
+   print  'Min Y:', np.amin(y_data), 'Max Y:', np.amax(y_data)   
+
+Output:
+
+.. testoutput:: DetectorFloodWeightingExample
+   Number Histograms 2
+   Min X: 0.0 Max X: 10.0
+   Min Y: 0.5 Max Y: 1.0
+
+
+.. categories::
+
+.. sourcelink::