diff --git a/docs/source/algorithms/LineProfile-v1.rst b/docs/source/algorithms/LineProfile-v1.rst index 963da14b0f8ec83551dd86e80e650d7f3072f672..7e6b73a9aca1ad2ccff13147ba3c6b6b319feb92 100644 --- a/docs/source/algorithms/LineProfile-v1.rst +++ b/docs/source/algorithms/LineProfile-v1.rst @@ -144,17 +144,17 @@ Output: sumCutWS = LineProfile(wsInTheta, centre, width, Mode='Sum') # When no NaNs are present both modes give the same result. - iElastic = sumCutWS.blocksize() / 2 + iElastic = sumCutWS.blocksize() // 2 y = sumCutWS.readY(0)[iElastic] e = sumCutWS.readE(0)[iElastic] - print('Sum profile at elastic peak: {} +/- {}'.format(y, e)) + print('Sum profile at elastic peak: {:.8f} +/- {:.10f}'.format(y, e)) # The weighting is apparent when the profile crosses some # special values. - iEdge = sumCutWS.blocksize() / 6 + iEdge = sumCutWS.blocksize() // 6 y = sumCutWS.readY(0)[iEdge] e = sumCutWS.readE(0)[iEdge] - print('Sum profile near NaNs: {} +/- {}'.format(y, e)) + print('Sum profile near NaNs: {:.11f} +/- {:.11f}'.format(y, e)) .. testoutput:: SumMode