diff --git a/docs/source/concepts/calibration/PowderDiffractionCalibration.rst b/docs/source/concepts/calibration/PowderDiffractionCalibration.rst index 623a2e7fc7d0d4a4b1b38aefd79fe5853b35d777..162adbd741889e2db150f59685620c740bf0a9d5 100644 --- a/docs/source/concepts/calibration/PowderDiffractionCalibration.rst +++ b/docs/source/concepts/calibration/PowderDiffractionCalibration.rst @@ -356,4 +356,103 @@ which accepts a tuple of the starting detector ID and ending detector ID to plot To adjust the horizontal bars above and below the mean, a percent can be passed to the ``threshold`` option. +Pearson Correlation Coefficient +############################### + +It can be useful to compare the linearity of the relationship between time of flight and d-spacing for each peak involved +in calibration. In theory, the relationship between (TOF, d-spacing) will always be perfectly linear, but in practice, +that is not always the case. This diagnostic plot primarily serves as a tool to ensure that the calibration makes sense, +i.e., that a single DIFC parameter is enough to do the transformation. In the ideal case, all Pearson correlation +coefficients will be close to 1. For more on Pearson correlation coefficients please see +`this wikipedia article <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`_. Below is an example plot for the Pearson correlation +coefficient of (TOF, d-spacing). + +.. figure:: /images/VULCAN_pearsoncorr.png + +The following script can be used to generate the above plot. + +.. code:: + + # import mantid algorithms, numpy and matplotlib + from mantid.simpleapi import * + import matplotlib.pyplot as plt + import numpy as npfrom Calibration.tofpd import diagnosticsFILENAME = 'VULCAN_192226.nxs.h5' # 88 sec + + FILENAME = 'VULCAN_192227.nxs.h5' # 2.8 hour + CALFILE = 'VULCAN_Calibration_CC_4runs_hybrid.h5'peakpositions = np.asarray( + (0.3117, 0.3257, 0.3499, 0.3916, 0.4205, 0.4645, 0.4768, 0.4996, 0.515, 0.5441, 0.5642, 0.6307, 0.6867, + 0.7283, 0.8186, 0.892, 1.0758, 1.2615, 2.06)) + + peakpositions = peakpositions[peakpositions > 0.4] + peakpositions = peakpositions[peakpositions < 1.5] + peakpositions.sort()LoadEventAndCompress(Filename=FILENAME, OutputWorkspace='ws', FilterBadPulses=0) + + LoadInstrument(Workspace='ws', Filename="mantid/instrument/VULCAN_Definition.xml", RewriteSpectraMap='True') + Rebin(InputWorkspace='ws', OutputWorkspace='ws', Params=(5000, -.002, 70000)) + PDCalibration(InputWorkspace='ws', TofBinning=(5000,-.002,70000), + PeakPositions=peakpositions, + MinimumPeakHeight=5, + OutputCalibrationTable='calib', + DiagnosticWorkspaces='diag') + center_tof = diagnostics.collect_fit_result('diag_fitparam', 'center_tof', peakpositions, donor='ws', infotype='centre') + fig, ax = diagnostics.plot_corr('center_tof') + +Peak Information +################ + +Plotting the fitted peak parameters for different instrument banks can also provide useful information for +calibration diagnostics. The fitted peak parameters from :ref:`FitPeaks <algm-FitPeaks>` (center, width, +height, and intensity) are plotted for each bank at different peak positions. This can be used to help calibrate +each group rather than individual detector pixels. + +.. figure:: /images/VULCAN_peakinfo_diagnostic.png + :width: 400px + +The above figure can be generated using the following script: + +.. code:: + + import numpy as np + from mantid.simpleapi import (AlignAndFocusPowder, ConvertUnits, FitPeaks, LoadEventAndCompress, + LoadDiffCal, LoadInstrument) + from Calibration.tofpd import diagnostics + + FILENAME = 'VULCAN_192227.nxs.h5' # 2.8 hour + CALFILE = 'VULCAN_Calibration_CC_4runs_hybrid.h5' + + peakpositions = np.asarray( + (0.3117, 0.3257, 0.3499, 0.3916, 0.4205, 0.4645, 0.4768, 0.4996, 0.515, 0.5441, 0.5642, 0.6307, 0.6867, + 0.7283, 0.8186, 0.892, 1.0758, 1.2615, 2.06)) + peakpositions = peakpositions[peakpositions > 0.4] + peakpositions = peakpositions[peakpositions < 1.5] + peakpositions.sort() + peakwindows = diagnostics.get_peakwindows(peakpositions) + + LoadEventAndCompress(Filename=FILENAME, OutputWorkspace='ws', FilterBadPulses=0) + LoadInstrument(Workspace='ws', InstrumentName="VULCAN", RewriteSpectraMap='True') + + LoadDiffCal(Filename=CALFILE, InputWorkspace='ws', WorkspaceName='VULCAN') + AlignAndFocusPowder(InputWorkspace='ws', + OutputWorkspace='focus', + GroupingWorkspace="VULCAN_group", + CalibrationWorkspace="VULCAN_cal", + MaskWorkspace="VULCAN_mask", + Dspacing=True, + Params="0.3,3e-4,1.5") + + ConvertUnits(InputWorkspace='focus', OutputWorkspace='focus', Target='dSpacing', EMode='Elastic') + FitPeaks(InputWorkspace='focus', + OutputWorkspace='output', + PeakFunction='Gaussian', + RawPeakParameters=False, + HighBackground=False, # observe background + ConstrainPeakPositions=False, + MinimumPeakHeight=3, + PeakCenters=peakpositions, + FitWindowBoundaryList=peakwindows, + FittedPeaksWorkspace='fitted', + OutputPeakParametersWorkspace='parameters') + + fig, ax = diagnostics.plot_peak_info('parameters', peakpositions) + .. categories:: Calibration diff --git a/docs/source/images/VULCAN_peakinfo_diagnostic.png b/docs/source/images/VULCAN_peakinfo_diagnostic.png new file mode 100644 index 0000000000000000000000000000000000000000..be29cb1f8bca9917ef5c2c229390510cafff83fd Binary files /dev/null and b/docs/source/images/VULCAN_peakinfo_diagnostic.png differ diff --git a/docs/source/images/VULCAN_pearsoncorr.png b/docs/source/images/VULCAN_pearsoncorr.png new file mode 100644 index 0000000000000000000000000000000000000000..ae4044ec0da558ebf26a0e2d27acecab1a44872a Binary files /dev/null and b/docs/source/images/VULCAN_pearsoncorr.png differ diff --git a/docs/source/release/v6.1.0/diffraction.rst b/docs/source/release/v6.1.0/diffraction.rst index 58df7188c6c545d002b864f6e224845e4199a2e9..adee106949f025672bec029e49f7327d14960e5c 100644 --- a/docs/source/release/v6.1.0/diffraction.rst +++ b/docs/source/release/v6.1.0/diffraction.rst @@ -19,6 +19,8 @@ New features - New diagnostic plotting tool `Calibration.tofpd..diagnostics.plot2d` which adds markers for expected peak positions - New diagnostic plotting tool `Calibration.tofpd.diagnostics.difc_plot2d` which plots the change in DIFC between two instrument calibrations. - New diagnostic plotting tool `Calibration.tofpd.diagnostics.plot_peakd` which plots the d-spacing relative strain of peak positions. +- New diagnostic plotting tool `Calibration.tofpd.diagnostics.plot_corr` which plots the Pearson correlation coefficient for time-of-flight and d-spacing for each detector. +- New diagnostic plotting tool `Calibration.tofpd.diagnostics.plot_peak_info` which plots fitted peak parameters for instrument banks. Improvements ############ diff --git a/scripts/Calibration/tofpd/diagnostics.py b/scripts/Calibration/tofpd/diagnostics.py index a4c60fdb2612154325098df052b8a6cf4958367d..114306584d027c402c8fa453b6dbe2949e296a2a 100644 --- a/scripts/Calibration/tofpd/diagnostics.py +++ b/scripts/Calibration/tofpd/diagnostics.py @@ -125,6 +125,27 @@ def __get_bad_counts(y, mean=None, band=0.01): return len(y[(y > top) | (y < bot)]) +def get_peakwindows(peakpositions: np.ndarray): + """ + Calculates the peak windows for the given peak positions used for FitPeaks + :param peakpositions: List of peak positions in d-space + :return: List of peak windows (left and right) for each peak position + """ + peakwindows = [] + deltas = 0.5 * (peakpositions[1:] - peakpositions[:-1]) + # first left and right + peakwindows.append(peakpositions[0] - deltas[0]) + peakwindows.append(peakpositions[0] + deltas[0]) + # ones in the middle + for i in range(1, len(peakpositions) - 1): + peakwindows.append(peakpositions[i] - deltas[i - 1]) + peakwindows.append(peakpositions[i] + deltas[i]) + # last one + peakwindows.append(peakpositions[-1] - deltas[-1]) + peakwindows.append(peakpositions[-1] + deltas[-1]) + return peakwindows + + def plot2d(workspace, tolerance: float=0.001, peakpositions: np.ndarray=DIAMOND, xmin: float=np.nan, xmax: float=np.nan, horiz_markers=[]): TOLERANCE_COLOR = 'w' # color to mark the area within tolerance @@ -575,3 +596,103 @@ def plot_peakd(wksp: Union[str, Workspace2D], peak_positions: Union[float, list] plt.show() return fig, ax + +def plot_corr(tof_ws): + """ + Plots Pearson correlation coefficient for each detector + :param tof_ws: Workspace returned from collect_fit_result + :return: plot, plot axes + """ + if not mtd.doesExist(str(tof_ws)): + raise ValueError("Could not find the provided workspace in ADS") + + tof_ws = mtd[str(tof_ws)] + + numHist = tof_ws.getNumberHistograms() + + # Create an array for Pearson corr coef + r_vals = np.empty((numHist,), dtype=float) + r_vals.fill(np.nan) + + # Create an array for detector IDs + detectors = tof_ws.detectorInfo().detectorIDs() + detID = np.empty((numHist,), dtype=float) + detID.fill(np.nan) + + for workspaceIndex in range(numHist): + # Get Pearson correlation coefficient for each detector + x = tof_ws.dataY(workspaceIndex) + y = tof_ws.dataX(workspaceIndex) + + mask = np.logical_not(np.isnan(x)) + if np.sum(mask) > 1: + r, p = np.corrcoef(x[mask], y[mask]) + # Use r[1] because the corr coef is always the off-diagonal element here + r_vals[workspaceIndex] = r[1] + else: + r_vals[workspaceIndex] = np.nan + + # Get detector ID for this spectrum + detID[workspaceIndex] = detectors[workspaceIndex] + + fig, ax = plt.subplots() + ax.set_xlabel("det IDs") + ax.set_ylabel("Pearson correlation coefficient (TOF, d)") + + ax.plot(detID, r_vals, marker="x", linestyle="None") + +def plot_peak_info(wksp: Union[str, TableWorkspace], peak_positions: Union[float, list], donor=None): + """ + Generates a plot using the PeakParameter Workspace returned from FitPeaks to show peak information + (center, width, height, and intensity) for each bank at different peak positions. + :param wksp: Peak Parameter TableWorkspace returned from FitPeaks + :param peak_positions: List of peak positions to plot peak info at + :param donor: Optional donor Workspace2D to use for collect_fit_result + :return: plot, plot axes for each information type + """ + wksp = mtd[str(wksp)] + + if not mtd.doesExist(str(wksp)): + raise ValueError("Could not find provided workspace in ADS") + + peaks = peak_positions + if isinstance(peak_positions, float): + peaks = [peak_positions] + + if len(peaks) == 0: + raise ValueError("Expected one or more peak positions") + + # Generate workspaces for each kind of peak info + center = collect_fit_result(wksp, 'center', peaks, donor=donor, infotype='centre') + width = collect_fit_result(wksp, 'width', peaks, donor=donor, infotype='width') + height = collect_fit_result(wksp, 'height', peaks, donor=donor, infotype='height') + intensity = collect_fit_result(wksp, 'intensity', peaks, donor=donor, + infotype='intensity') + + nbanks = center.getNumberHistograms() + workspaces = [center, width, height, intensity] + labels = ['center', 'width', 'height', 'intensity'] + + fig, ax = plt.subplots(len(workspaces), 1, sharex="all") + for i in range(len(workspaces)): + ax[i].set_ylabel(labels[i]) + + # Show small ticks on x axis at peak positions + ax[-1].set_xticks(peaks, True) + ax[-1].set_xlabel(r"peak position ($\AA$)") + + markers = ["x", ".", "^", "s", "d", "h", "p", "v"] + for i in range(nbanks): + for j in range(len(workspaces)): + x = workspaces[j].dataX(i) + data = workspaces[j].dataY(i) + # Cycle through marker list if there are too many banks + marker = i % len(markers) + ax[j].plot(x, data, marker=markers[marker], ls="None", label="bank{}".format(i)) + + ax[0].legend() + fig.tight_layout() + + plt.show() + + return fig, ax