diff --git a/Framework/MDAlgorithms/src/LoadDNSSCD.cpp b/Framework/MDAlgorithms/src/LoadDNSSCD.cpp
index 9065ec8b9dc8b3e675ff463f1efed40f42ef7e70..f872d42be75bbb11828fa12b1bb323fd0ae1b43a 100644
--- a/Framework/MDAlgorithms/src/LoadDNSSCD.cpp
+++ b/Framework/MDAlgorithms/src/LoadDNSSCD.cpp
@@ -553,7 +553,6 @@ void LoadDNSSCD::fillOutputWorkspace(double wavelength) {
               double signal = ds.signal[i][channel];
               signal_t error = std::sqrt(signal);
               double tof2 = static_cast<double>(channel)*ds.chwidth + 0.5*ds.chwidth;   // bin centers
-              g_log.debug() << "TOF2 = " << tof2 << std::endl;
               double dE = 0.0;
               if (nchannels > 1) {
                   double v2 = 1e+06*l2/tof2;
@@ -561,7 +560,6 @@ void LoadDNSSCD::fillOutputWorkspace(double wavelength) {
               }
               if (dE > dEmin) {
                   double kf = std::sqrt(ki*ki - 2.0e-20*PhysicalConstants::NeutronMass*dE*PhysicalConstants::meV/(PhysicalConstants::h_bar*PhysicalConstants::h_bar));
-                  g_log.debug() << "dE = " << dE << std::endl;
                   double tlab = std::atan2(ki - kf*cos(2.0*theta), kf*sin(2.0*theta));
                   double omega = (ds.huber - ds.deterota) * deg2rad - tlab;
                   V3D uphi(-cos(omega), 0, -sin(omega));
@@ -691,8 +689,6 @@ void LoadDNSSCD::read_data(const std::string fname,
       boost::trim(line);
       const int cols = splitIntoColumns(columns, line);
       if (cols > 0){
-          g_log.debug() << "Number of columns = " << cols << std::endl;
-          g_log.debug() << std::endl;
           ds.detID.push_back(std::stoi(columns.front()));
           columns.pop_front();
           std::vector<double> signal;
diff --git a/docs/source/algorithms/LoadDNSSCD-v1.rst b/docs/source/algorithms/LoadDNSSCD-v1.rst
index d3b24caaf87f879236a4aa96b3150f23a7673dff..9a31751194ada704bb191f62dee8c60962f9f1ad 100644
--- a/docs/source/algorithms/LoadDNSSCD-v1.rst
+++ b/docs/source/algorithms/LoadDNSSCD-v1.rst
@@ -25,7 +25,7 @@ As a result, two workspaces are created:
 
 - `NormalizationWorkspace` contains the choosen normalization data (either monitor counts or experiment duration time).
 
-Both workspaces have :math:`(H,K,L)` dimensions. The metadata are loaded into time series sample logs.
+Both workspaces have :math:`(H,K,L,dE)` dimensions. The metadata are loaded into time series sample logs.
 
 .. note::
 
@@ -36,7 +36,7 @@ Restrictions
 
 - This algorithm only supports the *DNS* instrument in its configuration with one detector bank (polarisation analysis).
 
-- This algorithm does not support DNS TOF mode data. It is meant only for single crystal diffraction experiments with 1 TOF channel.
+- This algorithm does not allow to merge datasets with different number of TOF channels.
 
 
 Data replication
@@ -91,7 +91,7 @@ Usage
              dimension.getUnits()))
 
    # print information about the table workspace
-   print ("TableWorkspace '{0}' has {1} row in the column '{2}'.".format(huber_ws.getName(),
+   print ("TableWorkspace '{0}' has {1} row in the column '{2}'.".format(huber_ws.name(),
                                                                          huber_ws.rowCount(),
                                                                          huber_ws.getColumnNames()[0]))
    print("It contains sample rotation angle {} degrees".format(huber_ws.cell(0, 0)))
@@ -100,11 +100,12 @@ Usage
 
 .. testoutput:: LoadDNSSCDEx1
 
-    Output Workspace Type is:  MDEventWorkspace<MDEvent,3>
-    It has 24 events and 3 dimensions:
+    Output Workspace Type is:  MDEventWorkspace<MDEvent,4>
+    It has 24 events and 4 dimensions:
     Dimension 0 has name: H, id: H, Range: -15.22 to 15.22 r.l.u
     Dimension 1 has name: K, id: K, Range: -15.22 to 15.22 r.l.u
     Dimension 2 has name: L, id: L, Range: -41.95 to 41.95 r.l.u
+    Dimension 3 has name: DeltaE, id: DeltaE, Range: -10.00 to 4.64 r.l.u
     TableWorkspace 'huber_ws' has 1 row in the column 'Huber(degrees)'.
     It contains sample rotation angle 79.0 degrees
 
@@ -147,10 +148,10 @@ Usage
 
 .. testoutput:: LoadDNSSCDEx2
 
-    Output Workspace Type is:  MDEventWorkspace<MDEvent,3>
-    It has 10 events and 3 dimensions.
-    Normalization Workspace Type is:  MDEventWorkspace<MDEvent,3>
-    It has 10 events and 3 dimensions.
+    Output Workspace Type is:  MDEventWorkspace<MDEvent,4>
+    It has 10 events and 4 dimensions.
+    Normalization Workspace Type is:  MDEventWorkspace<MDEvent,4>
+    It has 10 events and 4 dimensions.
 
 **Example 3 - Load sample rotation angles from the table**
 
@@ -186,17 +187,18 @@ Usage
    print("It has {0} events and {1} dimensions.".format(ws.getNEvents(), ws.getNumDims()))
 
    # setting for the BinMD algorithm
-   bvec0 = '[100],unit,1,0,0'
-   bvec1 = '[001],unit,0,0,1'
-   bvec2 = '[010],unit,0,1,0'
-   extents = '-2,1.5,-0.2,6.1,-10,10'
-   bins = '10,10,1'
+   bvec0 = '[100],unit,1,0,0,0'
+   bvec1 = '[001],unit,0,0,1,0'
+   bvec2 = '[010],unit,0,1,0,0'
+   bvec3 = 'dE,meV,0,0,0,1'
+   extents = '-2,1.5,-0.2,6.1,-10,10,-10,4.6'
+   bins = '10,10,1,1'
    # bin the data
-   data_raw = BinMD(ws, AxisAligned='0', BasisVector0=bvec0, BasisVector1=bvec1,
-                    BasisVector2=bvec2, OutputExtents=extents, OutputBins=bins, NormalizeBasisVectors='0')
+   data_raw = BinMD(ws, AxisAligned='0', BasisVector0=bvec0, BasisVector1=bvec1, BasisVector2=bvec2,
+                    BasisVector3=bvec3, OutputExtents=extents, OutputBins=bins, NormalizeBasisVectors='0')
    # bin normalization
-   data_norm = BinMD(ws_norm, AxisAligned='0', BasisVector0=bvec0, BasisVector1=bvec1,
-                     BasisVector2=bvec2, OutputExtents=extents, OutputBins=bins, NormalizeBasisVectors='0')
+   data_norm = BinMD(ws_norm, AxisAligned='0', BasisVector0=bvec0, BasisVector1=bvec1, BasisVector2=bvec2,
+                     BasisVector3=bvec3, OutputExtents=extents, OutputBins=bins, NormalizeBasisVectors='0')
    # normalize data
    data = data_raw/data_norm
 
@@ -204,16 +206,17 @@ Usage
    print("Reduced Workspace Type is:  {}".format(data.id()))
    print("It has {} dimensions.".format(data.getNumDims()))
    s =  data.getSignalArray()
-   print("Signal at some points: {0:.4f}, {1:.4f}, {2:.4f}".format(s[7,1][0], s[7,2][0], s[7,3][0]))
+   print("Signal at some points: {0:.4f}, {1:.4f}, {2:.4f}".format(
+         float(s[7,1][0]), float(s[7,2][0]), float(s[7,3][0])))
 
 **Output:**
 
 .. testoutput:: LoadDNSSCDEx3
 
-    Output Workspace Type is:  MDEventWorkspace<MDEvent,3>
-    It has 240 events and 3 dimensions.
+    Output Workspace Type is:  MDEventWorkspace<MDEvent,4>
+    It has 240 events and 4 dimensions.
     Reduced Workspace Type is:  MDHistoWorkspace
-    It has 3 dimensions.
+    It has 4 dimensions.
     Signal at some points: 0.0035, 0.0033, 0.0035
 
 .. categories::