diff --git a/Code/Mantid/Framework/CurveFitting/src/CostFuncLeastSquares.cpp b/Code/Mantid/Framework/CurveFitting/src/CostFuncLeastSquares.cpp index d0d630bac9b7f4c9ba33e3386bcdbc7bb5e21410..e76aaedabb5db68880249dcbc8eaac7c7c8a8afd 100644 --- a/Code/Mantid/Framework/CurveFitting/src/CostFuncLeastSquares.cpp +++ b/Code/Mantid/Framework/CurveFitting/src/CostFuncLeastSquares.cpp @@ -440,33 +440,33 @@ void CostFuncLeastSquares::calActiveCovarianceMatrix(GSLMatrix &covar, if (m_hessian.isEmpty()) { valDerivHessian(); } - if (g_log.is(Kernel::Logger::Priority::PRIO_INFORMATION)) { - g_log.information() << "== Hessian (H) ==\n"; - std::ios::fmtflags prevState = g_log.information().flags(); - g_log.information() << std::left << std::fixed; + if (g_log.is(Kernel::Logger::Priority::PRIO_DEBUG)) { + g_log.debug() << "== Hessian (H) ==\n"; + std::ios::fmtflags prevState = g_log.debug().flags(); + g_log.debug() << std::left << std::fixed; for (size_t i = 0; i < m_hessian.size1(); ++i) { for (size_t j = 0; j < m_hessian.size2(); ++j) { - g_log.information() << std::setw(10); - g_log.information() << m_hessian.get(i, j) << " "; + g_log.debug() << std::setw(10); + g_log.debug() << m_hessian.get(i, j) << " "; } - g_log.information() << "\n"; + g_log.debug() << "\n"; } - g_log.information().flags(prevState); + g_log.debug().flags(prevState); } covar = m_hessian; covar.invert(); - if (g_log.is(Kernel::Logger::Priority::PRIO_INFORMATION)) { - g_log.information() << "== Covariance matrix (H^-1) ==\n"; - std::ios::fmtflags prevState = g_log.information().flags(); - g_log.information() << std::left << std::fixed; + if (g_log.is(Kernel::Logger::Priority::PRIO_DEBUG)) { + g_log.debug() << "== Covariance matrix (H^-1) ==\n"; + std::ios::fmtflags prevState = g_log.debug().flags(); + g_log.debug() << std::left << std::fixed; for (size_t i = 0; i < covar.size1(); ++i) { for (size_t j = 0; j < covar.size2(); ++j) { - g_log.information() << std::setw(10); - g_log.information() << covar.get(i, j) << " "; + g_log.debug() << std::setw(10); + g_log.debug() << covar.get(i, j) << " "; } - g_log.information() << "\n"; + g_log.debug() << "\n"; } - g_log.information().flags(prevState); + g_log.debug().flags(prevState); } } diff --git a/Code/Mantid/Framework/CurveFitting/src/CostFuncUnweightedLeastSquares.cpp b/Code/Mantid/Framework/CurveFitting/src/CostFuncUnweightedLeastSquares.cpp index bf6bd0770dca89b13150ce6021ffd74d1af7923c..b7c610e6d0521d14e11882234c773862a0b19ada 100644 --- a/Code/Mantid/Framework/CurveFitting/src/CostFuncUnweightedLeastSquares.cpp +++ b/Code/Mantid/Framework/CurveFitting/src/CostFuncUnweightedLeastSquares.cpp @@ -24,20 +24,20 @@ void CostFuncUnweightedLeastSquares::calActiveCovarianceMatrix(GSLMatrix &covar, double variance = getResidualVariance(); covar *= variance; - if (g_log.is(Kernel::Logger::Priority::PRIO_INFORMATION)) { - g_log.information() << "== Final covariance matrix (H^-1) ==" << std::endl; + if (g_log.is(Kernel::Logger::Priority::PRIO_DEBUG)) { + g_log.debug() << "== Final covariance matrix (H^-1) ==" << std::endl; - std::ios::fmtflags prevState = g_log.information().flags(); - g_log.information() << std::left << std::fixed; + std::ios::fmtflags prevState = g_log.debug().flags(); + g_log.debug() << std::left << std::fixed; for (size_t i = 0; i < covar.size1(); ++i) { for (size_t j = 0; j < covar.size2(); ++j) { - g_log.information() << std::setw(10); - g_log.information() << covar.get(i, j) << " "; + g_log.debug() << std::setw(10); + g_log.debug() << covar.get(i, j) << " "; } - g_log.information() << std::endl; + g_log.debug() << std::endl; } - g_log.information().flags(prevState); + g_log.debug().flags(prevState); } } @@ -62,20 +62,20 @@ double CostFuncUnweightedLeastSquares::getResidualVariance() const { double degreesOfFreedom = static_cast<double>(m_values->size() - nParams()); double residualVariance = sum / degreesOfFreedom; - if (g_log.is(Kernel::Logger::Priority::PRIO_INFORMATION)) { - g_log.information() << "== Statistics of residuals ==" << std::endl; - std::ios::fmtflags prevState = g_log.information().flags(); - g_log.information() << std::left << std::fixed << std::setw(10); - g_log.information() << "Residual sum of squares: " << sum << std::endl; - g_log.information() << "Residual variance: " << residualVariance + if (g_log.is(Kernel::Logger::Priority::PRIO_DEBUG)) { + g_log.debug() << "== Statistics of residuals ==" << std::endl; + std::ios::fmtflags prevState = g_log.debug().flags(); + g_log.debug() << std::left << std::fixed << std::setw(10); + g_log.debug() << "Residual sum of squares: " << sum << std::endl; + g_log.debug() << "Residual variance: " << residualVariance << std::endl; - g_log.information() << "Residual standard deviation: " + g_log.debug() << "Residual standard deviation: " << sqrt(residualVariance) << std::endl; - g_log.information() << "Degrees of freedom: " + g_log.debug() << "Degrees of freedom: " << static_cast<size_t>(degreesOfFreedom) << std::endl; - g_log.information() << "Number of observations: " << m_values->size() + g_log.debug() << "Number of observations: " << m_values->size() << std::endl; - g_log.information().flags(prevState); + g_log.debug().flags(prevState); } return residualVariance;