FilterEvents-v1.rst 6.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
.. algorithm::

.. summary::

.. alias::

.. properties::

Description
-----------

This algorithm filters events from an
Nick Draper's avatar
Nick Draper committed
13
14
:ref:`EventWorkspace <EventWorkspace>` to one or multiple
:ref:`EventWorkspaces <EventWorkspace>` according to an input
Nick Draper's avatar
Nick Draper committed
15
16
`SplittersWorkspace <http://www.mantidproject.org/SplittersWorkspace>`_ containing a series of
splitters (i.e., `SplittingIntervals <http://www.mantidproject.org/SplittingInterval>`_).
17

18
Inputs
19
######
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Algorithm *FilterEvents* takes 2 mandatory input Workspaces and 1 optional Workspace.
One of mandatory workspace is the EventWorkspace where the events are filtered from.
The other mandatory workspace is workspace containing splitters. 
It can be either a MatrixWorkspace or a SplittersWorkspace.

The optional workspace is a TableWorkspace for information of splitters.

Algorithm *GenerateEventsFilter* creates both the splitters' workspace and splitter information workspace.


Splitters in relative time
==========================

As the splitters' workspace is in format of MatrixWorkspace,
its time, i.e., the value in X vector, can be relative time.

Property *RelativeTime* flags that the splitters' time is relative.
Property *FilterStartTime* specifies the starting time of the filter.
Or the shift of time of the splitters.
If it is not specified, then the algorithm will search for sample log *run_start*.

Outputs
#######
43
44
45
46
47
48

The output will be one or multiple workspaces according to the number of
index in splitters. The output workspace name is the combination of
parameter OutputWorkspaceBaseName and the index in splitter.

Calibration File
49
################
50
51
52
53
54
55
56
57
58
59
60
61
62

The calibration, or say correction, from the detector to sample must be
consider in fast log. Thus a calibration file is required. The math is

``TOF_calibrated = TOF_raw * correction(detector ID).``

The calibration is in column data format.

A reasonable approximation of the correction is

``correction(detector_ID) = L1/(L1+L2(detector_ID))``

Unfiltered Events
63
#################
64
65
66
67
68
69
70
71

Some events are not inside any splitters. They are put to a workspace
name ended with '\_unfiltered'.

If input property 'OutputWorkspaceIndexedFrom1' is set to True, then
this workspace shall not be outputed.

Difference from FilterByLogValue
72
################################
73
74
75
76
77
78
79
80
81
82
83
84
85
86

In FilterByLogValue(), EventList.splitByTime() is used.

In FilterEvents(), if FilterByPulse is selected true,
EventList.SplitByTime is called; otherwise, EventList.SplitByFullTime()
is called instead.

The difference between splitByTime and splitByFullTime is that
splitByTime filters events by pulse time, and splitByFullTime considers
both pulse time and TOF.

Therefore, FilterByLogValue is not suitable for fast log filtering.

Comparing with other event filtering algorithms
87
###############################################
88

Savici, Andrei T's avatar
Savici, Andrei T committed
89
Wiki page `EventFiltering <http://www.mantidproject.org/EventFiltering>`__ has a detailed
90
91
introduction on event filtering in MantidPlot.

Zhou, Wenduo's avatar
Zhou, Wenduo committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
Usage
-----

**Example - Filtering event without correction on TOF**  

.. testcode:: FilterEventNoCorrection

    ws = Load(Filename='CNCS_7860_event.nxs')
    splitws, infows = GenerateEventsFilter(InputWorkspace=ws, UnitOfTime='Nanoseconds', LogName='SampleTemp', 
            MinimumLogValue=279.9,  MaximumLogValue=279.98, LogValueInterval=0.01)
    
    FilterEvents(InputWorkspace=ws, SplitterWorkspace=splitws, InformationWorkspace=infows,
            OutputWorkspaceBaseName='tempsplitws',  GroupWorkspaces=True, 
            FilterByPulseTime = False, OutputWorkspaceIndexedFrom1 = False,
            CorrectionToSample = "None", SpectrumWithoutDetector = "Skip", SplitSampleLogs = False,
            OutputTOFCorrectionWorkspace='mock')
   
    # Print result
    wsgroup = mtd["tempsplitws"]
    wsnames = wsgroup.getNames()
    for name in sorted(wsnames): 
        tmpws = mtd[name]
        print "workspace %s has %d events" % (name, tmpws.getNumberEvents())


Output:

.. testoutput:: FilterEventNoCorrection

    workspace tempsplitws_0 has 124 events
    workspace tempsplitws_1 has 16915 events
    workspace tempsplitws_2 has 10009 events
    workspace tempsplitws_3 has 6962 events
    workspace tempsplitws_4 has 22520 events
    workspace tempsplitws_5 has 5133 events
    workspace tempsplitws_unfiltered has 50603 events


**Example - Filtering event by pulse time**  

.. testcode:: FilterEventByPulseTime

    ws = Load(Filename='CNCS_7860_event.nxs')
    splitws, infows = GenerateEventsFilter(InputWorkspace=ws, UnitOfTime='Nanoseconds', LogName='SampleTemp', 
            MinimumLogValue=279.9,  MaximumLogValue=279.98, LogValueInterval=0.01)
    
    FilterEvents(InputWorkspace=ws, 
        SplitterWorkspace=splitws, 
        InformationWorkspace=infows,
        OutputWorkspaceBaseName='tempsplitws',  
        GroupWorkspaces=True, 
        FilterByPulseTime = True, 
        OutputWorkspaceIndexedFrom1 = True,
        CorrectionToSample = "None", 
        SpectrumWithoutDetector = "Skip", 
        SplitSampleLogs = False,
        OutputTOFCorrectionWorkspace='mock') 

    # Print result
    wsgroup = mtd["tempsplitws"]
    wsnames = wsgroup.getNames()
    for name in sorted(wsnames): 
        tmpws = mtd[name]
        print "workspace %s has %d events" % (name, tmpws.getNumberEvents())


Output:

.. testoutput:: FilterEventByPulseTime

    workspace tempsplitws_1 has 123 events
    workspace tempsplitws_2 has 16951 events
    workspace tempsplitws_3 has 9972 events
    workspace tempsplitws_4 has 7019 events
    workspace tempsplitws_5 has 22529 events
    workspace tempsplitws_6 has 5067 events


**Example - Filtering event with correction on TOF**  

.. testcode:: FilterEventTOFCorrection

    ws = Load(Filename='CNCS_7860_event.nxs')
    splitws, infows = GenerateEventsFilter(InputWorkspace=ws, UnitOfTime='Nanoseconds', LogName='SampleTemp', 
            MinimumLogValue=279.9,  MaximumLogValue=279.98, LogValueInterval=0.01)

    FilterEvents(InputWorkspace=ws, SplitterWorkspace=splitws, InformationWorkspace=infows,
        OutputWorkspaceBaseName='tempsplitws',  
        GroupWorkspaces=True, 
        FilterByPulseTime = False, 
        OutputWorkspaceIndexedFrom1 = False,
        CorrectionToSample = "Direct", 
        IncidentEnergy=3,
        SpectrumWithoutDetector = "Skip", 
        SplitSampleLogs = False,
        OutputTOFCorrectionWorkspace='mock')
    
    # Print result
    wsgroup = mtd["tempsplitws"]
    wsnames = wsgroup.getNames()
    for name in sorted(wsnames): 
        tmpws = mtd[name]
        print "workspace %s has %d events" % (name, tmpws.getNumberEvents())


Output:

.. testoutput:: FilterEventTOFCorrection

Zhou, Wenduo's avatar
Zhou, Wenduo committed
201
202
203
204
205
206
207
    workspace tempsplitws_0 has 123 events
    workspace tempsplitws_1 has 16951 events
    workspace tempsplitws_2 has 9972 events
    workspace tempsplitws_3 has 7019 events
    workspace tempsplitws_4 has 22514 events
    workspace tempsplitws_5 has 5082 events
    workspace tempsplitws_unfiltered has 50605 events
Zhou, Wenduo's avatar
Zhou, Wenduo committed
208

209
.. categories::
210
211

.. sourcelink::