GetEi.cpp 19.5 KB
Newer Older
1
2
#include "MantidAlgorithms/GetEi.h"
#include "MantidKernel/ArrayProperty.h"
3
#include "MantidAPI/FileProperty.h"
4
5
6
7
8
#include "MantidKernel/PhysicalConstants.h"
#include "MantidAPI/WorkspaceValidators.h"
#include <boost/lexical_cast.hpp>
#include "MantidKernel/Exception.h" 
#include <cmath>
9
#include "MantidKernel/BoundedValidator.h"
10
11
12
13
14
15
16
17
18

namespace Mantid
{
namespace Algorithms
{

// Register the algorithm into the algorithm factory
DECLARE_ALGORITHM(GetEi)

19

20
21
22
23
using namespace Kernel;
using namespace API;
using namespace Geometry;

24
// adjustable fit criteria, increase the first number or reduce any of the last three for more promiscuous peak fitting
25
// from the estimated location of the peak search forward by the following fraction and backward by the same fraction
26
const double GetEi::HALF_WINDOW = 8.0/100;
27
28
const double GetEi::PEAK_THRESH_H = 3.0;
const double GetEi::PEAK_THRESH_A = 5.0;
Peterson, Peter's avatar
Peterson, Peter committed
29
const int64_t GetEi::PEAK_THRESH_W = 3;
30
31
32
33
34

// progress estimates
const double GetEi::CROP = 0.15;
const double GetEi::GET_COUNT_RATE = 0.15;
const double GetEi::FIT_PEAK = 0.2;
35
36
37

/// Empty default constructor algorith() calls the constructor in the base class
GetEi::GetEi() : Algorithm(),
38
  m_tempWS(), m_fracCompl(0.0)
39
40
41
42
{
}

void GetEi::init()
43
{
44
  // Declare required input parameters for algorithm and do some validation here
45
46
47
48
  auto val = boost::make_shared<CompositeValidator>();
  val->add<WorkspaceUnitValidator>("TOF");
  val->add<HistogramValidator>();
  val->add<InstrumentValidator>();
49
  declareProperty(new WorkspaceProperty<>(
50
    "InputWorkspace","",Direction::Input,val),
51
52
    "The X units of this workspace must be time of flight with times in\n"
    "micro-seconds");
53
  auto mustBePositive = boost::make_shared<BoundedValidator<int> >();
54
55
56
57
  mustBePositive->setLower(0);
  declareProperty("Monitor1Spec", -1, mustBePositive,
    "The spectrum number of the output of the first monitor, e.g. MAPS\n"
    "41474, MARI 2, MERLIN 69634");
58
  declareProperty("Monitor2Spec", -1, mustBePositive,
59
60
    "The spectrum number of the output of the second monitor e.g. MAPS\n"
    "41475, MARI 3, MERLIN 69638");
61
  auto positiveDouble = boost::make_shared<BoundedValidator<double> >();
62
  positiveDouble->setLower(0);
63
64
  declareProperty("EnergyEstimate", -1.0, positiveDouble,
    "An approximate value for the typical incident energy, energy of\n"
65
    "neutrons leaving the source (meV)");
66
  declareProperty("IncidentEnergy", -1.0, Direction::Output);
67
  declareProperty("FirstMonitorPeak", -1.0, Direction::Output);
68
69
70
71
72
73

  m_fracCompl = 0.0;
}

/** Executes the algorithm
*  @throw out_of_range if the peak runs off the edge of the histogram
74
*  @throw NotFoundError if one of the requested spectrum numbers was not found in the workspace
75
76
77
78
79
*  @throw IndexError if there is a problem converting spectra indexes to spectra numbers, which would imply there is a problem with the workspace
*  @throw invalid_argument if a good peak fit wasn't made or the input workspace does not have common binning
*/
void GetEi::exec()
{
80
  MatrixWorkspace_const_sptr inWS = getProperty("InputWorkspace");
81
82
  const specid_t mon1Spec = getProperty("Monitor1Spec");
  const specid_t mon2Spec = getProperty("Monitor2Spec");
83
  double dist2moni0 = -1, dist2moni1 = -1;
84
  getGeometry(inWS, mon1Spec, mon2Spec, dist2moni0, dist2moni1);
85
86
87

  // the E_i estimate is used to find (identify) the monitor peaks, checking prior to fitting will throw an exception if this estimate is too big or small
  const double E_est = getProperty("EnergyEstimate");
88
  // we're assuming that the time units for the X-values in the workspace are micro-seconds
89
  const double peakLoc0 = 1e6*timeToFly(dist2moni0, E_est);
90
91
  // write a lot of stuff to the log at user level as it is very possible for fit routines not to the expected thing
  g_log.information() << "Based on the user selected energy the first peak will be searched for at TOF " << peakLoc0 << " micro seconds +/-" << boost::lexical_cast<std::string>(100.0*HALF_WINDOW) << "%\n";
92
  const double peakLoc1 = 1e6*timeToFly(dist2moni1, E_est);
93
  g_log.information() << "Based on the user selected energy the second peak will be searched for at TOF " << peakLoc1 << " micro seconds +/-" << boost::lexical_cast<std::string>(100.0*HALF_WINDOW) << "%\n";
94

95
    // get the histograms created by the monitors
Janik Zikovsky's avatar
Janik Zikovsky committed
96
  std::vector<size_t> indexes = getMonitorSpecIndexs(inWS, mon1Spec, mon2Spec);
97

98
99
  g_log.information() << "Looking for a peak in the first monitor spectrum, spectra index " << indexes[0] << std::endl;
  double t_monitor0 = getPeakCentre(inWS, indexes[0], peakLoc0);
100
101
102
  g_log.notice() << "The first peak has been found at TOF = " << t_monitor0 << " microseconds\n";
  setProperty("FirstMonitorPeak", t_monitor0);

103
104
  g_log.information() << "Looking for a peak in the second monitor spectrum, spectra index " << indexes[1] << std::endl;
  double t_monitor1 = getPeakCentre(inWS, indexes[1], peakLoc1);
105
  g_log.information() << "The second peak has been found at TOF = " << t_monitor1 << " microseconds\n";
106
107
108
109
110
111

  // assumes that the source and the both mintors lie on one straight line, the 1e-6 converts microseconds to seconds as the mean speed needs to be in m/s
  double meanSpeed = (dist2moni1 - dist2moni0)/(1e-6*(t_monitor1 - t_monitor0));

  // uses 0.5mv^2 to get the kinetic energy in joules which we then convert to meV
  double E_i = neutron_E_At(meanSpeed)/PhysicalConstants::meV;
112
  g_log.notice() << "The incident energy has been calculated to be " << E_i << " meV" << " (your estimate was " << E_est << " meV)\n";
113
114
115
116

  setProperty("IncidentEnergy", E_i);
}
/** Gets the distances between the source and detectors whose IDs you pass to it
117
118
119
120
121
*  @param WS :: the input workspace
*  @param mon0Spec :: Spectrum number of the output from the first monitor
*  @param mon1Spec :: Spectrum number of the output from the second monitor
*  @param monitor0Dist :: the calculated distance to the detector whose ID was passed to this function first
*  @param monitor1Dist :: calculated distance to the detector whose ID was passed to this function second
122
123
*  @throw NotFoundError if no detector is found for the detector ID given
*/
Doucet, Mathieu's avatar
Doucet, Mathieu committed
124
void GetEi::getGeometry(API::MatrixWorkspace_const_sptr WS, specid_t mon0Spec, specid_t mon1Spec, double &monitor0Dist, double &monitor1Dist) const
125
{
126
  const IComponent_const_sptr source = WS->getInstrument()->getSource();
127
128

  // retrieve a pointer to the first detector and get its distance
129
130
131
132
133
  size_t monWI = 0;
  try
  {
    monWI = WS->getIndexFromSpectrumNumber(mon0Spec);
  }
134
  catch (std::runtime_error &)
135
136
137
138
139
140
141
  {
    g_log.error() << "Could not find the workspace index for the monitor at spectrum " << mon0Spec << "\n";
    g_log.error() << "Error retrieving data for the first monitor" << std::endl;
    throw std::bad_cast();
  }
  const std::set<detid_t> & dets = WS->getSpectrum(monWI)->getDetectorIDs();

142
143
144
145
146
  if ( dets.size() != 1 )
  {
    g_log.error() << "The detector for spectrum number " << mon0Spec << " was either not found or is a group, grouped monitors are not supported by this algorithm\n";
    g_log.error() << "Error retrieving data for the first monitor" << std::endl;
    throw std::bad_cast();
147
  }
148
  IDetector_const_sptr det = WS->getInstrument()->getDetector(*dets.begin());
149
150
  monitor0Dist = det->getDistance(*(source.get()));

151
  // repeat for the second detector
152
153
154
155
  try
  {
    monWI = WS->getIndexFromSpectrumNumber(mon0Spec);
  }
156
  catch (std::runtime_error &)
157
158
159
160
161
162
163
  {
    g_log.error() << "Could not find the workspace index for the monitor at spectrum " << mon0Spec << "\n";
    g_log.error() << "Error retrieving data for the second monitor\n";
    throw std::bad_cast();
  }
  const std::set<detid_t> & dets2 = WS->getSpectrum(monWI)->getDetectorIDs();
  if ( dets2.size() != 1 )
164
165
166
167
  {
    g_log.error() << "The detector for spectrum number " << mon1Spec << " was either not found or is a group, grouped monitors are not supported by this algorithm\n";
    g_log.error() << "Error retrieving data for the second monitor\n";
    throw std::bad_cast();
168
  }
169
  det = WS->getInstrument()->getDetector(*dets2.begin());
170
  monitor1Dist = det->getDistance(*(source.get()));
171
}
172
/** Converts detector IDs to spectra indexes
173
174
175
*  @param WS :: the workspace on which the calculations are being performed
*  @param specNum1 :: spectrum number of the output of the first monitor
*  @param specNum2 :: spectrum number of the output of the second monitor
176
*  @return the indexes of the histograms created by the detector whose ID were passed
177
*  @throw NotFoundError if one of the requested spectrum numbers was not found in the workspace
178
*/
Doucet, Mathieu's avatar
Doucet, Mathieu committed
179
std::vector<size_t> GetEi::getMonitorSpecIndexs(API::MatrixWorkspace_const_sptr WS, specid_t specNum1, specid_t specNum2) const
180
{// getting spectra numbers from detector IDs is hard because the map works the other way, getting index numbers from spectra numbers has the same problem and we are about to do both
Janik Zikovsky's avatar
Janik Zikovsky committed
181
  std::vector<size_t> specInds;
182
183
  
  // get the index number of the histogram for the first monitor
Janik Zikovsky's avatar
Janik Zikovsky committed
184
  std::vector<specid_t> specNumTemp(&specNum1, &specNum1+1);
185
  WS->getIndicesFromSpectra(specNumTemp, specInds);
186
187
188
189
190
191
192
  if ( specInds.size() != 1 )
  {// the monitor spectrum isn't present in the workspace, we can't continue from here
    g_log.error() << "Couldn't find the first monitor spectrum, number " << specNum1 << std::endl;
    throw Exception::NotFoundError("GetEi::getMonitorSpecIndexs()", specNum1);
  }

  // nowe the second monitor
Janik Zikovsky's avatar
Janik Zikovsky committed
193
  std::vector<size_t> specIndexTemp;
194
  specNumTemp[0] = specNum2;
195
  WS->getIndicesFromSpectra(specNumTemp, specIndexTemp);
196
197
198
199
200
201
202
  if ( specIndexTemp.size() != 1 )
  {// the monitor spectrum isn't present in the workspace, we can't continue from here
    g_log.error() << "Couldn't find the second monitor spectrum, number " << specNum2 << std::endl;
    throw Exception::NotFoundError("GetEi::getMonitorSpecIndexs()", specNum2);
  }
  
  specInds.push_back(specIndexTemp[0]);
203
204
  return specInds;
}
205
206
/** Uses E_KE = mv^2/2 and s = vt to calculate the time required for a neutron
*  to travel a distance, s
207
208
* @param s :: ditance travelled in meters
* @param E_KE :: kinetic energy in meV
209
210
211
212
213
214
215
216
217
218
219
220
221
* @return the time to taken to travel that uninterrupted distance in seconds
*/
double GetEi::timeToFly(double s, double E_KE) const
{
  // E_KE = mv^2/2, s = vt
  // t = s/v, v = sqrt(2*E_KE/m)
  // t = s/sqrt(2*E_KE/m)

  // convert E_KE to joules kg m^2 s^-2
  E_KE *= PhysicalConstants::meV;

  return s/sqrt(2*E_KE/PhysicalConstants::NeutronMass);
}
222
223
224

/** Looks for and examines a peak close to that specified by the input parameters and
*  examines it to find a representative time for when the neutrons hit the detector
225
226
227
*  @param WS :: the workspace containing the monitor spectrum
*  @param monitIn :: the index of the histogram that contains the monitor spectrum
*  @param peakTime :: the estimated TOF of the monitor peak in the time units of the workspace
228
*  @return a time of flight value in the peak in microseconds
229
230
*  @throw invalid_argument if a good peak fit wasn't made or the input workspace does not have common binning
*  @throw out_of_range if the peak runs off the edge of the histogram
231
*  @throw runtime_error a Child Algorithm just falls over
232
*/
Peterson, Peter's avatar
Peterson, Peter committed
233
double GetEi::getPeakCentre(API::MatrixWorkspace_const_sptr WS, const int64_t monitIn, const double peakTime)
234
{
235
  const MantidVec& timesArray = WS->readX(monitIn);
236
  // we search for the peak only inside some window because there are often more peaks in the monitor histogram
237
  double halfWin = ( timesArray.back() - timesArray.front() )*HALF_WINDOW;
238
  // runs CropWorkspace as a Child Algorithm to and puts the result in a new temporary workspace that will be deleted when this algorithm has finished
239
  extractSpec(monitIn, peakTime-halfWin, peakTime+halfWin);
240
241
242
243
244
  // converting the workspace to count rate is required by the fitting algorithm if the bin widths are not all the same
  WorkspaceHelpers::makeDistribution(m_tempWS);
  // look out for user cancel messgages as the above command can take a bit of time
  advanceProgress(GET_COUNT_RATE);

245
  // to store fit results
Peterson, Peter's avatar
Peterson, Peter committed
246
  int64_t centreGausInd;
247
248
  double height, backGroundlev;
  getPeakEstimates(height, centreGausInd, backGroundlev);
249
250
  // look out for user cancel messgages
  advanceProgress(FIT_PEAK);
251
252
253

  // the peak centre is defined as the centre of the two half maximum points as this is better for asymmetric peaks
  // first loop backwards along the histogram to get the first half height point
254
  const double lHalf = findHalfLoc(centreGausInd, height, backGroundlev, GO_LEFT);
255
  // go forewards to get the half height on the otherside of the peak
256
257
258
  const double rHalf = findHalfLoc(centreGausInd, height, backGroundlev, GO_RIGHT);
  // the peak centre is defined as the mean of the two half height times 
  return (lHalf + rHalf)/2;
259
}
260
/** Calls CropWorkspace as a Child Algorithm and passes to it the InputWorkspace property
261
262
263
*  @param specInd :: the index number of the histogram to extract
*  @param start :: the number of the first bin to include (starts counting bins at 0)
*  @param end :: the number of the last bin to include (starts counting bins at 0)
264
*  @throw out_of_range if start, end or specInd are set outside of the vaild range for the workspace
265
*  @throw runtime_error if the algorithm just falls over
266
267
*  @throw invalid_argument if the input workspace does not have common binning
*/
Peterson, Peter's avatar
Peterson, Peter committed
268
void GetEi::extractSpec(int64_t specInd, double start, double end)
269
270
{
  IAlgorithm_sptr childAlg =
271
    createChildAlgorithm("CropWorkspace", 100*m_fracCompl, 100*(m_fracCompl+CROP) );
272
273
  m_fracCompl += CROP;
  
274
  childAlg->setProperty<MatrixWorkspace_sptr>("InputWorkspace",getProperty("InputWorkspace") );
275
276
277
278
  childAlg->setProperty( "XMin", start);
  childAlg->setProperty( "XMax", end);
  childAlg->setProperty( "StartWorkspaceIndex", specInd);
  childAlg->setProperty( "EndWorkspaceIndex", specInd);
279
  childAlg->executeAsChildAlg();
280
281
282
283
284
285
286
287
288
289
290

  m_tempWS = childAlg->getProperty("OutputWorkspace");

//DEBUGGING CODE uncomment out the line below if you want to see the TOF window that was analysed
//AnalysisDataService::Instance().addOrReplace("croped_dist_del", m_tempWS);
  progress(m_fracCompl);
  interruption_point();
}

/** Finds the largest peak by looping through the histogram and finding the maximum
*  value 
291
292
293
* @param height :: its passed value ignored it is set to the peak height
* @param centreInd :: passed value is ignored it will be set to the bin index of the peak center
* @param background :: passed value ignored set mean number of counts per bin in the spectrum
294
* @throw invalid_argument if the peak is not clearly above the background
295
*/
Peterson, Peter's avatar
Peterson, Peter committed
296
void GetEi::getPeakEstimates(double &height, int64_t &centreInd, double &background) const
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
{
  // take note of the number of background counts as error checking, do we have a peak or just a bump in the background
  background = 0;
  // start at the first Y value
  height = m_tempWS->readY(0)[0];
  centreInd = 0;
  // then loop through all the Y values and find the tallest peak
  for ( MantidVec::size_type i = 1; i < m_tempWS->readY(0).size()-1; ++i )
  {
    background += m_tempWS->readY(0)[i];
    if ( m_tempWS->readY(0)[i] > height )
    {
      centreInd = i;
      height = m_tempWS->readY(0)[centreInd];
    }
  }
  
Peterson, Peter's avatar
Peterson, Peter committed
314
  background = background/static_cast<double>(m_tempWS->readY(0).size());
315
316
317
318
319
320
321
322
  if ( height < PEAK_THRESH_H*background )
  {
    throw std::invalid_argument("No peak was found or its height is less than the threshold of " + boost::lexical_cast<std::string>(PEAK_THRESH_H) + " times the mean background, was the energy estimate (" + getPropertyValue("EnergyEstimate") + " meV) close enough?");
  }

  g_log.debug() << "Peak position is the bin that has the maximum Y value in the monitor spectrum, which is at TOF " << (m_tempWS->readX(0)[centreInd]+m_tempWS->readX(0)[centreInd+1])/2 << " (peak height " << height << " counts/microsecond)\n";

}
323
324
/** Estimates the closest time, looking either or back, when the number of counts is
*  half that in the bin whose index that passed
325
326
327
328
*  @param startInd :: index of the bin to search around, e.g. the index of the peak centre
*  @param height :: the number of counts (or count rate) to compare against e.g. a peak height
*  @param noise :: mean number of counts in each bin in the workspace
*  @param go :: either GetEi::GO_LEFT or GetEi::GO_RIGHT
329
*  @return estimated TOF of the half maximum point
330
331
332
*  @throw out_of_range if the end of the histogram is reached before the point is found
*  @throw invalid_argument if the peak is too thin
*/
333
double GetEi::findHalfLoc(MantidVec::size_type startInd, const double height, const double noise, const direction go) const
334
335
{
  MantidVec::size_type endInd = startInd;
336

337
  while ( m_tempWS->readY(0)[endInd] >  (height+noise)/2.0 )
338
339
  {
    endInd += go;
340
    if ( endInd < 1 )
341
    {
342
      throw std::out_of_range("Can't analyse peak, some of the peak is outside the " + boost::lexical_cast<std::string>(HALF_WINDOW*100) + "% window, at TOF values that are too low. Was the energy estimate close enough?");
343
    }
344
    if ( endInd > m_tempWS->readY(0).size()-2)
345
    {
346
      throw std::out_of_range("Can't analyse peak, some of the peak is outside the " + boost::lexical_cast<std::string>(HALF_WINDOW*100) + "% window, at TOF values that are too high. Was the energy estimate close enough?");
347
348
    }
  }
349

Peterson, Peter's avatar
Peterson, Peter committed
350
  if ( std::abs(static_cast<int64_t>(endInd - startInd)) < PEAK_THRESH_W )
351
352
353
354
355
  {// we didn't find a significant peak
    g_log.error() << "Likely precision problem or error, one half height distance is less than the threshold number of bins from the central peak: " << std::abs(static_cast<int>(endInd - startInd)) << "<" << PEAK_THRESH_W << ". Check the monitor peak\n";
  }
  // we have a peak in range, do an area check to see if the peak has any significance
  double hOverN = (height-noise)/noise;
Peterson, Peter's avatar
Peterson, Peter committed
356
  if ( hOverN < PEAK_THRESH_A && std::abs(hOverN*static_cast<double>(endInd - startInd)) < PEAK_THRESH_A )
357
358
359
  {// the peak could just be noise on the background, ignore it
    throw std::invalid_argument("No good peak was found. The ratio of the height to the background multiplied either half widths must be above the threshold (>" + boost::lexical_cast<std::string>(PEAK_THRESH_A) + " bins). Was the energy estimate close enough?");
  }
360
361
362
  // get the TOF value in the middle of the bin with the first value below the half height
  double halfTime = (m_tempWS->readX(0)[endInd]+m_tempWS->readX(0)[endInd+1])/2;
  // interpolate back between the first bin with less than half the counts to the bin before it
363
364
  if ( endInd != startInd )
  {// let the bin that we found have coordinates (x_1, y_1) the distance of the half point (x_2, y_2) from this is (y_1-y_2)/gradient. Gradient = (y_3-y_1)/(x_3-x_1) where (x_3, y_3) are the coordinates of the other bin we are using
365
366
367
368
369
370
    double gradient = ( m_tempWS->readY(0)[endInd] - m_tempWS->readY(0)[endInd-go] )/
      ( m_tempWS->readX(0)[endInd] - m_tempWS->readX(0)[endInd-go] );
    // we don't need to check for a zero or negative gradient if we assume the endInd bin was found when the Y-value dropped below the threshold
    double deltaY = m_tempWS->readY(0)[endInd]-(height+noise)/2.0;
    // correct for the interpolation back in the direction towards the peak centre
    halfTime -= deltaY/gradient;
371
372
  }

373
  g_log.debug() << "One half height point found at TOF = " << halfTime << " microseconds\n";
374
  return halfTime;
375
}
376
/** Get the kinetic energy of a neuton in joules given it speed using E=mv^2/2
377
*  @param speed :: the instantanious speed of a neutron in metres per second
378
379
*  @return the energy in joules
*/
380
381
382
383
384
385
double GetEi::neutron_E_At(double speed) const
{
  // E_KE = mv^2/2
  return PhysicalConstants::NeutronMass*speed*speed/(2);
}

386
387
388
389
390
391
392
393
/// Update the percentage complete estimate assuming that the algorithm has completed a task with estimated RunTime toAdd
void GetEi::advanceProgress(double toAdd)
{
  m_fracCompl += toAdd;
  progress(m_fracCompl);
  // look out for user cancel messgages
  interruption_point();
}
394
395
396

} // namespace Algorithms
} // namespace Mantid