Statistics.cpp 13.8 KB
Newer Older
1
2
3
// Includes
#include "MantidKernel/Statistics.h"

4
#include <algorithm>
Campbell, Stuart's avatar
Campbell, Stuart committed
5
6
#include <cfloat>
#include <cmath>
7
#include <iostream>
Campbell, Stuart's avatar
Campbell, Stuart committed
8

Hahn, Steven's avatar
Hahn, Steven committed
9
#include <boost/accumulators/accumulators.hpp>
Hahn, Steven's avatar
Hahn, Steven committed
10
#include <boost/accumulators/statistics/stats.hpp>
Hahn, Steven's avatar
Hahn, Steven committed
11
12
13
14
#include <boost/accumulators/statistics/min.hpp>
#include <boost/accumulators/statistics/max.hpp>
#include <boost/accumulators/statistics/variance.hpp>

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
namespace Mantid {
namespace Kernel {

using std::string;
using std::vector;

/**
 * Generate a Statistics object where all of the values are NaN. This is a good
 * initial default.
 */
Statistics getNanStatistics() {
  double nan = std::numeric_limits<double>::quiet_NaN();

  Statistics stats;
  stats.minimum = nan;
  stats.maximum = nan;
  stats.mean = nan;
  stats.median = nan;
  stats.standard_deviation = nan;

  return stats;
}

/**
 * There are enough special cases in determining the median where it useful to
 * put it in a single function.
 */
template <typename TYPE>
double getMedian(const vector<TYPE> &data, const size_t num_data,
                 const bool sorted) {
  if (num_data == 1)
    return static_cast<double>(*(data.begin()));

Hahn, Steven's avatar
Hahn, Steven committed
48
  bool is_even = ((num_data & 1) == 0);
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
  if (is_even) {
    double left = 0.0;
    double right = 0.0;

    if (sorted) {
      // Just get the centre two elements.
      left = static_cast<double>(*(data.begin() + num_data / 2 - 1));
      right = static_cast<double>(*(data.begin() + num_data / 2));
    } else {
      // If the data is not sorted, make a copy we can mess with
      vector<TYPE> temp(data.begin(), data.end());
      // Get what the centre two elements should be...
      std::nth_element(temp.begin(), temp.begin() + num_data / 2 - 1,
                       temp.end());
      left = static_cast<double>(*(temp.begin() + num_data / 2 - 1));
      std::nth_element(temp.begin(), temp.begin() + num_data / 2, temp.end());
      right = static_cast<double>(*(temp.begin() + num_data / 2));
Campbell, Stuart's avatar
Campbell, Stuart committed
66
    }
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    // return the average
    return (left + right) / 2.;
  } else
  // Odd number
  {
    if (sorted) {
      // If sorted and odd, just return the centre value
      return static_cast<double>(*(data.begin() + num_data / 2));
    } else {
      // If the data is not sorted, make a copy we can mess with
      vector<TYPE> temp(data.begin(), data.end());
      // Make sure the centre value is in the correct position
      std::nth_element(temp.begin(), temp.begin() + num_data / 2, temp.end());
      // Now return the centre value
      return static_cast<double>(*(temp.begin() + num_data / 2));
82
    }
83
  }
Hahn, Steven's avatar
Hahn, Steven committed
84
}
Hahn, Steven's avatar
Hahn, Steven committed
85

86
87
88
89
90
/**
 * There are enough special cases in determining the Z score where it useful to
 * put it in a single function.
 */
template <typename TYPE>
91
std::vector<double> getZscore(const vector<TYPE> &data) {
92
93
94
95
96
  if (data.size() < 3) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  std::vector<double> Zscore;
97
  Statistics stats = getStatistics(data);
98
99
100
101
  if (stats.standard_deviation == 0.) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
Hahn, Steven's avatar
Hahn, Steven committed
102
  for (auto it = data.cbegin(); it != data.cend(); ++it) {
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    double tmp = static_cast<double>(*it);
    Zscore.push_back(fabs((tmp - stats.mean) / stats.standard_deviation));
  }
  return Zscore;
}
/**
 * There are enough special cases in determining the modified Z score where it
 * useful to
 * put it in a single function.
 */
template <typename TYPE>
std::vector<double> getModifiedZscore(const vector<TYPE> &data,
                                      const bool sorted) {
  if (data.size() < 3) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  std::vector<double> MADvec;
  double tmp;
  size_t num_data = data.size(); // cache since it is frequently used
  double median = getMedian(data, num_data, sorted);
Hahn, Steven's avatar
Hahn, Steven committed
124
  for (auto it = data.cbegin(); it != data.cend(); ++it) {
125
126
127
128
129
130
131
132
133
134
    tmp = static_cast<double>(*it);
    MADvec.push_back(fabs(tmp - median));
  }
  double MAD = getMedian(MADvec, num_data, sorted);
  if (MAD == 0.) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  MADvec.clear();
  std::vector<double> Zscore;
Hahn, Steven's avatar
Hahn, Steven committed
135
  for (auto it = data.begin(); it != data.end(); ++it) {
136
137
138
139
140
141
142
143
144
    tmp = static_cast<double>(*it);
    Zscore.push_back(0.6745 * fabs((tmp - median) / MAD));
  }
  return Zscore;
}

/**
 * Determine the statistics for a vector of data. If it is sorted then let the
 * function know so it won't make a copy of the data for determining the median.
145
146
 * @param data Data points whose statistics are to be evaluated
 * @param flags A set of flags to control the computation of the stats
147
148
 */
template <typename TYPE>
149
Statistics getStatistics(const vector<TYPE> &data, const unsigned int flags) {
Hahn, Steven's avatar
Hahn, Steven committed
150
  Statistics statistics = getNanStatistics();
151
  size_t num_data = data.size(); // cache since it is frequently used
152
  if (num_data == 0) {           // don't do anything
Hahn, Steven's avatar
Hahn, Steven committed
153
    return statistics;
154
  }
155
156
157
  // calculate the mean if this or the stddev is requested
  const bool stddev = ((flags & StatOptions::UncorrectedStdDev) ||
                       (flags & StatOptions::CorrectedStdDev));
Hahn, Steven's avatar
Hahn, Steven committed
158
159
  if (stddev) {
    using namespace boost::accumulators;
Hahn, Steven's avatar
Hahn, Steven committed
160
    accumulator_set<double, stats<tag::min, tag::max, tag::variance>> acc;
Hahn, Steven's avatar
Hahn, Steven committed
161
    for (auto &value : data) {
Hahn, Steven's avatar
Hahn, Steven committed
162
      acc(static_cast<double>(value));
163
    }
Hahn, Steven's avatar
Hahn, Steven committed
164
165
166
    statistics.minimum = min(acc);
    statistics.maximum = max(acc);
    statistics.mean = mean(acc);
Hahn, Steven's avatar
Hahn, Steven committed
167
168
169
170
171
172
    double var = variance(acc);

    if (flags & StatOptions::CorrectedStdDev) {
      double ndofs = static_cast<double>(data.size());
      var *= ndofs / (ndofs - 1.0);
    }
Hahn, Steven's avatar
Hahn, Steven committed
173
    statistics.standard_deviation = std::sqrt(var);
Hahn, Steven's avatar
Hahn, Steven committed
174
175
176

  } else if (flags & StatOptions::Mean) {
    using namespace boost::accumulators;
Hahn, Steven's avatar
Hahn, Steven committed
177
    accumulator_set<double, stats<tag::mean>> acc;
Hahn, Steven's avatar
Hahn, Steven committed
178
    for (auto &value : data) {
Hahn, Steven's avatar
Hahn, Steven committed
179
      acc(static_cast<double>(value));
Hahn, Steven's avatar
Hahn, Steven committed
180
    }
Hahn, Steven's avatar
Hahn, Steven committed
181
    statistics.mean = mean(acc);
182
  }
Hahn, Steven's avatar
Hahn, Steven committed
183

184
185
  // calculate the median if requested
  if (flags & StatOptions::Median) {
Hahn, Steven's avatar
Hahn, Steven committed
186
187
    statistics.median =
        getMedian(data, num_data, flags & StatOptions::SortedData);
188
  }
Hahn, Steven's avatar
Hahn, Steven committed
189

Hahn, Steven's avatar
Hahn, Steven committed
190
  return statistics;
191
192
193
194
195
}

/// Getting statistics of a string array should just give a bunch of NaNs
template <>
DLLExport Statistics
196
197
getStatistics<string>(const vector<string> &data, const unsigned int flags) {
  UNUSED_ARG(flags);
198
199
200
201
202
203
204
  UNUSED_ARG(data);
  return getNanStatistics();
}

/// Getting statistics of a boolean array should just give a bunch of NaNs
template <>
DLLExport Statistics
205
206
getStatistics<bool>(const vector<bool> &data, const unsigned int flags) {
  UNUSED_ARG(flags);
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
  UNUSED_ARG(data);
  return getNanStatistics();
}

/** Return the Rwp of a diffraction pattern data
  * @param obsI :: array of observed intensity values
  * @param calI :: array of calculated intensity values;
  * @param obsE :: array of error of the observed data;
  * @return :: RFactor including Rp and Rwp
  *
  */
Rfactor getRFactor(const std::vector<double> &obsI,
                   const std::vector<double> &calI,
                   const std::vector<double> &obsE) {
  // 1. Check
  if (obsI.size() != calI.size() || obsI.size() != obsE.size()) {
    std::stringstream errss;
    errss << "GetRFactor() Input Error!  Observed Intensity (" << obsI.size()
          << "), Calculated Intensity (" << calI.size()
          << ") and Observed Error (" << obsE.size()
          << ") have different number of elements.";
    throw std::runtime_error(errss.str());
  }
230
  if (obsI.empty()) {
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    throw std::runtime_error("getRFactor(): the input arrays are empty.");
  }

  double sumnom = 0;
  double sumdenom = 0;
  double sumrpnom = 0;
  double sumrpdenom = 0;

  size_t numpts = obsI.size();
  for (size_t i = 0; i < numpts; ++i) {
    double cal_i = calI[i];
    double obs_i = obsI[i];
    double sigma = obsE[i];
    double weight = 1.0 / (sigma * sigma);
    double diff = obs_i - cal_i;

    if (weight == weight && weight <= DBL_MAX) {
      // If weight is not NaN.
      sumrpnom += fabs(diff);
      sumrpdenom += fabs(obs_i);

      double tempnom = weight * diff * diff;
      double tempden = weight * obs_i * obs_i;

      sumnom += tempnom;
      sumdenom += tempden;

      if (tempnom != tempnom || tempden != tempden) {
        std::cout << "***** Error! ****** Data indexed " << i << " is NaN. "
                  << "i = " << i << ": cal = " << calI[i] << ", obs = " << obs_i
                  << ", weight = " << weight << ". \n";
Campbell, Stuart's avatar
Campbell, Stuart committed
262
263
      }
    }
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
  }

  Rfactor rfactor(0., 0.);
  rfactor.Rp = (sumrpnom / sumrpdenom);
  rfactor.Rwp = std::sqrt(sumnom / sumdenom);

  if (rfactor.Rwp != rfactor.Rwp)
    std::cout << "Rwp is NaN.  Denominator = " << sumnom
              << "; Nominator = " << sumdenom << ". \n";

  return rfactor;
}

/**
 * This will calculate the first n-moments (inclusive) about the origin. For
 *example
 * if maxMoment=2 then this will return 3 values: 0th (total weight), 1st
 *(mean), 2nd (deviation).
 *
 * @param x The independent values
 * @param y The dependent values
 * @param maxMoment The number of moments to calculate
 * @returns The first n-moments.
 */
template <typename TYPE>
std::vector<double> getMomentsAboutOrigin(const std::vector<TYPE> &x,
                                          const std::vector<TYPE> &y,
                                          const int maxMoment) {
  // densities have the same number of x and y
  bool isDensity(x.size() == y.size());

  // if it isn't a density then check for histogram
  if ((!isDensity) && (x.size() != y.size() + 1)) {
    std::stringstream msg;
    msg << "length of x (" << x.size() << ") and y (" << y.size()
        << ")do not match";
    throw std::out_of_range(msg.str());
  }

  // initialize a result vector with all zeros
  std::vector<double> result(maxMoment + 1, 0.);

  // cache the maximum index
  size_t numPoints = y.size();
  if (isDensity)
    numPoints = x.size() - 1;

  // densities are calculated using Newton's method for numerical integration
312
313
  // as backwards as it sounds, the outer loop should be the points rather
  // than
314
315
316
317
318
319
320
321
322
  // the moments
  for (size_t j = 0; j < numPoints; ++j) {
    // reduce item lookup - and central x for histogram
    const double xVal = .5 * static_cast<double>(x[j] + x[j + 1]);
    // this variable will be (x^n)*y
    double temp = static_cast<double>(y[j]); // correct for histogram
    if (isDensity) {
      const double xDelta = static_cast<double>(x[j + 1] - x[j]);
      temp = .5 * (temp + static_cast<double>(y[j + 1])) * xDelta;
Campbell, Stuart's avatar
Campbell, Stuart committed
323
324
    }

325
326
327
328
329
    // accumulate the moments
    result[0] += temp;
    for (size_t i = 1; i < result.size(); ++i) {
      temp *= xVal;
      result[i] += temp;
330
    }
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
  }

  return result;
}

/**
 * This will calculate the first n-moments (inclusive) about the mean (1st
 *moment). For example
 * if maxMoment=2 then this will return 3 values: 0th (total weight), 1st
 *(mean), 2nd (deviation).
 *
 * @param x The independent values
 * @param y The dependent values
 * @param maxMoment The number of moments to calculate
 * @returns The first n-moments.
 */
template <typename TYPE>
std::vector<double> getMomentsAboutMean(const std::vector<TYPE> &x,
                                        const std::vector<TYPE> &y,
                                        const int maxMoment) {
  // get the zeroth (integrated value) and first moment (mean)
  std::vector<double> momentsAboutOrigin = getMomentsAboutOrigin(x, y, 1);
  const double mean = momentsAboutOrigin[1];

  // initialize a result vector with all zeros
  std::vector<double> result(maxMoment + 1, 0.);
  result[0] = momentsAboutOrigin[0];

  // escape early if we need to
  if (maxMoment == 0)
    return result;

  // densities have the same number of x and y
  bool isDensity(x.size() == y.size());

  // cache the maximum index
  size_t numPoints = y.size();
  if (isDensity)
    numPoints = x.size() - 1;

  // densities are calculated using Newton's method for numerical integration
372
373
  // as backwards as it sounds, the outer loop should be the points rather
  // than
374
375
376
377
378
379
380
381
382
383
384
385
386
387
  // the moments
  for (size_t j = 0; j < numPoints; ++j) {
    // central x in histogram with a change of variables - and just change for
    // density
    const double xVal =
        .5 * static_cast<double>(x[j] + x[j + 1]) - mean; // change of variables

    // this variable will be (x^n)*y
    double temp;
    if (isDensity) {
      const double xDelta = static_cast<double>(x[j + 1] - x[j]);
      temp = xVal * .5 * static_cast<double>(y[j] + y[j + 1]) * xDelta;
    } else {
      temp = xVal * static_cast<double>(y[j]);
388
389
    }

390
391
392
393
394
    // accumulate the moment
    result[1] += temp;
    for (size_t i = 2; i < result.size(); ++i) {
      temp *= xVal;
      result[i] += temp;
395
    }
396
397
398
399
400
401
402
403
404
  }

  return result;
}

// -------------------------- Macro to instantiation concrete types
// --------------------------------
#define INSTANTIATE(TYPE)                                                      \
  template MANTID_KERNEL_DLL Statistics                                        \
405
  getStatistics<TYPE>(const vector<TYPE> &, const unsigned int);               \
406
  template MANTID_KERNEL_DLL std::vector<double> getZscore<TYPE>(              \
407
      const vector<TYPE> &);                                                   \
408
409
410
411
412
413
414
415
416
417
418
  template MANTID_KERNEL_DLL std::vector<double> getModifiedZscore<TYPE>(      \
      const vector<TYPE> &, const bool);                                       \
  template MANTID_KERNEL_DLL std::vector<double> getMomentsAboutOrigin<TYPE>(  \
      const std::vector<TYPE> &x, const std::vector<TYPE> &y,                  \
      const int maxMoment);                                                    \
  template MANTID_KERNEL_DLL std::vector<double> getMomentsAboutMean<TYPE>(    \
      const std::vector<TYPE> &x, const std::vector<TYPE> &y,                  \
      const int maxMoment);

// --------------------------- Concrete instantiations
// ---------------------------------------------
419
420
421
422
423
424
425
426
INSTANTIATE(float)
INSTANTIATE(double)
INSTANTIATE(int)
INSTANTIATE(long)
INSTANTIATE(long long)
INSTANTIATE(unsigned int)
INSTANTIATE(unsigned long)
INSTANTIATE(unsigned long long)
427
428

} // namespace Kernel
429
} // namespace Mantid