LeanPeak.cpp 24.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// Mantid Repository : https://github.com/mantidproject/mantid
//
// Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
//   NScD Oak Ridge National Laboratory, European Spallation Source,
//   Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS
// SPDX - License - Identifier: GPL - 3.0 +
#include "MantidDataObjects/LeanPeak.h"
#include "MantidDataObjects/NoShape.h"
#include "MantidGeometry/Instrument/RectangularDetector.h"
#include "MantidGeometry/Instrument/ReferenceFrame.h"
#include "MantidGeometry/Objects/InstrumentRayTracer.h"
#include "MantidGeometry/Surfaces/LineIntersectVisit.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/Exception.h"
#include "MantidKernel/Strings.h"

#include "boost/make_shared.hpp"

#include <algorithm>
#include <cctype>
#include <string>
#include <utility>

using namespace Mantid;
using namespace Mantid::Kernel;
using namespace Mantid::Geometry;

namespace Mantid {
namespace DataObjects {

//----------------------------------------------------------------------------------------------
/** Default constructor */
LeanPeak::LeanPeak()
34
35
36
37
38
39
    : m_H(0), m_K(0), m_L(0), m_intensity(0), m_sigmaIntensity(0),
      m_binCount(0), m_initialEnergy(0.), m_finalEnergy(0.),
      m_absorptionWeightedPathLength(0), m_GoniometerMatrix(3, 3, true),
      m_InverseGoniometerMatrix(3, 3, true), m_runNumber(0), m_monitorCount(0),
      m_row(-1), m_col(-1), m_peakNumber(0), m_intHKL(V3D(0, 0, 0)),
      m_intMNP(V3D(0, 0, 0)), m_peakShape(std::make_shared<NoShape>()) {
40
41
42
43
44
45
46
47
  convention = Kernel::ConfigService::Instance().getString("Q.convention");
}

//----------------------------------------------------------------------------------------------
/** Constructor that uses the Q position of the peak (in the lab frame).
 * No detector ID is set.
 *
 * @param QLabFrame :: Q of the center of the peak, in reciprocal space
48
 * @param goniometer :: a 3x3 rotation matrix
49
 */
50
LeanPeak::LeanPeak(const Mantid::Kernel::V3D &QLabFrame,
51
                   const Mantid::Kernel::Matrix<double> &goniometer)
52
53
    : m_H(0), m_K(0), m_L(0), m_intensity(0), m_sigmaIntensity(0),
      m_binCount(0), m_absorptionWeightedPathLength(0),
54
      m_GoniometerMatrix(goniometer), m_InverseGoniometerMatrix(goniometer),
55
56
57
58
      m_runNumber(0), m_monitorCount(0), m_peakNumber(0),
      m_intHKL(V3D(0, 0, 0)), m_intMNP(V3D(0, 0, 0)),
      m_peakShape(std::make_shared<NoShape>()) {
  convention = Kernel::ConfigService::Instance().getString("Q.convention");
59
60
61
62
  if (fabs(m_InverseGoniometerMatrix.Invert()) < 1e-8)
    throw std::invalid_argument(
        "Peak::ctor(): Goniometer matrix must non-singular.");
  this->setQLabFrame(QLabFrame);
63
64
65
66
67
68
69
70
71
}

//----------------------------------------------------------------------------------------------
/** Constructor that uses the Q position of the peak (in the sample frame)
 * and a goniometer rotation matrix.
 * No detector ID is set.
 *
 * @param QSampleFrame :: Q of the center of the peak, in reciprocal space, in
 *the sample frame (goniometer rotation accounted for).
72
73
 * @param goniometer :: optional, a 3x3 rotation matrix, to allow convertion to
 *QLab
74
 */
75
76
77
LeanPeak::LeanPeak(
    const Mantid::Kernel::V3D &QSampleFrame,
    boost::optional<const Mantid::Kernel::Matrix<double>> &goniometer)
78
79
80
    : m_H(0), m_K(0), m_L(0), m_intensity(0), m_sigmaIntensity(0),
      m_binCount(0), m_absorptionWeightedPathLength(0),
      m_GoniometerMatrix(3, 3, true), m_InverseGoniometerMatrix(3, 3, true),
81
      m_runNumber(0), m_monitorCount(0), m_peakNumber(0),
82
83
84
      m_intHKL(V3D(0, 0, 0)), m_intMNP(V3D(0, 0, 0)),
      m_peakShape(std::make_shared<NoShape>()) {
  convention = Kernel::ConfigService::Instance().getString("Q.convention");
85
86
87
  if (goniometer.is_initialized())
    this->setGoniometerMatrix(goniometer.get());
  this->setQSampleFrame(QSampleFrame);
88
89
90
91
92
93
94
95
}

/**
 * @brief Copy constructor
 * @param other : Source
 * @return
 */
LeanPeak::LeanPeak(const LeanPeak &other)
96
    : m_bankName(other.m_bankName), m_H(other.m_H), m_K(other.m_K),
97
98
99
100
101
102
103
104
      m_L(other.m_L), m_intensity(other.m_intensity),
      m_sigmaIntensity(other.m_sigmaIntensity), m_binCount(other.m_binCount),
      m_initialEnergy(other.m_initialEnergy),
      m_finalEnergy(other.m_finalEnergy),
      m_absorptionWeightedPathLength(other.m_absorptionWeightedPathLength),
      m_GoniometerMatrix(other.m_GoniometerMatrix),
      m_InverseGoniometerMatrix(other.m_InverseGoniometerMatrix),
      m_runNumber(other.m_runNumber), m_monitorCount(other.m_monitorCount),
105
106
107
      m_row(other.m_row), m_col(other.m_col), m_peakNumber(other.m_peakNumber),
      m_intHKL(other.m_intHKL), m_intMNP(other.m_intMNP),
      m_peakShape(other.m_peakShape->clone()), convention(other.convention) {}
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

//----------------------------------------------------------------------------------------------
/** Set the incident wavelength of the neutron. Calculates the energy from this.
 * Assumes elastic scattering.
 *
 * @param wavelength :: wavelength in Angstroms.
 */
void LeanPeak::setWavelength(double wavelength) {
  // Velocity of the neutron (non-relativistic)
  double velocity = PhysicalConstants::h /
                    (wavelength * 1e-10 * PhysicalConstants::NeutronMass);
  // Energy in J of the neutron
  double energy = PhysicalConstants::NeutronMass * velocity * velocity / 2.0;
  // Convert to meV
  m_initialEnergy = energy / PhysicalConstants::meV;
  m_finalEnergy = m_initialEnergy;
}

//----------------------------------------------------------------------------------------------
/** Set the detector ID of the pixel at the centre of the peak and look up and
 * cache
 *  values related to it. It also adds it to the list of contributing detectors
 * for this peak but
 *  does NOT remove the old centre.
 * @param id :: ID of detector at the centre of the peak.
 */
134
void LeanPeak::setDetectorID([[maybe_unused]] int id) {
135
  throw std::runtime_error("LeanPeak::setDetectorID(): Has no detector ID");
136
137
138
139
}

//----------------------------------------------------------------------------------------------
/** Get the ID of the detector at the center of the peak  */
140
141
142
int LeanPeak::getDetectorID() const {
  throw std::runtime_error("LeanPeak::getDetectorID(): Has no detector ID");
}
143
144
145
146
147
148
149

//----------------------------------------------------------------------------------------------
/** Set the instrument (and save the source/sample pos).
 * Call setDetectorID AFTER this call.
 *
 * @param inst :: Instrument sptr to use
 */
150
151
void LeanPeak::setInstrument([
    [maybe_unused]] const Geometry::Instrument_const_sptr &inst) {
152
  throw std::runtime_error("LeanPeak::setInstrument(): Has no instrument");
153
154
155
156
}

//----------------------------------------------------------------------------------------------
/** Return a shared ptr to the detector at center of peak. */
157
158
159
Geometry::IDetector_const_sptr LeanPeak::getDetector() const {
  throw std::runtime_error("LeanPeak::getDetector(): Has no detector ID");
}
160
161
162

/** Return a shared ptr to the instrument for this peak. */
Geometry::Instrument_const_sptr LeanPeak::getInstrument() const {
163
  throw std::runtime_error("LeanPeak::setInstrument(): Has no instrument");
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
}

// -------------------------------------------------------------------------------------
/** Calculate the neutron wavelength (in angstroms) at the peak
 * (Note for inelastic scattering - it is the wavelength corresponding to the
 * final energy)*/
double LeanPeak::getWavelength() const {
  // Energy in J of the neutron
  double energy = PhysicalConstants::meV * m_finalEnergy;
  // v = sqrt(2.0 * E / m)
  double velocity = sqrt(2.0 * energy / PhysicalConstants::NeutronMass);
  // wavelength = h / mv
  double wavelength =
      PhysicalConstants::h / (PhysicalConstants::NeutronMass * velocity);
  // Return it in angstroms
  return wavelength * 1e10;
}

// -------------------------------------------------------------------------------------
/** Calculate the time of flight (in microseconds) of the neutrons for this
 * peak,
 * using the geometry of the detector  */
186
double LeanPeak::getTOF() const { throw std::runtime_error("not implemented"); }
187
188
189
190

// -------------------------------------------------------------------------------------
/** Calculate the scattering angle of the peak  */
double LeanPeak::getScattering() const {
191
  throw std::runtime_error("not implemented");
192
193
194
195
196
}

// -------------------------------------------------------------------------------------
/** Calculate the azimuthal angle of the peak  */
double LeanPeak::getAzimuthal() const {
197
  throw std::runtime_error("not implemented");
198
199
200
201
202
}

// -------------------------------------------------------------------------------------
/** Calculate the d-spacing of the peak, in 1/Angstroms  */
double LeanPeak::getDSpacing() const {
203
  throw std::runtime_error("not implemented");
204
205
206
207
208
209
210
211
212
}

//----------------------------------------------------------------------------------------------
/** Return the Q change (of the lattice, k_i - k_f) for this peak.
 * The Q is in the Lab frame: the goniometer rotation was NOT taken out.
 *
 * Note: There is a 2*pi factor used, so |Q| = 2*pi/wavelength.
 * */
Mantid::Kernel::V3D LeanPeak::getQLabFrame() const {
213
  return m_GoniometerMatrix * m_Qsample;
214
215
216
217
218
}

//----------------------------------------------------------------------------------------------
/** Return the Q change (of the lattice, k_i - k_f) for this peak.
 * The Q is in the Sample frame: the goniometer rotation WAS taken out. */
219
Mantid::Kernel::V3D LeanPeak::getQSampleFrame() const { return m_Qsample; }
220
221
222
223
224
225
226
227
228
229
230
231

//----------------------------------------------------------------------------------------------
/** Set the peak using the peak's position in reciprocal space, in the sample
 *frame.
 * The GoniometerMatrix will be used to find the Q in the lab frame, so it
 *should
 * be set beforehand.
 *
 * @param QSampleFrame :: Q of the center of the peak, in reciprocal space
 *        This is in inelastic convention: momentum transfer of the LATTICE!
 *        Also, q does NOT have a 2pi factor = it is equal to 1/wavelength.
 */
232
233
234
235
void LeanPeak::setQSampleFrame(
    const Mantid::Kernel::V3D &QSampleFrame,
    [[maybe_unused]] boost::optional<double> detectorDistance) {
  m_Qsample = QSampleFrame;
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
}

//----------------------------------------------------------------------------------------------
/** Set the peak using the peak's position in reciprocal space, in the lab
 *frame.
 * The detector position will be determined.
 * DetectorID, row and column will be set to -1 since they are not (necessarily)
 *found.
 * You can call findDetector to look for the detector ID
 *
 * @param qLab :: Q of the center of the peak, in reciprocal space.
 *        This is in inelastic convention: momentum transfer of the LATTICE!
 *        Also, q does have a 2pi factor = it is equal to 2pi/wavelength (in
 *Angstroms).
 * @param detectorDistance :: distance between the sample and the detector. If
 *this is provided. Then we do not
 * ray trace to find the intersecing detector.
 */
254
255
256
257
void LeanPeak::setQLabFrame(
    const Mantid::Kernel::V3D &qLab,
    [[maybe_unused]] boost::optional<double> detectorDistance) {
  this->setQSampleFrame(m_InverseGoniometerMatrix * qLab);
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
}

//----------------------------------------------------------------------------------------------
/** Return the run number this peak was measured at. */
int LeanPeak::getRunNumber() const { return m_runNumber; }

/** Set the run number that measured this peak
 * @param m_runNumber :: the run number   */
void LeanPeak::setRunNumber(int m_runNumber) {
  this->m_runNumber = m_runNumber;
}

//----------------------------------------------------------------------------------------------
/** Return the monitor count stored in this peak. */
double LeanPeak::getMonitorCount() const { return m_monitorCount; }

/** Set the monitor count for this peak
 * @param m_monitorCount :: the monitor count */
void LeanPeak::setMonitorCount(double m_monitorCount) {
  this->m_monitorCount = m_monitorCount;
}

//----------------------------------------------------------------------------------------------
/** Get the final neutron energy in meV */
double LeanPeak::getFinalEnergy() const { return m_finalEnergy; }

/** Get the initial (incident) neutron energy in meV */
double LeanPeak::getInitialEnergy() const { return m_initialEnergy; }

/** Get the difference between the initial and final neutron energy in meV */
double LeanPeak::getEnergyTransfer() const {
  return getInitialEnergy() - getFinalEnergy();
}

//----------------------------------------------------------------------------------------------
/** Get the H index of the peak */
double LeanPeak::getH() const { return m_H; }

/** Get the K index of the peak */
double LeanPeak::getK() const { return m_K; }

/** Get the L index of the peak */
double LeanPeak::getL() const { return m_L; }

/** Return the HKL vector */
Mantid::Kernel::V3D LeanPeak::getHKL() const { return V3D(m_H, m_K, m_L); }

/** Return True if the peak has been indexed */
bool LeanPeak::isIndexed() const {
  if (m_H == 0. && m_K == 0. && m_L == 0.)
    return false;
  return true;
}

/** Return the int HKL vector */
Mantid::Kernel::V3D LeanPeak::getIntHKL() const { return m_intHKL; }

/** Return the int MNP vector */
V3D LeanPeak::getIntMNP() const { return m_intMNP; }

//----------------------------------------------------------------------------------------------
/** Set the H index of this peak
 * @param m_H :: index to set   */
void LeanPeak::setH(double m_H) { this->m_H = m_H; }

/** Set the K index of this peak
 * @param m_K :: index to set   */
void LeanPeak::setK(double m_K) { this->m_K = m_K; }

/** Set the L index of this peak
 * @param m_L :: index to set   */
void LeanPeak::setL(double m_L) { this->m_L = m_L; }

/** Set the BankName of this peak
 * @param m_bankName :: index to set   */
void LeanPeak::setBankName(std::string m_bankName) {
  this->m_bankName = std::move(m_bankName);
}

/** Set all three H,K,L indices of the peak */
void LeanPeak::setHKL(double H, double K, double L) {
  m_H = H;
  m_K = K;
  m_L = L;
}

/** Set all HKL
 *
 * @param HKL :: vector with x,y,z -> h,k,l
 */
void LeanPeak::setHKL(const Mantid::Kernel::V3D &HKL) {
  m_H = HKL.X();
  m_K = HKL.Y();
  m_L = HKL.Z();
}

/** Set int HKL
 *
 * @param HKL :: vector with integer x,y,z -> h,k,l
 */
void LeanPeak::setIntHKL(const V3D &HKL) {
  m_intHKL = V3D(std::round(HKL[0]), std::round(HKL[1]), std::round(HKL[2]));
}

/** Sets the modulated peak structure number
 * @param MNP :: modulated peak structure value
 */
void LeanPeak::setIntMNP(const V3D &MNP) {
  m_intMNP = V3D(std::round(MNP[0]), std::round(MNP[1]), std::round(MNP[2]));
}

/** Set sample position
 *
 * @ doubles x,y,z-> samplePos(x), samplePos(y), samplePos(z)
 */
373
374
375
376
void LeanPeak::setSamplePos([[maybe_unused]] double samX,
                            [[maybe_unused]] double samY,
                            [[maybe_unused]] double samZ) {
  throw std::runtime_error("not implemented");
377
378
379
380
381
382
}

/** Set sample position
 *
 * @param XYZ :: vector x,y,z-> samplePos(x), samplePos(y), samplePos(z)
 */
383
384
void LeanPeak::setSamplePos([[maybe_unused]] const Mantid::Kernel::V3D &XYZ) {
  throw std::runtime_error("not implemented");
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
}
//----------------------------------------------------------------------------------------------
/** Return the # of counts in the bin at its peak*/
double LeanPeak::getBinCount() const { return m_binCount; }

/** Return the integrated peak intensity */
double LeanPeak::getIntensity() const { return m_intensity; }

/** Return the error on the integrated peak intensity */
double LeanPeak::getSigmaIntensity() const { return m_sigmaIntensity; }

/** Return the peak intensity divided by the error in the intensity */
double LeanPeak::getIntensityOverSigma() const {
  const auto result = m_intensity / m_sigmaIntensity;
  return (std::isinf(result)) ? 0.0 : result;
}

/** Set the integrated peak intensity
 * @param m_intensity :: intensity value   */
void LeanPeak::setIntensity(double m_intensity) {
  this->m_intensity = m_intensity;
}

/** Set the # of counts in the bin at its peak
 * @param m_binCount :: counts  */
void LeanPeak::setBinCount(double m_binCount) { this->m_binCount = m_binCount; }

/** Set the error on the integrated peak intensity
 * @param m_sigmaIntensity :: intensity error value   */
void LeanPeak::setSigmaIntensity(double m_sigmaIntensity) {
  this->m_sigmaIntensity = m_sigmaIntensity;
}

/** Set the final energy
 * @param m_finalEnergy :: final energy in meV   */
void LeanPeak::setFinalEnergy(double m_finalEnergy) {
  this->m_finalEnergy = m_finalEnergy;
}

/** Set the initial energy
 * @param m_initialEnergy :: initial energy in meV   */
void LeanPeak::setInitialEnergy(double m_initialEnergy) {
  this->m_initialEnergy = m_initialEnergy;
}

// -------------------------------------------------------------------------------------
/** Get the goniometer rotation matrix at which this peak was measured. */
Mantid::Kernel::Matrix<double> LeanPeak::getGoniometerMatrix() const {
  return this->m_GoniometerMatrix;
}

/** Set the goniometer rotation matrix at which this peak was measured.
 * @param goniometerMatrix :: 3x3 matrix that represents the rotation matrix of
 * the goniometer
 * @throw std::invalid_argument if matrix is not 3x3*/
void LeanPeak::setGoniometerMatrix(
    const Mantid::Kernel::Matrix<double> &goniometerMatrix) {
  if ((goniometerMatrix.numCols() != 3) || (goniometerMatrix.numRows() != 3))
    throw std::invalid_argument(
        "LeanPeak::setGoniometerMatrix(): Goniometer matrix must be 3x3.");
  this->m_GoniometerMatrix = goniometerMatrix;
  // Calc the inverse rotation matrix
  m_InverseGoniometerMatrix = m_GoniometerMatrix;
  if (fabs(m_InverseGoniometerMatrix.Invert()) < 1e-8)
    throw std::invalid_argument("LeanPeak::setGoniometerMatrix(): Goniometer "
                                "matrix must be non-singular.");
}

// -------------------------------------------------------------------------------------
/** Find the name of the bank that is the parent of the detector. This works
 * best for RectangularDetector instruments (goes up two levels)
 * @return name of the bank.
 */
std::string LeanPeak::getBankName() const { return m_bankName; }

// -------------------------------------------------------------------------------------
/** For RectangularDetectors only, returns the row (y) of the pixel of the
 * detector.
 * Returns -1 if it could not find it. */
int LeanPeak::getRow() const { return m_row; }

// -------------------------------------------------------------------------------------
/** For RectangularDetectors only, returns the column (x) of the pixel of the
 * detector.
 * Returns -1 if it could not find it. */
int LeanPeak::getCol() const { return m_col; }

// -------------------------------------------------------------------------------------
/**Returns the unique peak number
 * Returns -1 if it could not find it. */
int LeanPeak::getPeakNumber() const { return m_peakNumber; }

// -------------------------------------------------------------------------------------
/** For RectangularDetectors only, sets the row (y) of the pixel of the
 * detector.
 * @param m_row :: row value   */
void LeanPeak::setRow(int m_row) { this->m_row = m_row; }

// -------------------------------------------------------------------------------------
/** For RectangularDetectors only, sets the column (x) of the pixel of the
 * detector.
 * @param m_col :: col value   */
void LeanPeak::setCol(int m_col) { this->m_col = m_col; }

// -------------------------------------------------------------------------------------
/** Sets the unique peak number
 * @param m_peakNumber :: unique peak number value   */
void LeanPeak::setPeakNumber(int m_peakNumber) {
  this->m_peakNumber = m_peakNumber;
}

// -------------------------------------------------------------------------------------
/** Return the detector position vector */
498
499
500
Mantid::Kernel::V3D LeanPeak::getDetPos() const {
  throw std::runtime_error("not implemented");
}
501
502
503

// -------------------------------------------------------------------------------------
/** Return the sample position vector */
504
505
506
Mantid::Kernel::V3D LeanPeak::getSamplePos() const {
  throw std::runtime_error("not implemented");
}
507
508
509

// -------------------------------------------------------------------------------------
/** Return the L1 flight path length (source to sample), in meters. */
510
double LeanPeak::getL1() const { throw std::runtime_error("not implemented"); }
511
512
513

// -------------------------------------------------------------------------------------
/** Return the L2 flight path length (sample to detector), in meters. */
514
double LeanPeak::getL2() const { throw std::runtime_error("not implemented"); }
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

// -------------------------------------------------------------------------------------
/** Helper function for displaying/sorting peaks
 *
 * @param name :: name of the column in the table workspace. The matching is
 * case-insensitive.
 * @return a double representing that value (if that's possible)
 * @throw std::runtime_error if you asked for a column that can't convert to
 *double.
 */
double LeanPeak::getValueByColName(std::string name) const {
  std::transform(name.begin(), name.end(), name.begin(), ::tolower);
  if (name == "runnumber")
    return double(this->getRunNumber());
  else if (name == "detid")
    return double(this->getDetectorID());
  else if (name == "h")
    return this->getH();
  else if (name == "k")
    return this->getK();
  else if (name == "l")
    return this->getL();
  else if (name == "wavelength")
    return this->getWavelength();
  else if (name == "energy")
    return this->getInitialEnergy();
  else if (name == "tof")
    return this->getTOF();
  else if (name == "dspacing")
    return this->getDSpacing();
  else if (name == "intens")
    return this->getIntensity();
  else if (name == "sigint")
    return this->getSigmaIntensity();
  else if (name == "intens/sigint")
    return this->getIntensityOverSigma();
  else if (name == "bincount")
    return this->getBinCount();
  else if (name == "row")
    return this->getRow();
  else if (name == "col")
    return this->getCol();
  else if (name == "peaknumber")
    return double(this->getPeakNumber());
  else if (name == "tbar")
    return this->getAbsorptionWeightedPathLength();
  else
    throw std::runtime_error("LeanPeak::getValueByColName() unknown column or "
                             "column is not a number: " +
                             name);
}

/**
 * @brief Get the peak shape
 * @return : const ref to current peak shape.
 */
const PeakShape &LeanPeak::getPeakShape() const { return *this->m_peakShape; }

/**
 * @brief Set the peak shape
 * @param shape : Desired shape
 */
void LeanPeak::setPeakShape(Mantid::Geometry::PeakShape *shape) {
  this->m_peakShape = PeakShape_const_sptr(shape);
}

/**
 * @brief Set the peak shape
 * @param shape : Desired shape
 */
void LeanPeak::setPeakShape(Mantid::Geometry::PeakShape_const_sptr shape) {
  this->m_peakShape = std::move(shape);
}

/**
 * @brief Assignement operator overload
 * @param other : Other peak object to assign from
 * @return this
 */
LeanPeak &LeanPeak::operator=(const LeanPeak &other) {
  if (&other != this) {
    m_bankName = other.m_bankName;
    m_H = other.m_H;
    m_K = other.m_K;
    m_L = other.m_L;
    m_intensity = other.m_intensity;
    m_sigmaIntensity = other.m_sigmaIntensity;
    m_binCount = other.m_binCount;
    m_initialEnergy = other.m_initialEnergy;
    m_finalEnergy = other.m_finalEnergy;
    m_GoniometerMatrix = other.m_GoniometerMatrix;
    m_InverseGoniometerMatrix = other.m_InverseGoniometerMatrix;
    m_runNumber = other.m_runNumber;
    m_monitorCount = other.m_monitorCount;
    m_row = other.m_row;
    m_col = other.m_col;
    m_intHKL = other.m_intHKL;
    m_intMNP = other.m_intMNP;
    convention = other.convention;
    m_peakShape.reset(other.m_peakShape->clone());
    m_absorptionWeightedPathLength = other.m_absorptionWeightedPathLength;
  }
  return *this;
}

/**
 Forwarding function. Exposes the detector position directly.
 */
Mantid::Kernel::V3D LeanPeak::getDetectorPositionNoCheck() const {
  return getDetector()->getPos();
}

/**
 Forwarding function. Exposes the detector position directly, but checks that
 the detector is not null before accessing its position. Throws if null.
 */
Mantid::Kernel::V3D LeanPeak::getDetectorPosition() const {
  auto det = getDetector();
  if (det == nullptr) {
    throw Mantid::Kernel::Exception::NullPointerException("LeanPeak",
                                                          "Detector");
  }
  return getDetector()->getPos();
}

/**
 * @brief Set the absorption weighted path length
 * @param pathLength : Desired path length
 */
void LeanPeak::setAbsorptionWeightedPathLength(double pathLength) {
  m_absorptionWeightedPathLength = pathLength;
}

/**
 * Gets the absorption weighted path length
 */
double LeanPeak::getAbsorptionWeightedPathLength() const {
  return m_absorptionWeightedPathLength;
}

Mantid::Kernel::Logger LeanPeak::g_log("PeakLogger");

} // namespace DataObjects
} // namespace Mantid