Statistics.cpp 15.6 KB
Newer Older
1
2
3
4
5
6
// Mantid Repository : https://github.com/mantidproject/mantid
//
// Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
//     NScD Oak Ridge National Laboratory, European Spallation Source
//     & Institut Laue - Langevin
// SPDX - License - Identifier: GPL - 3.0 +
7
8
9
// Includes
#include "MantidKernel/Statistics.h"

Hahn, Steven's avatar
Hahn, Steven committed
10
11
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/max.hpp>
LamarMoore's avatar
LamarMoore committed
12
13
#include <boost/accumulators/statistics/min.hpp>
#include <boost/accumulators/statistics/stats.hpp>
Hahn, Steven's avatar
Hahn, Steven committed
14
15
#include <boost/accumulators/statistics/variance.hpp>

16
17
18
19
20
21
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <iostream>
#include <sstream>

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
namespace Mantid {
namespace Kernel {

using std::string;
using std::vector;

/**
 * Generate a Statistics object where all of the values are NaN. This is a good
 * initial default.
 */
Statistics getNanStatistics() {
  double nan = std::numeric_limits<double>::quiet_NaN();

  Statistics stats;
  stats.minimum = nan;
  stats.maximum = nan;
  stats.mean = nan;
  stats.median = nan;
  stats.standard_deviation = nan;

  return stats;
}

/**
 * There are enough special cases in determining the median where it useful to
 * put it in a single function.
 */
template <typename TYPE>
double getMedian(const vector<TYPE> &data, const size_t num_data,
                 const bool sorted) {
  if (num_data == 1)
    return static_cast<double>(*(data.begin()));

Hahn, Steven's avatar
Hahn, Steven committed
55
  bool is_even = ((num_data & 1) == 0);
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  if (is_even) {
    double left = 0.0;
    double right = 0.0;

    if (sorted) {
      // Just get the centre two elements.
      left = static_cast<double>(*(data.begin() + num_data / 2 - 1));
      right = static_cast<double>(*(data.begin() + num_data / 2));
    } else {
      // If the data is not sorted, make a copy we can mess with
      vector<TYPE> temp(data.begin(), data.end());
      // Get what the centre two elements should be...
      std::nth_element(temp.begin(), temp.begin() + num_data / 2 - 1,
                       temp.end());
      left = static_cast<double>(*(temp.begin() + num_data / 2 - 1));
      std::nth_element(temp.begin(), temp.begin() + num_data / 2, temp.end());
      right = static_cast<double>(*(temp.begin() + num_data / 2));
Campbell, Stuart's avatar
Campbell, Stuart committed
73
    }
74
75
76
    // return the average
    return (left + right) / 2.;
  } else
Lynch, Vickie's avatar
Lynch, Vickie committed
77
  // Odd number
78
79
80
81
82
83
84
85
86
87
88
  {
    if (sorted) {
      // If sorted and odd, just return the centre value
      return static_cast<double>(*(data.begin() + num_data / 2));
    } else {
      // If the data is not sorted, make a copy we can mess with
      vector<TYPE> temp(data.begin(), data.end());
      // Make sure the centre value is in the correct position
      std::nth_element(temp.begin(), temp.begin() + num_data / 2, temp.end());
      // Now return the centre value
      return static_cast<double>(*(temp.begin() + num_data / 2));
89
    }
90
  }
Hahn, Steven's avatar
Hahn, Steven committed
91
}
Hahn, Steven's avatar
Hahn, Steven committed
92

93
94
95
96
97
/**
 * There are enough special cases in determining the Z score where it useful to
 * put it in a single function.
 */
template <typename TYPE>
98
std::vector<double> getZscore(const vector<TYPE> &data) {
99
100
101
102
103
  if (data.size() < 3) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  std::vector<double> Zscore;
104
  Statistics stats = getStatistics(data);
105
106
107
108
  if (stats.standard_deviation == 0.) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
Hahn, Steven's avatar
Hahn, Steven committed
109
  for (auto it = data.cbegin(); it != data.cend(); ++it) {
110
    double tmp = static_cast<double>(*it);
Lynch, Vickie's avatar
Lynch, Vickie committed
111
    Zscore.push_back(fabs((stats.mean - tmp) / stats.standard_deviation));
112
113
114
  }
  return Zscore;
}
Lynch, Vickie's avatar
Lynch, Vickie committed
115
116
117
118
119
/**
 * There are enough special cases in determining the Z score where it useful to
 * put it in a single function.
 */
template <typename TYPE>
Lynch, Vickie's avatar
Lynch, Vickie committed
120
121
std::vector<double> getWeightedZscore(const vector<TYPE> &data,
                                      const vector<TYPE> &weights) {
Lynch, Vickie's avatar
Lynch, Vickie committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  if (data.size() < 3) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  std::vector<double> Zscore;
  Statistics stats = getStatistics(data);
  if (stats.standard_deviation == 0.) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  double sumWeights = 0.0;
  double sumWeightedData = 0.0;
  double weightedVariance = 0.0;
  for (size_t it = 0; it != data.size(); ++it) {
    sumWeights += static_cast<double>(weights[it]);
    sumWeightedData += static_cast<double>(weights[it] * data[it]);
  }
Lynch, Vickie's avatar
Lynch, Vickie committed
139
  double weightedMean = sumWeightedData / sumWeights;
Lynch, Vickie's avatar
Lynch, Vickie committed
140
  for (size_t it = 0; it != data.size(); ++it) {
Lynch, Vickie's avatar
Lynch, Vickie committed
141
142
143
    weightedVariance +=
        std::pow(static_cast<double>(data[it]) - weightedMean, 2) *
        std::pow(static_cast<double>(weights[it]) / sumWeights, 2);
Lynch, Vickie's avatar
Lynch, Vickie committed
144
145
  }
  for (auto it = data.cbegin(); it != data.cend(); ++it) {
Lynch, Vickie's avatar
Lynch, Vickie committed
146
147
    Zscore.push_back(fabs((static_cast<double>(*it) - weightedMean) /
                          std::sqrt(weightedVariance)));
Lynch, Vickie's avatar
Lynch, Vickie committed
148
149
150
  }
  return Zscore;
}
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/**
 * There are enough special cases in determining the modified Z score where it
 * useful to
 * put it in a single function.
 */
template <typename TYPE>
std::vector<double> getModifiedZscore(const vector<TYPE> &data,
                                      const bool sorted) {
  if (data.size() < 3) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  std::vector<double> MADvec;
  double tmp;
  size_t num_data = data.size(); // cache since it is frequently used
  double median = getMedian(data, num_data, sorted);
Hahn, Steven's avatar
Hahn, Steven committed
167
  for (auto it = data.cbegin(); it != data.cend(); ++it) {
168
169
170
171
172
173
174
175
176
177
    tmp = static_cast<double>(*it);
    MADvec.push_back(fabs(tmp - median));
  }
  double MAD = getMedian(MADvec, num_data, sorted);
  if (MAD == 0.) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  MADvec.clear();
  std::vector<double> Zscore;
Hahn, Steven's avatar
Hahn, Steven committed
178
  for (auto it = data.begin(); it != data.end(); ++it) {
179
180
181
182
183
184
185
186
187
    tmp = static_cast<double>(*it);
    Zscore.push_back(0.6745 * fabs((tmp - median) / MAD));
  }
  return Zscore;
}

/**
 * Determine the statistics for a vector of data. If it is sorted then let the
 * function know so it won't make a copy of the data for determining the median.
188
189
 * @param data Data points whose statistics are to be evaluated
 * @param flags A set of flags to control the computation of the stats
190
191
 */
template <typename TYPE>
192
Statistics getStatistics(const vector<TYPE> &data, const unsigned int flags) {
Hahn, Steven's avatar
Hahn, Steven committed
193
  Statistics statistics = getNanStatistics();
194
  size_t num_data = data.size(); // cache since it is frequently used
195
  if (num_data == 0) {           // don't do anything
Hahn, Steven's avatar
Hahn, Steven committed
196
    return statistics;
197
  }
198
199
200
  // calculate the mean if this or the stddev is requested
  const bool stddev = ((flags & StatOptions::UncorrectedStdDev) ||
                       (flags & StatOptions::CorrectedStdDev));
Hahn, Steven's avatar
Hahn, Steven committed
201
202
  if (stddev) {
    using namespace boost::accumulators;
Lynch, Vickie's avatar
Lynch, Vickie committed
203
    accumulator_set<double, stats<tag::min, tag::max, tag::variance>> acc;
Hahn, Steven's avatar
Hahn, Steven committed
204
    for (auto &value : data) {
Hahn, Steven's avatar
Hahn, Steven committed
205
      acc(static_cast<double>(value));
206
    }
Hahn, Steven's avatar
Hahn, Steven committed
207
208
209
    statistics.minimum = min(acc);
    statistics.maximum = max(acc);
    statistics.mean = mean(acc);
Hahn, Steven's avatar
Hahn, Steven committed
210
211
212
213
214
215
    double var = variance(acc);

    if (flags & StatOptions::CorrectedStdDev) {
      double ndofs = static_cast<double>(data.size());
      var *= ndofs / (ndofs - 1.0);
    }
Hahn, Steven's avatar
Hahn, Steven committed
216
    statistics.standard_deviation = std::sqrt(var);
Hahn, Steven's avatar
Hahn, Steven committed
217
218
219

  } else if (flags & StatOptions::Mean) {
    using namespace boost::accumulators;
Lynch, Vickie's avatar
Lynch, Vickie committed
220
    accumulator_set<double, stats<tag::mean>> acc;
Hahn, Steven's avatar
Hahn, Steven committed
221
    for (auto &value : data) {
Hahn, Steven's avatar
Hahn, Steven committed
222
      acc(static_cast<double>(value));
Hahn, Steven's avatar
Hahn, Steven committed
223
    }
Hahn, Steven's avatar
Hahn, Steven committed
224
    statistics.mean = mean(acc);
225
  }
Hahn, Steven's avatar
Hahn, Steven committed
226

227
228
  // calculate the median if requested
  if (flags & StatOptions::Median) {
Hahn, Steven's avatar
Hahn, Steven committed
229
230
    statistics.median =
        getMedian(data, num_data, flags & StatOptions::SortedData);
231
  }
Hahn, Steven's avatar
Hahn, Steven committed
232

Hahn, Steven's avatar
Hahn, Steven committed
233
  return statistics;
234
235
236
237
}

/// Getting statistics of a string array should just give a bunch of NaNs
template <>
LamarMoore's avatar
LamarMoore committed
238
239
DLLExport Statistics getStatistics<string>(const vector<string> &data,
                                           const unsigned int flags) {
240
  UNUSED_ARG(flags);
241
242
243
244
245
246
  UNUSED_ARG(data);
  return getNanStatistics();
}

/// Getting statistics of a boolean array should just give a bunch of NaNs
template <>
LamarMoore's avatar
LamarMoore committed
247
248
DLLExport Statistics getStatistics<bool>(const vector<bool> &data,
                                         const unsigned int flags) {
249
  UNUSED_ARG(flags);
250
251
252
253
254
  UNUSED_ARG(data);
  return getNanStatistics();
}

/** Return the Rwp of a diffraction pattern data
LamarMoore's avatar
LamarMoore committed
255
256
257
258
259
260
 * @param obsI :: array of observed intensity values
 * @param calI :: array of calculated intensity values;
 * @param obsE :: array of error of the observed data;
 * @return :: RFactor including Rp and Rwp
 *
 */
261
262
263
264
265
266
267
268
269
270
271
272
Rfactor getRFactor(const std::vector<double> &obsI,
                   const std::vector<double> &calI,
                   const std::vector<double> &obsE) {
  // 1. Check
  if (obsI.size() != calI.size() || obsI.size() != obsE.size()) {
    std::stringstream errss;
    errss << "GetRFactor() Input Error!  Observed Intensity (" << obsI.size()
          << "), Calculated Intensity (" << calI.size()
          << ") and Observed Error (" << obsE.size()
          << ") have different number of elements.";
    throw std::runtime_error(errss.str());
  }
273
  if (obsI.empty()) {
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    throw std::runtime_error("getRFactor(): the input arrays are empty.");
  }

  double sumnom = 0;
  double sumdenom = 0;
  double sumrpnom = 0;
  double sumrpdenom = 0;

  size_t numpts = obsI.size();
  for (size_t i = 0; i < numpts; ++i) {
    double cal_i = calI[i];
    double obs_i = obsI[i];
    double sigma = obsE[i];
    double weight = 1.0 / (sigma * sigma);
    double diff = obs_i - cal_i;

    if (weight == weight && weight <= DBL_MAX) {
      // If weight is not NaN.
      sumrpnom += fabs(diff);
      sumrpdenom += fabs(obs_i);

      double tempnom = weight * diff * diff;
      double tempden = weight * obs_i * obs_i;

      sumnom += tempnom;
      sumdenom += tempden;

      if (tempnom != tempnom || tempden != tempden) {
        std::cout << "***** Error! ****** Data indexed " << i << " is NaN. "
                  << "i = " << i << ": cal = " << calI[i] << ", obs = " << obs_i
                  << ", weight = " << weight << ". \n";
Campbell, Stuart's avatar
Campbell, Stuart committed
305
306
      }
    }
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
  }

  Rfactor rfactor(0., 0.);
  rfactor.Rp = (sumrpnom / sumrpdenom);
  rfactor.Rwp = std::sqrt(sumnom / sumdenom);

  if (rfactor.Rwp != rfactor.Rwp)
    std::cout << "Rwp is NaN.  Denominator = " << sumnom
              << "; Nominator = " << sumdenom << ". \n";

  return rfactor;
}

/**
 * This will calculate the first n-moments (inclusive) about the origin. For
 *example
 * if maxMoment=2 then this will return 3 values: 0th (total weight), 1st
 *(mean), 2nd (deviation).
 *
 * @param x The independent values
 * @param y The dependent values
 * @param maxMoment The number of moments to calculate
 * @returns The first n-moments.
 */
template <typename TYPE>
std::vector<double> getMomentsAboutOrigin(const std::vector<TYPE> &x,
                                          const std::vector<TYPE> &y,
                                          const int maxMoment) {
  // densities have the same number of x and y
  bool isDensity(x.size() == y.size());

  // if it isn't a density then check for histogram
  if ((!isDensity) && (x.size() != y.size() + 1)) {
    std::stringstream msg;
    msg << "length of x (" << x.size() << ") and y (" << y.size()
        << ")do not match";
    throw std::out_of_range(msg.str());
  }

  // initialize a result vector with all zeros
  std::vector<double> result(maxMoment + 1, 0.);

  // cache the maximum index
  size_t numPoints = y.size();
  if (isDensity)
    numPoints = x.size() - 1;

  // densities are calculated using Newton's method for numerical integration
355
356
  // as backwards as it sounds, the outer loop should be the points rather
  // than
357
358
359
360
361
362
363
364
365
  // the moments
  for (size_t j = 0; j < numPoints; ++j) {
    // reduce item lookup - and central x for histogram
    const double xVal = .5 * static_cast<double>(x[j] + x[j + 1]);
    // this variable will be (x^n)*y
    double temp = static_cast<double>(y[j]); // correct for histogram
    if (isDensity) {
      const double xDelta = static_cast<double>(x[j + 1] - x[j]);
      temp = .5 * (temp + static_cast<double>(y[j + 1])) * xDelta;
Campbell, Stuart's avatar
Campbell, Stuart committed
366
367
    }

368
369
370
371
372
    // accumulate the moments
    result[0] += temp;
    for (size_t i = 1; i < result.size(); ++i) {
      temp *= xVal;
      result[i] += temp;
373
    }
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
  }

  return result;
}

/**
 * This will calculate the first n-moments (inclusive) about the mean (1st
 *moment). For example
 * if maxMoment=2 then this will return 3 values: 0th (total weight), 1st
 *(mean), 2nd (deviation).
 *
 * @param x The independent values
 * @param y The dependent values
 * @param maxMoment The number of moments to calculate
 * @returns The first n-moments.
 */
template <typename TYPE>
std::vector<double> getMomentsAboutMean(const std::vector<TYPE> &x,
                                        const std::vector<TYPE> &y,
                                        const int maxMoment) {
  // get the zeroth (integrated value) and first moment (mean)
  std::vector<double> momentsAboutOrigin = getMomentsAboutOrigin(x, y, 1);
  const double mean = momentsAboutOrigin[1];

  // initialize a result vector with all zeros
  std::vector<double> result(maxMoment + 1, 0.);
  result[0] = momentsAboutOrigin[0];

  // escape early if we need to
  if (maxMoment == 0)
    return result;

  // densities have the same number of x and y
  bool isDensity(x.size() == y.size());

  // cache the maximum index
  size_t numPoints = y.size();
  if (isDensity)
    numPoints = x.size() - 1;

  // densities are calculated using Newton's method for numerical integration
415
416
  // as backwards as it sounds, the outer loop should be the points rather
  // than
417
418
419
420
421
422
423
424
425
426
427
428
429
430
  // the moments
  for (size_t j = 0; j < numPoints; ++j) {
    // central x in histogram with a change of variables - and just change for
    // density
    const double xVal =
        .5 * static_cast<double>(x[j] + x[j + 1]) - mean; // change of variables

    // this variable will be (x^n)*y
    double temp;
    if (isDensity) {
      const double xDelta = static_cast<double>(x[j + 1] - x[j]);
      temp = xVal * .5 * static_cast<double>(y[j] + y[j + 1]) * xDelta;
    } else {
      temp = xVal * static_cast<double>(y[j]);
431
432
    }

433
434
435
436
437
    // accumulate the moment
    result[1] += temp;
    for (size_t i = 2; i < result.size(); ++i) {
      temp *= xVal;
      result[i] += temp;
438
    }
439
440
441
442
443
444
445
446
  }

  return result;
}

// -------------------------- Macro to instantiation concrete types
// --------------------------------
#define INSTANTIATE(TYPE)                                                      \
LamarMoore's avatar
LamarMoore committed
447
448
  template MANTID_KERNEL_DLL Statistics getStatistics<TYPE>(                   \
      const vector<TYPE> &, const unsigned int);                               \
449
  template MANTID_KERNEL_DLL std::vector<double> getZscore<TYPE>(              \
450
      const vector<TYPE> &);                                                   \
Lynch, Vickie's avatar
Lynch, Vickie committed
451
452
  template MANTID_KERNEL_DLL std::vector<double> getWeightedZscore<TYPE>(      \
      const vector<TYPE> &, const vector<TYPE> &);                             \
453
454
455
456
457
458
459
460
461
462
463
  template MANTID_KERNEL_DLL std::vector<double> getModifiedZscore<TYPE>(      \
      const vector<TYPE> &, const bool);                                       \
  template MANTID_KERNEL_DLL std::vector<double> getMomentsAboutOrigin<TYPE>(  \
      const std::vector<TYPE> &x, const std::vector<TYPE> &y,                  \
      const int maxMoment);                                                    \
  template MANTID_KERNEL_DLL std::vector<double> getMomentsAboutMean<TYPE>(    \
      const std::vector<TYPE> &x, const std::vector<TYPE> &y,                  \
      const int maxMoment);

// --------------------------- Concrete instantiations
// ---------------------------------------------
464
465
466
467
468
469
470
471
INSTANTIATE(float)
INSTANTIATE(double)
INSTANTIATE(int)
INSTANTIATE(long)
INSTANTIATE(long long)
INSTANTIATE(unsigned int)
INSTANTIATE(unsigned long)
INSTANTIATE(unsigned long long)
472
473

} // namespace Kernel
474
} // namespace Mantid