StatisticsTest.h 9.34 KB
Newer Older
1
2
3
#ifndef STATISTICSTEST_H_
#define STATISTICSTEST_H_

4
5
#include "MantidKernel/Statistics.h"
#include <boost/math/special_functions/fpclassify.hpp>
6
#include <cxxtest/TestSuite.h>
7
#include <algorithm>
8
#include <cmath>
9
10
11
12
13
14
15
#include <vector>
#include <string>

using namespace Mantid::Kernel;
using std::string;
using std::vector;

16
class StatisticsTest : public CxxTest::TestSuite {
17
public:
18
  void test_Doubles_And_Default_Flags_Calculates_All_Stats() {
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    vector<double> data;
    data.push_back(17.2);
    data.push_back(18.1);
    data.push_back(16.5);
    data.push_back(18.3);
    data.push_back(12.6);

    Statistics stats = getStatistics(data);

    TS_ASSERT_EQUALS(stats.mean, 16.54);
    TS_ASSERT_DELTA(stats.standard_deviation, 2.0732, 0.0001);
    TS_ASSERT_EQUALS(stats.minimum, 12.6);
    TS_ASSERT_EQUALS(stats.maximum, 18.3);
    TS_ASSERT_EQUALS(stats.median, 17.2);
33
34
  }

35
  void test_Doubles_With_Sorted_Data() {
36
37
38
39
40
41
42
43
    vector<double> data;
    data.push_back(17.2);
    data.push_back(18.1);
    data.push_back(16.5);
    data.push_back(18.3);
    data.push_back(12.6);
    sort(data.begin(), data.end());

44
45
    Statistics stats =
        getStatistics(data, (StatOptions::Median | StatOptions::SortedData));
46
47
48
49
50
51
52
53

    TS_ASSERT(boost::math::isnan(stats.mean));
    TS_ASSERT(boost::math::isnan(stats.standard_deviation));
    TS_ASSERT(boost::math::isnan(stats.minimum));
    TS_ASSERT(boost::math::isnan(stats.maximum));
    TS_ASSERT_EQUALS(stats.median, 17.2);
  }

54
55
  void
  test_Unsorted_Data_With_Sorted_Flag_Gives_Expected_Incorrect_Result_For_Median() {
56
57
58
59
60
61
62
    vector<double> data;
    data.push_back(17.2);
    data.push_back(18.1);
    data.push_back(16.5);
    data.push_back(18.3);
    data.push_back(12.6);

63
64
    Statistics stats =
        getStatistics(data, (StatOptions::Median | StatOptions::SortedData));
65
66
67
68
69
70
71

    TS_ASSERT(boost::math::isnan(stats.mean));
    TS_ASSERT(boost::math::isnan(stats.standard_deviation));
    TS_ASSERT(boost::math::isnan(stats.minimum));
    TS_ASSERT(boost::math::isnan(stats.maximum));
    TS_ASSERT_EQUALS(stats.median, 16.5);
  }
72
73

  void test_Doubles_With_Corrected_StdDev_Calculates_Mean() {
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    vector<double> data;
    data.push_back(17.2);
    data.push_back(18.1);
    data.push_back(16.5);
    data.push_back(18.3);
    data.push_back(12.6);
    sort(data.begin(), data.end());

    Statistics stats = getStatistics(data, StatOptions::CorrectedStdDev);

    TS_ASSERT_EQUALS(stats.mean, 16.54);
    TS_ASSERT_DELTA(stats.standard_deviation, 2.3179, 0.0001);
    TS_ASSERT_EQUALS(stats.minimum, 12.6);
    TS_ASSERT_EQUALS(stats.maximum, 18.3);
    TS_ASSERT(boost::math::isnan(stats.median));
  }

  void test_Types_Can_Be_Disabled_With_Flags() {
    vector<double> data;
    data.push_back(17.2);
    data.push_back(18.1);
    data.push_back(16.5);
    data.push_back(18.3);
    data.push_back(12.6);
Lynch, Vickie's avatar
Lynch, Vickie committed
98

99
100
101
102
103
104
    Statistics justMean = getStatistics(data, StatOptions::Mean);
    TS_ASSERT_EQUALS(justMean.mean, 16.54);
    TS_ASSERT(boost::math::isnan(justMean.standard_deviation));
    TS_ASSERT(boost::math::isnan(justMean.minimum));
    TS_ASSERT(boost::math::isnan(justMean.maximum));
    TS_ASSERT(boost::math::isnan(justMean.median));
Lynch, Vickie's avatar
Lynch, Vickie committed
105
  }
106
107

  void testZscores() {
Lynch, Vickie's avatar
Lynch, Vickie committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    vector<double> data;
    data.push_back(12);
    data.push_back(13);
    data.push_back(9);
    data.push_back(18);
    data.push_back(7);
    data.push_back(9);
    data.push_back(14);
    data.push_back(16);
    data.push_back(10);
    data.push_back(12);
    data.push_back(7);
    data.push_back(13);
    data.push_back(14);
    data.push_back(19);
    data.push_back(10);
    data.push_back(16);
    data.push_back(12);
    data.push_back(16);
    data.push_back(19);
    data.push_back(11);

    std::vector<double> Zscore = getZscore(data);
    TS_ASSERT_DELTA(Zscore[4], 1.6397, 0.0001);
    TS_ASSERT_DELTA(Zscore[6], 0.3223, 0.0001);
    std::vector<double> ZModscore = getModifiedZscore(data);
    TS_ASSERT_DELTA(ZModscore[4], 1.2365, 0.0001);
    TS_ASSERT_DELTA(ZModscore[6], 0.3372, 0.0001);
136
137
  }

138
  void testDoubleSingle() {
139
140
141
142
143
144
145
146
147
148
149
150
    vector<double> data;
    data.push_back(42.);

    Statistics stats = getStatistics(data);

    TS_ASSERT_EQUALS(stats.mean, 42.);
    TS_ASSERT_EQUALS(stats.standard_deviation, 0.);
    TS_ASSERT_EQUALS(stats.minimum, 42.);
    TS_ASSERT_EQUALS(stats.maximum, 42.);
    TS_ASSERT_EQUALS(stats.median, 42.);
  }

151
  void testInt32Even() {
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    vector<int32_t> data;
    data.push_back(1);
    data.push_back(2);
    data.push_back(3);
    data.push_back(4);
    data.push_back(5);
    data.push_back(6);

    Statistics stats = getStatistics(data);

    TS_ASSERT_EQUALS(stats.mean, 3.5);
    TS_ASSERT_DELTA(stats.standard_deviation, 1.7078, 0.0001);
    TS_ASSERT_EQUALS(stats.minimum, 1.);
    TS_ASSERT_EQUALS(stats.maximum, 6.);
    TS_ASSERT_EQUALS(stats.median, 3.5);
  }

169
  bool my_isnan(const double number) { return number != number; }
170

171
  void testString() {
172
    vector<string> data{"hi there"};
173
174
175
176
177
178
179
180
181

    Statistics stats = getStatistics(data);

    TS_ASSERT(my_isnan(stats.mean));
    TS_ASSERT(my_isnan(stats.standard_deviation));
    TS_ASSERT(my_isnan(stats.minimum));
    TS_ASSERT(my_isnan(stats.maximum));
    TS_ASSERT(my_isnan(stats.median));
  }
182
183
184

  /** Test function to calculate Rwp
    */
185
  void testRwp() {
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    vector<double> obsY(4);
    vector<double> calY(4);
    vector<double> obsE(4);

    obsY[0] = 1.0;
    calY[0] = 1.1;
    obsE[0] = 1.0;

    obsY[1] = 2.0;
    calY[1] = 2.1;
    obsE[1] = 1.2;

    obsY[2] = 3.0;
    calY[2] = 3.5;
    obsE[2] = 1.4;

    obsY[3] = 1.0;
    calY[3] = 1.3;
    obsE[3] = 1.0;

206
    Rfactor rfactor = getRFactor(obsY, calY, obsE);
207

208
    TS_ASSERT_DELTA(rfactor.Rwp, 0.1582, 0.0001);
209
210
211
212
  }

  /** Test throw exception
    */
213
  void testRwpException1() {
214
215
216
    vector<double> obsY{1.0, 2.0, 3.0, 1.0};
    vector<double> calY{1.1, 2.1, 3.5, 1.3};
    vector<double> obsE{1.0, 1.2, 1.4};
217
218

    TS_ASSERT_THROWS_ANYTHING(getRFactor(obsY, calY, obsE));
219
  }
220
221
222

  /** Test throw exception on empty array
    */
223
  void testRwpException2() {
224
225
226
227
228
229
230
    vector<double> obsY;
    vector<double> calY;
    vector<double> obsE;

    TS_ASSERT_THROWS_ANYTHING(getRFactor(obsY, calY, obsE));
  }

231
  /// Test moment calculations about origin and mean
232
  void test_getMoments() {
233
234
235
236
237
238
239
    const double mean = 5.;
    const double sigma = 4.;
    const double deltaX = .2;
    const size_t numX = 200;
    // calculate to have same number of points left and right of function
    const double offsetX = mean - (.5 * deltaX * static_cast<double>(numX));
    // variance about origin
240
    double expVar = mean * mean + sigma * sigma;
241
    // skew about origin
242
    double expSkew = mean * mean * mean + 3. * mean * sigma * sigma;
243
244
245
246
247
248
249
250
251
252
253
254

    // x-values to try out
    vector<double> x;
    for (size_t i = 0; i < numX; ++i)
      x.push_back(static_cast<double>(i) * deltaX + offsetX);

    // just declare so we can have test of exception handling
    vector<double> y;

    TS_ASSERT_THROWS(getMomentsAboutOrigin(x, y), std::out_of_range);

    // now calculate the y-values
255
256
257
    for (size_t i = 0; i < numX; ++i) {
      double temp = (x[i] - mean) / sigma;
      y.push_back(exp(-.5 * temp * temp) / (sigma * sqrt(2. * M_PI)));
258
259
260
261
262
263
264
265
266
    }

    // Normal distribution values are taken from the wikipedia page
    {
      std::cout << "Normal distribution about origin" << std::endl;
      vector<double> aboutOrigin = getMomentsAboutOrigin(x, y);
      TS_ASSERT_EQUALS(aboutOrigin.size(), 4);
      TS_ASSERT_DELTA(aboutOrigin[0], 1., .0001);
      TS_ASSERT_DELTA(aboutOrigin[1], mean, .0001);
267
268
      TS_ASSERT_DELTA(aboutOrigin[2], expVar, .001 * expVar);
      TS_ASSERT_DELTA(aboutOrigin[3], expSkew, .001 * expSkew);
269
270
271
272
273
274

      std::cout << "Normal distribution about mean" << std::endl;
      vector<double> aboutMean = getMomentsAboutMean(x, y);
      TS_ASSERT_EQUALS(aboutMean.size(), 4);
      TS_ASSERT_DELTA(aboutMean[0], 1., .0001);
      TS_ASSERT_DELTA(aboutMean[1], 0., .0001);
275
276
      TS_ASSERT_DELTA(aboutMean[2], sigma * sigma, .001 * expVar);
      TS_ASSERT_DELTA(aboutMean[3], 0., .0001 * expSkew);
277
278
279
280
    }

    // Now a gaussian function as a histogram
    y.clear();
281
282
    for (size_t i = 0; i < numX - 1;
         ++i) // one less y than x makes it a histogram
283
    {
284
285
286
287
288
289
      double templeft = (x[i] - mean) / sigma;
      templeft = exp(-.5 * templeft * templeft) / (sigma * sqrt(2. * M_PI));
      double tempright = (x[i + 1] - mean) / sigma;
      tempright = exp(-.5 * tempright * tempright) / (sigma * sqrt(2. * M_PI));
      y.push_back(.5 * deltaX * (templeft + tempright));
      //      std::cout << i << ":\t" << x[i] << "\t" << y[i] << std::endl;
290
291
292
293
294
295
296
297
298
    }

    // Normal distribution values are taken from the wikipedia page
    {
      std::cout << "Normal distribution about origin" << std::endl;
      vector<double> aboutOrigin = getMomentsAboutOrigin(x, y);
      TS_ASSERT_EQUALS(aboutOrigin.size(), 4);
      TS_ASSERT_DELTA(aboutOrigin[0], 1., .0001);
      TS_ASSERT_DELTA(aboutOrigin[1], mean, .0001);
299
300
      TS_ASSERT_DELTA(aboutOrigin[2], expVar, .001 * expVar);
      TS_ASSERT_DELTA(aboutOrigin[3], expSkew, .001 * expSkew);
301
302
303
304
305
306

      std::cout << "Normal distribution about mean" << std::endl;
      vector<double> aboutMean = getMomentsAboutMean(x, y);
      TS_ASSERT_EQUALS(aboutMean.size(), 4);
      TS_ASSERT_DELTA(aboutMean[0], 1., .0001);
      TS_ASSERT_DELTA(aboutMean[1], 0., .0001);
307
308
      TS_ASSERT_DELTA(aboutMean[2], sigma * sigma, .001 * expVar);
      TS_ASSERT_DELTA(aboutMean[3], 0., .0001 * expSkew);
309
310
    }
  }
311
312
313
};

#endif // STATISTICSTEST_H_