Statistics.cpp 15.1 KB
Newer Older
1
2
3
// Includes
#include "MantidKernel/Statistics.h"

Hahn, Steven's avatar
Hahn, Steven committed
4
#include <boost/accumulators/accumulators.hpp>
Hahn, Steven's avatar
Hahn, Steven committed
5
#include <boost/accumulators/statistics/stats.hpp>
Hahn, Steven's avatar
Hahn, Steven committed
6
7
8
9
#include <boost/accumulators/statistics/min.hpp>
#include <boost/accumulators/statistics/max.hpp>
#include <boost/accumulators/statistics/variance.hpp>

10
11
12
13
14
15
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <iostream>
#include <sstream>

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
namespace Mantid {
namespace Kernel {

using std::string;
using std::vector;

/**
 * Generate a Statistics object where all of the values are NaN. This is a good
 * initial default.
 */
Statistics getNanStatistics() {
  double nan = std::numeric_limits<double>::quiet_NaN();

  Statistics stats;
  stats.minimum = nan;
  stats.maximum = nan;
  stats.mean = nan;
  stats.median = nan;
  stats.standard_deviation = nan;

  return stats;
}

/**
 * There are enough special cases in determining the median where it useful to
 * put it in a single function.
 */
template <typename TYPE>
double getMedian(const vector<TYPE> &data, const size_t num_data,
                 const bool sorted) {
  if (num_data == 1)
    return static_cast<double>(*(data.begin()));

Hahn, Steven's avatar
Hahn, Steven committed
49
  bool is_even = ((num_data & 1) == 0);
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
  if (is_even) {
    double left = 0.0;
    double right = 0.0;

    if (sorted) {
      // Just get the centre two elements.
      left = static_cast<double>(*(data.begin() + num_data / 2 - 1));
      right = static_cast<double>(*(data.begin() + num_data / 2));
    } else {
      // If the data is not sorted, make a copy we can mess with
      vector<TYPE> temp(data.begin(), data.end());
      // Get what the centre two elements should be...
      std::nth_element(temp.begin(), temp.begin() + num_data / 2 - 1,
                       temp.end());
      left = static_cast<double>(*(temp.begin() + num_data / 2 - 1));
      std::nth_element(temp.begin(), temp.begin() + num_data / 2, temp.end());
      right = static_cast<double>(*(temp.begin() + num_data / 2));
Campbell, Stuart's avatar
Campbell, Stuart committed
67
    }
68
69
70
    // return the average
    return (left + right) / 2.;
  } else
71
      // Odd number
72
73
74
75
76
77
78
79
80
81
82
  {
    if (sorted) {
      // If sorted and odd, just return the centre value
      return static_cast<double>(*(data.begin() + num_data / 2));
    } else {
      // If the data is not sorted, make a copy we can mess with
      vector<TYPE> temp(data.begin(), data.end());
      // Make sure the centre value is in the correct position
      std::nth_element(temp.begin(), temp.begin() + num_data / 2, temp.end());
      // Now return the centre value
      return static_cast<double>(*(temp.begin() + num_data / 2));
83
    }
84
  }
Hahn, Steven's avatar
Hahn, Steven committed
85
}
Hahn, Steven's avatar
Hahn, Steven committed
86

87
88
89
90
91
/**
 * There are enough special cases in determining the Z score where it useful to
 * put it in a single function.
 */
template <typename TYPE>
92
std::vector<double> getZscore(const vector<TYPE> &data) {
93
94
95
96
97
  if (data.size() < 3) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  std::vector<double> Zscore;
98
  Statistics stats = getStatistics(data);
99
100
101
102
  if (stats.standard_deviation == 0.) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
Hahn, Steven's avatar
Hahn, Steven committed
103
  for (auto it = data.cbegin(); it != data.cend(); ++it) {
104
    double tmp = static_cast<double>(*it);
Lynch, Vickie's avatar
Lynch, Vickie committed
105
    Zscore.push_back(fabs((stats.mean - tmp) / stats.standard_deviation));
106
107
108
  }
  return Zscore;
}
Lynch, Vickie's avatar
Lynch, Vickie committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/**
 * There are enough special cases in determining the Z score where it useful to
 * put it in a single function.
 */
template <typename TYPE>
std::vector<double> getWeightedZscore(const vector<TYPE> &data, const vector<TYPE> &weights) {
  if (data.size() < 3) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  std::vector<double> Zscore;
  Statistics stats = getStatistics(data);
  if (stats.standard_deviation == 0.) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  double sumWeights = 0.0;
  double sumWeightedData = 0.0;
  double weightedVariance = 0.0;
  for (size_t it = 0; it != data.size(); ++it) {
    sumWeights += static_cast<double>(weights[it]);
    sumWeightedData += static_cast<double>(weights[it] * data[it]);
  }
  double weightedMean = sumWeightedData/sumWeights;
  for (size_t it = 0; it != data.size(); ++it) {
    weightedVariance += std::pow(data[it] - weightedMean, 2) * std::pow(weights[it]/sumWeights, 2);
  }
  for (auto it = data.cbegin(); it != data.cend(); ++it) {
    Zscore.push_back(fabs((*it - weightedMean) / std::sqrt(weightedVariance)));
  }
  return Zscore;
}
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/**
 * There are enough special cases in determining the modified Z score where it
 * useful to
 * put it in a single function.
 */
template <typename TYPE>
std::vector<double> getModifiedZscore(const vector<TYPE> &data,
                                      const bool sorted) {
  if (data.size() < 3) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  std::vector<double> MADvec;
  double tmp;
  size_t num_data = data.size(); // cache since it is frequently used
  double median = getMedian(data, num_data, sorted);
Hahn, Steven's avatar
Hahn, Steven committed
157
  for (auto it = data.cbegin(); it != data.cend(); ++it) {
158
159
160
161
162
163
164
165
166
167
    tmp = static_cast<double>(*it);
    MADvec.push_back(fabs(tmp - median));
  }
  double MAD = getMedian(MADvec, num_data, sorted);
  if (MAD == 0.) {
    std::vector<double> Zscore(data.size(), 0.);
    return Zscore;
  }
  MADvec.clear();
  std::vector<double> Zscore;
Hahn, Steven's avatar
Hahn, Steven committed
168
  for (auto it = data.begin(); it != data.end(); ++it) {
169
170
171
172
173
174
175
176
177
    tmp = static_cast<double>(*it);
    Zscore.push_back(0.6745 * fabs((tmp - median) / MAD));
  }
  return Zscore;
}

/**
 * Determine the statistics for a vector of data. If it is sorted then let the
 * function know so it won't make a copy of the data for determining the median.
178
179
 * @param data Data points whose statistics are to be evaluated
 * @param flags A set of flags to control the computation of the stats
180
181
 */
template <typename TYPE>
182
Statistics getStatistics(const vector<TYPE> &data, const unsigned int flags) {
Hahn, Steven's avatar
Hahn, Steven committed
183
  Statistics statistics = getNanStatistics();
184
  size_t num_data = data.size(); // cache since it is frequently used
185
  if (num_data == 0) {           // don't do anything
Hahn, Steven's avatar
Hahn, Steven committed
186
    return statistics;
187
  }
188
189
190
  // calculate the mean if this or the stddev is requested
  const bool stddev = ((flags & StatOptions::UncorrectedStdDev) ||
                       (flags & StatOptions::CorrectedStdDev));
Hahn, Steven's avatar
Hahn, Steven committed
191
192
  if (stddev) {
    using namespace boost::accumulators;
193
    accumulator_set<double, stats<tag::min, tag::max, tag::variance> > acc;
Hahn, Steven's avatar
Hahn, Steven committed
194
    for (auto &value : data) {
Hahn, Steven's avatar
Hahn, Steven committed
195
      acc(static_cast<double>(value));
196
    }
Hahn, Steven's avatar
Hahn, Steven committed
197
198
199
    statistics.minimum = min(acc);
    statistics.maximum = max(acc);
    statistics.mean = mean(acc);
Hahn, Steven's avatar
Hahn, Steven committed
200
201
202
203
204
205
    double var = variance(acc);

    if (flags & StatOptions::CorrectedStdDev) {
      double ndofs = static_cast<double>(data.size());
      var *= ndofs / (ndofs - 1.0);
    }
Hahn, Steven's avatar
Hahn, Steven committed
206
    statistics.standard_deviation = std::sqrt(var);
Hahn, Steven's avatar
Hahn, Steven committed
207
208
209

  } else if (flags & StatOptions::Mean) {
    using namespace boost::accumulators;
210
    accumulator_set<double, stats<tag::mean> > acc;
Hahn, Steven's avatar
Hahn, Steven committed
211
    for (auto &value : data) {
Hahn, Steven's avatar
Hahn, Steven committed
212
      acc(static_cast<double>(value));
Hahn, Steven's avatar
Hahn, Steven committed
213
    }
Hahn, Steven's avatar
Hahn, Steven committed
214
    statistics.mean = mean(acc);
215
  }
Hahn, Steven's avatar
Hahn, Steven committed
216

217
218
  // calculate the median if requested
  if (flags & StatOptions::Median) {
Hahn, Steven's avatar
Hahn, Steven committed
219
220
    statistics.median =
        getMedian(data, num_data, flags & StatOptions::SortedData);
221
  }
Hahn, Steven's avatar
Hahn, Steven committed
222

Hahn, Steven's avatar
Hahn, Steven committed
223
  return statistics;
224
225
226
227
228
}

/// Getting statistics of a string array should just give a bunch of NaNs
template <>
DLLExport Statistics
229
230
getStatistics<string>(const vector<string> &data, const unsigned int flags) {
  UNUSED_ARG(flags);
231
232
233
234
235
236
237
  UNUSED_ARG(data);
  return getNanStatistics();
}

/// Getting statistics of a boolean array should just give a bunch of NaNs
template <>
DLLExport Statistics
238
239
getStatistics<bool>(const vector<bool> &data, const unsigned int flags) {
  UNUSED_ARG(flags);
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
  UNUSED_ARG(data);
  return getNanStatistics();
}

/** Return the Rwp of a diffraction pattern data
  * @param obsI :: array of observed intensity values
  * @param calI :: array of calculated intensity values;
  * @param obsE :: array of error of the observed data;
  * @return :: RFactor including Rp and Rwp
  *
  */
Rfactor getRFactor(const std::vector<double> &obsI,
                   const std::vector<double> &calI,
                   const std::vector<double> &obsE) {
  // 1. Check
  if (obsI.size() != calI.size() || obsI.size() != obsE.size()) {
    std::stringstream errss;
    errss << "GetRFactor() Input Error!  Observed Intensity (" << obsI.size()
          << "), Calculated Intensity (" << calI.size()
          << ") and Observed Error (" << obsE.size()
          << ") have different number of elements.";
    throw std::runtime_error(errss.str());
  }
263
  if (obsI.empty()) {
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    throw std::runtime_error("getRFactor(): the input arrays are empty.");
  }

  double sumnom = 0;
  double sumdenom = 0;
  double sumrpnom = 0;
  double sumrpdenom = 0;

  size_t numpts = obsI.size();
  for (size_t i = 0; i < numpts; ++i) {
    double cal_i = calI[i];
    double obs_i = obsI[i];
    double sigma = obsE[i];
    double weight = 1.0 / (sigma * sigma);
    double diff = obs_i - cal_i;

    if (weight == weight && weight <= DBL_MAX) {
      // If weight is not NaN.
      sumrpnom += fabs(diff);
      sumrpdenom += fabs(obs_i);

      double tempnom = weight * diff * diff;
      double tempden = weight * obs_i * obs_i;

      sumnom += tempnom;
      sumdenom += tempden;

      if (tempnom != tempnom || tempden != tempden) {
        std::cout << "***** Error! ****** Data indexed " << i << " is NaN. "
                  << "i = " << i << ": cal = " << calI[i] << ", obs = " << obs_i
                  << ", weight = " << weight << ". \n";
Campbell, Stuart's avatar
Campbell, Stuart committed
295
296
      }
    }
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
  }

  Rfactor rfactor(0., 0.);
  rfactor.Rp = (sumrpnom / sumrpdenom);
  rfactor.Rwp = std::sqrt(sumnom / sumdenom);

  if (rfactor.Rwp != rfactor.Rwp)
    std::cout << "Rwp is NaN.  Denominator = " << sumnom
              << "; Nominator = " << sumdenom << ". \n";

  return rfactor;
}

/**
 * This will calculate the first n-moments (inclusive) about the origin. For
 *example
 * if maxMoment=2 then this will return 3 values: 0th (total weight), 1st
 *(mean), 2nd (deviation).
 *
 * @param x The independent values
 * @param y The dependent values
 * @param maxMoment The number of moments to calculate
 * @returns The first n-moments.
 */
template <typename TYPE>
std::vector<double> getMomentsAboutOrigin(const std::vector<TYPE> &x,
                                          const std::vector<TYPE> &y,
                                          const int maxMoment) {
  // densities have the same number of x and y
  bool isDensity(x.size() == y.size());

  // if it isn't a density then check for histogram
  if ((!isDensity) && (x.size() != y.size() + 1)) {
    std::stringstream msg;
    msg << "length of x (" << x.size() << ") and y (" << y.size()
        << ")do not match";
    throw std::out_of_range(msg.str());
  }

  // initialize a result vector with all zeros
  std::vector<double> result(maxMoment + 1, 0.);

  // cache the maximum index
  size_t numPoints = y.size();
  if (isDensity)
    numPoints = x.size() - 1;

  // densities are calculated using Newton's method for numerical integration
345
346
  // as backwards as it sounds, the outer loop should be the points rather
  // than
347
348
349
350
351
352
353
354
355
  // the moments
  for (size_t j = 0; j < numPoints; ++j) {
    // reduce item lookup - and central x for histogram
    const double xVal = .5 * static_cast<double>(x[j] + x[j + 1]);
    // this variable will be (x^n)*y
    double temp = static_cast<double>(y[j]); // correct for histogram
    if (isDensity) {
      const double xDelta = static_cast<double>(x[j + 1] - x[j]);
      temp = .5 * (temp + static_cast<double>(y[j + 1])) * xDelta;
Campbell, Stuart's avatar
Campbell, Stuart committed
356
357
    }

358
359
360
361
362
    // accumulate the moments
    result[0] += temp;
    for (size_t i = 1; i < result.size(); ++i) {
      temp *= xVal;
      result[i] += temp;
363
    }
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
  }

  return result;
}

/**
 * This will calculate the first n-moments (inclusive) about the mean (1st
 *moment). For example
 * if maxMoment=2 then this will return 3 values: 0th (total weight), 1st
 *(mean), 2nd (deviation).
 *
 * @param x The independent values
 * @param y The dependent values
 * @param maxMoment The number of moments to calculate
 * @returns The first n-moments.
 */
template <typename TYPE>
std::vector<double> getMomentsAboutMean(const std::vector<TYPE> &x,
                                        const std::vector<TYPE> &y,
                                        const int maxMoment) {
  // get the zeroth (integrated value) and first moment (mean)
  std::vector<double> momentsAboutOrigin = getMomentsAboutOrigin(x, y, 1);
  const double mean = momentsAboutOrigin[1];

  // initialize a result vector with all zeros
  std::vector<double> result(maxMoment + 1, 0.);
  result[0] = momentsAboutOrigin[0];

  // escape early if we need to
  if (maxMoment == 0)
    return result;

  // densities have the same number of x and y
  bool isDensity(x.size() == y.size());

  // cache the maximum index
  size_t numPoints = y.size();
  if (isDensity)
    numPoints = x.size() - 1;

  // densities are calculated using Newton's method for numerical integration
405
406
  // as backwards as it sounds, the outer loop should be the points rather
  // than
407
408
409
410
411
412
413
414
415
416
417
418
419
420
  // the moments
  for (size_t j = 0; j < numPoints; ++j) {
    // central x in histogram with a change of variables - and just change for
    // density
    const double xVal =
        .5 * static_cast<double>(x[j] + x[j + 1]) - mean; // change of variables

    // this variable will be (x^n)*y
    double temp;
    if (isDensity) {
      const double xDelta = static_cast<double>(x[j + 1] - x[j]);
      temp = xVal * .5 * static_cast<double>(y[j] + y[j + 1]) * xDelta;
    } else {
      temp = xVal * static_cast<double>(y[j]);
421
422
    }

423
424
425
426
427
    // accumulate the moment
    result[1] += temp;
    for (size_t i = 2; i < result.size(); ++i) {
      temp *= xVal;
      result[i] += temp;
428
    }
429
430
431
432
433
434
435
436
437
  }

  return result;
}

// -------------------------- Macro to instantiation concrete types
// --------------------------------
#define INSTANTIATE(TYPE)                                                      \
  template MANTID_KERNEL_DLL Statistics                                        \
438
  getStatistics<TYPE>(const vector<TYPE> &, const unsigned int);               \
439
  template MANTID_KERNEL_DLL std::vector<double> getZscore<TYPE>(              \
440
      const vector<TYPE> &);                                                   \
Lynch, Vickie's avatar
Lynch, Vickie committed
441
442
  template MANTID_KERNEL_DLL std::vector<double> getWeightedZscore<TYPE>(              \
      const vector<TYPE> &, const vector<TYPE> &);                                                   \
443
444
445
446
447
448
449
450
451
452
453
  template MANTID_KERNEL_DLL std::vector<double> getModifiedZscore<TYPE>(      \
      const vector<TYPE> &, const bool);                                       \
  template MANTID_KERNEL_DLL std::vector<double> getMomentsAboutOrigin<TYPE>(  \
      const std::vector<TYPE> &x, const std::vector<TYPE> &y,                  \
      const int maxMoment);                                                    \
  template MANTID_KERNEL_DLL std::vector<double> getMomentsAboutMean<TYPE>(    \
      const std::vector<TYPE> &x, const std::vector<TYPE> &y,                  \
      const int maxMoment);

// --------------------------- Concrete instantiations
// ---------------------------------------------
454
455
456
457
458
459
460
461
INSTANTIATE(float)
INSTANTIATE(double)
INSTANTIATE(int)
INSTANTIATE(long)
INSTANTIATE(long long)
INSTANTIATE(unsigned int)
INSTANTIATE(unsigned long)
INSTANTIATE(unsigned long long)
462
463

} // namespace Kernel
464
} // namespace Mantid