GetEi.cpp 19.4 KB
Newer Older
1
2
#include "MantidAlgorithms/GetEi.h"
#include "MantidKernel/ArrayProperty.h"
3
#include "MantidAPI/FileProperty.h"
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include "MantidKernel/PhysicalConstants.h"
#include "MantidAPI/WorkspaceValidators.h"
#include "MantidAPI/SpectraDetectorMap.h"
#include <boost/lexical_cast.hpp>
#include "MantidKernel/Exception.h" 
#include <cmath>

namespace Mantid
{
namespace Algorithms
{

// Register the algorithm into the algorithm factory
DECLARE_ALGORITHM(GetEi)

19
20
21
22
23
24
25
26
/// Sets documentation strings for this algorithm
void GetEi::initDocs()
{
  this->setWikiSummary("Calculates the kinetic energy of neutrons leaving the source based on the time it takes for them to travel between two monitors. ");
  this->setOptionalMessage("Calculates the kinetic energy of neutrons leaving the source based on the time it takes for them to travel between two monitors.");
}


27
28
29
30
using namespace Kernel;
using namespace API;
using namespace Geometry;

31
// adjustable fit criteria, increase the first number or reduce any of the last three for more promiscuous peak fitting
32
// from the estimated location of the peak search forward by the following fraction and backward by the same fraction
33
const double GetEi::HALF_WINDOW = 8.0/100;
34
35
const double GetEi::PEAK_THRESH_H = 3.0;
const double GetEi::PEAK_THRESH_A = 5.0;
Peterson, Peter's avatar
Peterson, Peter committed
36
const int64_t GetEi::PEAK_THRESH_W = 3;
37
38
39
40
41

// progress estimates
const double GetEi::CROP = 0.15;
const double GetEi::GET_COUNT_RATE = 0.15;
const double GetEi::FIT_PEAK = 0.2;
42
43
44

/// Empty default constructor algorith() calls the constructor in the base class
GetEi::GetEi() : Algorithm(),
45
  m_tempWS(), m_fracCompl(0.0)
46
47
48
49
{
}

void GetEi::init()
50
{
51
  // Declare required input parameters for algorithm and do some validation here
52
53
54
  CompositeValidator<> *val = new CompositeValidator<>;
  val->add(new WorkspaceUnitValidator<>("TOF"));
  val->add(new HistogramValidator<>);
55
  val->add(new InstrumentValidator<>);
56
  declareProperty(new WorkspaceProperty<>(
57
    "InputWorkspace","",Direction::Input,val),
58
59
60
61
62
63
64
65
66
67
68
69
    "The X units of this workspace must be time of flight with times in\n"
    "micro-seconds");
  BoundedValidator<int> *mustBePositive = new BoundedValidator<int>();
  mustBePositive->setLower(0);
  declareProperty("Monitor1Spec", -1, mustBePositive,
    "The spectrum number of the output of the first monitor, e.g. MAPS\n"
    "41474, MARI 2, MERLIN 69634");
  declareProperty("Monitor2Spec", -1, mustBePositive->clone(),
    "The spectrum number of the output of the second monitor e.g. MAPS\n"
    "41475, MARI 3, MERLIN 69638");
  BoundedValidator<double> *positiveDouble = new BoundedValidator<double>();
  positiveDouble->setLower(0);
70
71
  declareProperty("EnergyEstimate", -1.0, positiveDouble,
    "An approximate value for the typical incident energy, energy of\n"
72
    "neutrons leaving the source (meV)");
73
  declareProperty("IncidentEnergy", -1.0, Direction::Output);
74
  declareProperty("FirstMonitorPeak", -1.0, Direction::Output);
75
76
77
78
79
80

  m_fracCompl = 0.0;
}

/** Executes the algorithm
*  @throw out_of_range if the peak runs off the edge of the histogram
81
*  @throw NotFoundError if one of the requested spectrum numbers was not found in the workspace
82
83
*  @throw IndexError if there is a problem converting spectra indexes to spectra numbers, which would imply there is a problem with the workspace
*  @throw invalid_argument if a good peak fit wasn't made or the input workspace does not have common binning
84
*  @throw runtime_error if there is a problem with the SpectraDetectorMap or a sub-algorithm falls over
85
86
87
*/
void GetEi::exec()
{
88
  MatrixWorkspace_const_sptr inWS = getProperty("InputWorkspace");
Peterson, Peter's avatar
Peterson, Peter committed
89
90
  const int64_t mon1Spec = getProperty("Monitor1Spec");
  const int64_t mon2Spec = getProperty("Monitor2Spec");
91
  double dist2moni0 = -1, dist2moni1 = -1;
92
  getGeometry(inWS, mon1Spec, mon2Spec, dist2moni0, dist2moni1);
93
94
95

  // the E_i estimate is used to find (identify) the monitor peaks, checking prior to fitting will throw an exception if this estimate is too big or small
  const double E_est = getProperty("EnergyEstimate");
96
  // we're assuming that the time units for the X-values in the workspace are micro-seconds
97
  const double peakLoc0 = 1e6*timeToFly(dist2moni0, E_est);
98
99
  // write a lot of stuff to the log at user level as it is very possible for fit routines not to the expected thing
  g_log.information() << "Based on the user selected energy the first peak will be searched for at TOF " << peakLoc0 << " micro seconds +/-" << boost::lexical_cast<std::string>(100.0*HALF_WINDOW) << "%\n";
100
  const double peakLoc1 = 1e6*timeToFly(dist2moni1, E_est);
101
  g_log.information() << "Based on the user selected energy the second peak will be searched for at TOF " << peakLoc1 << " micro seconds +/-" << boost::lexical_cast<std::string>(100.0*HALF_WINDOW) << "%\n";
102

103
    // get the histograms created by the monitors
Janik Zikovsky's avatar
Janik Zikovsky committed
104
  std::vector<size_t> indexes = getMonitorSpecIndexs(inWS, mon1Spec, mon2Spec);
105

106
107
  g_log.information() << "Looking for a peak in the first monitor spectrum, spectra index " << indexes[0] << std::endl;
  double t_monitor0 = getPeakCentre(inWS, indexes[0], peakLoc0);
108
109
110
  g_log.notice() << "The first peak has been found at TOF = " << t_monitor0 << " microseconds\n";
  setProperty("FirstMonitorPeak", t_monitor0);

111
112
  g_log.information() << "Looking for a peak in the second monitor spectrum, spectra index " << indexes[1] << std::endl;
  double t_monitor1 = getPeakCentre(inWS, indexes[1], peakLoc1);
113
  g_log.information() << "The second peak has been found at TOF = " << t_monitor1 << " microseconds\n";
114
115
116
117
118
119

  // assumes that the source and the both mintors lie on one straight line, the 1e-6 converts microseconds to seconds as the mean speed needs to be in m/s
  double meanSpeed = (dist2moni1 - dist2moni0)/(1e-6*(t_monitor1 - t_monitor0));

  // uses 0.5mv^2 to get the kinetic energy in joules which we then convert to meV
  double E_i = neutron_E_At(meanSpeed)/PhysicalConstants::meV;
120
  g_log.notice() << "The incident energy has been calculated to be " << E_i << " meV" << " (your estimate was " << E_est << " meV)\n";
121
122
123
124

  setProperty("IncidentEnergy", E_i);
}
/** Gets the distances between the source and detectors whose IDs you pass to it
125
126
127
128
129
*  @param WS :: the input workspace
*  @param mon0Spec :: Spectrum number of the output from the first monitor
*  @param mon1Spec :: Spectrum number of the output from the second monitor
*  @param monitor0Dist :: the calculated distance to the detector whose ID was passed to this function first
*  @param monitor1Dist :: calculated distance to the detector whose ID was passed to this function second
130
*  @throw NotFoundError if no detector is found for the detector ID given
131
*  @throw runtime_error if there is a problem with the SpectraDetectorMap
132
*/
Peterson, Peter's avatar
Peterson, Peter committed
133
void GetEi::getGeometry(API::MatrixWorkspace_const_sptr WS, int64_t mon0Spec, int64_t mon1Spec, double &monitor0Dist, double &monitor1Dist) const
134
{
135
  const IObjComponent_sptr source = WS->getInstrument()->getSource();
136
137

  // retrieve a pointer to the first detector and get its distance
Janik Zikovsky's avatar
Janik Zikovsky committed
138
  std::vector<detid_t> dets = WS->spectraMap().getDetectors(mon0Spec);
139
140
141
142
143
  if ( dets.size() != 1 )
  {
    g_log.error() << "The detector for spectrum number " << mon0Spec << " was either not found or is a group, grouped monitors are not supported by this algorithm\n";
    g_log.error() << "Error retrieving data for the first monitor" << std::endl;
    throw std::bad_cast();
144
  }
145
146
147
  IDetector_sptr det = WS->getInstrument()->getDetector(dets[0]);
  monitor0Dist = det->getDistance(*(source.get()));

148
  // repeat for the second detector
149
  dets = WS->spectraMap().getDetectors(mon1Spec);
150
151
152
153
154
  if ( dets.size() != 1 )
  {
    g_log.error() << "The detector for spectrum number " << mon1Spec << " was either not found or is a group, grouped monitors are not supported by this algorithm\n";
    g_log.error() << "Error retrieving data for the second monitor\n";
    throw std::bad_cast();
155
  }
156
157
  det = WS->getInstrument()->getDetector(dets[0]);
  monitor1Dist = det->getDistance(*(source.get()));
158
}
159
/** Converts detector IDs to spectra indexes
160
161
162
*  @param WS :: the workspace on which the calculations are being performed
*  @param specNum1 :: spectrum number of the output of the first monitor
*  @param specNum2 :: spectrum number of the output of the second monitor
163
*  @return the indexes of the histograms created by the detector whose ID were passed
164
*  @throw NotFoundError if one of the requested spectrum numbers was not found in the workspace
165
*/
Janik Zikovsky's avatar
Janik Zikovsky committed
166
std::vector<size_t> GetEi::getMonitorSpecIndexs(API::MatrixWorkspace_const_sptr WS, int64_t specNum1, int64_t specNum2) const
167
{// getting spectra numbers from detector IDs is hard because the map works the other way, getting index numbers from spectra numbers has the same problem and we are about to do both
Janik Zikovsky's avatar
Janik Zikovsky committed
168
  std::vector<size_t> specInds;
169
170
  
  // get the index number of the histogram for the first monitor
Janik Zikovsky's avatar
Janik Zikovsky committed
171
  std::vector<specid_t> specNumTemp(&specNum1, &specNum1+1);
172
  WS->getIndicesFromSpectra(specNumTemp, specInds);
173
174
175
176
177
178
179
  if ( specInds.size() != 1 )
  {// the monitor spectrum isn't present in the workspace, we can't continue from here
    g_log.error() << "Couldn't find the first monitor spectrum, number " << specNum1 << std::endl;
    throw Exception::NotFoundError("GetEi::getMonitorSpecIndexs()", specNum1);
  }

  // nowe the second monitor
Janik Zikovsky's avatar
Janik Zikovsky committed
180
  std::vector<size_t> specIndexTemp;
181
  specNumTemp[0] = specNum2;
182
  WS->getIndicesFromSpectra(specNumTemp, specIndexTemp);
183
184
185
186
187
188
189
  if ( specIndexTemp.size() != 1 )
  {// the monitor spectrum isn't present in the workspace, we can't continue from here
    g_log.error() << "Couldn't find the second monitor spectrum, number " << specNum2 << std::endl;
    throw Exception::NotFoundError("GetEi::getMonitorSpecIndexs()", specNum2);
  }
  
  specInds.push_back(specIndexTemp[0]);
190
191
  return specInds;
}
192
193
/** Uses E_KE = mv^2/2 and s = vt to calculate the time required for a neutron
*  to travel a distance, s
194
195
* @param s :: ditance travelled in meters
* @param E_KE :: kinetic energy in meV
196
197
198
199
200
201
202
203
204
205
206
207
208
* @return the time to taken to travel that uninterrupted distance in seconds
*/
double GetEi::timeToFly(double s, double E_KE) const
{
  // E_KE = mv^2/2, s = vt
  // t = s/v, v = sqrt(2*E_KE/m)
  // t = s/sqrt(2*E_KE/m)

  // convert E_KE to joules kg m^2 s^-2
  E_KE *= PhysicalConstants::meV;

  return s/sqrt(2*E_KE/PhysicalConstants::NeutronMass);
}
209
210
211

/** Looks for and examines a peak close to that specified by the input parameters and
*  examines it to find a representative time for when the neutrons hit the detector
212
213
214
*  @param WS :: the workspace containing the monitor spectrum
*  @param monitIn :: the index of the histogram that contains the monitor spectrum
*  @param peakTime :: the estimated TOF of the monitor peak in the time units of the workspace
215
*  @return a time of flight value in the peak in microseconds
216
217
218
219
*  @throw invalid_argument if a good peak fit wasn't made or the input workspace does not have common binning
*  @throw out_of_range if the peak runs off the edge of the histogram
*  @throw runtime_error a sub-algorithm just falls over
*/
Peterson, Peter's avatar
Peterson, Peter committed
220
double GetEi::getPeakCentre(API::MatrixWorkspace_const_sptr WS, const int64_t monitIn, const double peakTime)
221
{
222
  const MantidVec& timesArray = WS->readX(monitIn);
223
  // we search for the peak only inside some window because there are often more peaks in the monitor histogram
224
  double halfWin = ( timesArray.back() - timesArray.front() )*HALF_WINDOW;
225
226
  // runs CropWorkspace as a sub-algorithm to and puts the result in a new temporary workspace that will be deleted when this algorithm has finished
  extractSpec(monitIn, peakTime-halfWin, peakTime+halfWin);
227
228
229
230
231
  // converting the workspace to count rate is required by the fitting algorithm if the bin widths are not all the same
  WorkspaceHelpers::makeDistribution(m_tempWS);
  // look out for user cancel messgages as the above command can take a bit of time
  advanceProgress(GET_COUNT_RATE);

232
  // to store fit results
Peterson, Peter's avatar
Peterson, Peter committed
233
  int64_t centreGausInd;
234
235
  double height, backGroundlev;
  getPeakEstimates(height, centreGausInd, backGroundlev);
236
237
  // look out for user cancel messgages
  advanceProgress(FIT_PEAK);
238
239
240

  // the peak centre is defined as the centre of the two half maximum points as this is better for asymmetric peaks
  // first loop backwards along the histogram to get the first half height point
241
  const double lHalf = findHalfLoc(centreGausInd, height, backGroundlev, GO_LEFT);
242
  // go forewards to get the half height on the otherside of the peak
243
244
245
  const double rHalf = findHalfLoc(centreGausInd, height, backGroundlev, GO_RIGHT);
  // the peak centre is defined as the mean of the two half height times 
  return (lHalf + rHalf)/2;
246
}
247
/** Calls CropWorkspace as a sub-algorithm and passes to it the InputWorkspace property
248
249
250
*  @param specInd :: the index number of the histogram to extract
*  @param start :: the number of the first bin to include (starts counting bins at 0)
*  @param end :: the number of the last bin to include (starts counting bins at 0)
251
*  @throw out_of_range if start, end or specInd are set outside of the vaild range for the workspace
252
*  @throw runtime_error if the algorithm just falls over
253
254
*  @throw invalid_argument if the input workspace does not have common binning
*/
Peterson, Peter's avatar
Peterson, Peter committed
255
void GetEi::extractSpec(int64_t specInd, double start, double end)
256
257
258
259
260
261
262
263
264
265
266
{
  IAlgorithm_sptr childAlg =
    createSubAlgorithm("CropWorkspace", 100*m_fracCompl, 100*(m_fracCompl+CROP) );
  m_fracCompl += CROP;
  
  childAlg->setPropertyValue( "InputWorkspace",
                              getPropertyValue("InputWorkspace") );
  childAlg->setProperty( "XMin", start);
  childAlg->setProperty( "XMax", end);
  childAlg->setProperty( "StartWorkspaceIndex", specInd);
  childAlg->setProperty( "EndWorkspaceIndex", specInd);
267
  childAlg->executeAsSubAlg();
268
269
270
271
272
273
274
275
276
277
278

  m_tempWS = childAlg->getProperty("OutputWorkspace");

//DEBUGGING CODE uncomment out the line below if you want to see the TOF window that was analysed
//AnalysisDataService::Instance().addOrReplace("croped_dist_del", m_tempWS);
  progress(m_fracCompl);
  interruption_point();
}

/** Finds the largest peak by looping through the histogram and finding the maximum
*  value 
279
280
281
* @param height :: its passed value ignored it is set to the peak height
* @param centreInd :: passed value is ignored it will be set to the bin index of the peak center
* @param background :: passed value ignored set mean number of counts per bin in the spectrum
282
* @throw invalid_argument if the peak is not clearly above the background
283
*/
Peterson, Peter's avatar
Peterson, Peter committed
284
void GetEi::getPeakEstimates(double &height, int64_t &centreInd, double &background) const
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
{
  // take note of the number of background counts as error checking, do we have a peak or just a bump in the background
  background = 0;
  // start at the first Y value
  height = m_tempWS->readY(0)[0];
  centreInd = 0;
  // then loop through all the Y values and find the tallest peak
  for ( MantidVec::size_type i = 1; i < m_tempWS->readY(0).size()-1; ++i )
  {
    background += m_tempWS->readY(0)[i];
    if ( m_tempWS->readY(0)[i] > height )
    {
      centreInd = i;
      height = m_tempWS->readY(0)[centreInd];
    }
  }
  
Peterson, Peter's avatar
Peterson, Peter committed
302
  background = background/static_cast<double>(m_tempWS->readY(0).size());
303
304
305
306
307
308
309
310
  if ( height < PEAK_THRESH_H*background )
  {
    throw std::invalid_argument("No peak was found or its height is less than the threshold of " + boost::lexical_cast<std::string>(PEAK_THRESH_H) + " times the mean background, was the energy estimate (" + getPropertyValue("EnergyEstimate") + " meV) close enough?");
  }

  g_log.debug() << "Peak position is the bin that has the maximum Y value in the monitor spectrum, which is at TOF " << (m_tempWS->readX(0)[centreInd]+m_tempWS->readX(0)[centreInd+1])/2 << " (peak height " << height << " counts/microsecond)\n";

}
311
312
/** Estimates the closest time, looking either or back, when the number of counts is
*  half that in the bin whose index that passed
313
314
315
316
*  @param startInd :: index of the bin to search around, e.g. the index of the peak centre
*  @param height :: the number of counts (or count rate) to compare against e.g. a peak height
*  @param noise :: mean number of counts in each bin in the workspace
*  @param go :: either GetEi::GO_LEFT or GetEi::GO_RIGHT
317
*  @return estimated TOF of the half maximum point
318
319
320
*  @throw out_of_range if the end of the histogram is reached before the point is found
*  @throw invalid_argument if the peak is too thin
*/
321
double GetEi::findHalfLoc(MantidVec::size_type startInd, const double height, const double noise, const direction go) const
322
323
{
  MantidVec::size_type endInd = startInd;
324

325
  while ( m_tempWS->readY(0)[endInd] >  (height+noise)/2.0 )
326
327
  {
    endInd += go;
328
    if ( endInd < 1 )
329
    {
330
      throw std::out_of_range("Can't analyse peak, some of the peak is outside the " + boost::lexical_cast<std::string>(HALF_WINDOW*100) + "% window, at TOF values that are too low. Was the energy estimate close enough?");
331
    }
332
    if ( endInd > m_tempWS->readY(0).size()-2)
333
    {
334
      throw std::out_of_range("Can't analyse peak, some of the peak is outside the " + boost::lexical_cast<std::string>(HALF_WINDOW*100) + "% window, at TOF values that are too high. Was the energy estimate close enough?");
335
336
    }
  }
337

Peterson, Peter's avatar
Peterson, Peter committed
338
  if ( std::abs(static_cast<int64_t>(endInd - startInd)) < PEAK_THRESH_W )
339
340
341
342
343
  {// we didn't find a significant peak
    g_log.error() << "Likely precision problem or error, one half height distance is less than the threshold number of bins from the central peak: " << std::abs(static_cast<int>(endInd - startInd)) << "<" << PEAK_THRESH_W << ". Check the monitor peak\n";
  }
  // we have a peak in range, do an area check to see if the peak has any significance
  double hOverN = (height-noise)/noise;
Peterson, Peter's avatar
Peterson, Peter committed
344
  if ( hOverN < PEAK_THRESH_A && std::abs(hOverN*static_cast<double>(endInd - startInd)) < PEAK_THRESH_A )
345
346
347
  {// the peak could just be noise on the background, ignore it
    throw std::invalid_argument("No good peak was found. The ratio of the height to the background multiplied either half widths must be above the threshold (>" + boost::lexical_cast<std::string>(PEAK_THRESH_A) + " bins). Was the energy estimate close enough?");
  }
348
349
350
  // get the TOF value in the middle of the bin with the first value below the half height
  double halfTime = (m_tempWS->readX(0)[endInd]+m_tempWS->readX(0)[endInd+1])/2;
  // interpolate back between the first bin with less than half the counts to the bin before it
351
352
  if ( endInd != startInd )
  {// let the bin that we found have coordinates (x_1, y_1) the distance of the half point (x_2, y_2) from this is (y_1-y_2)/gradient. Gradient = (y_3-y_1)/(x_3-x_1) where (x_3, y_3) are the coordinates of the other bin we are using
353
354
355
356
357
358
    double gradient = ( m_tempWS->readY(0)[endInd] - m_tempWS->readY(0)[endInd-go] )/
      ( m_tempWS->readX(0)[endInd] - m_tempWS->readX(0)[endInd-go] );
    // we don't need to check for a zero or negative gradient if we assume the endInd bin was found when the Y-value dropped below the threshold
    double deltaY = m_tempWS->readY(0)[endInd]-(height+noise)/2.0;
    // correct for the interpolation back in the direction towards the peak centre
    halfTime -= deltaY/gradient;
359
360
  }

361
  g_log.debug() << "One half height point found at TOF = " << halfTime << " microseconds\n";
362
  return halfTime;
363
}
364
/** Get the kinetic energy of a neuton in joules given it speed using E=mv^2/2
365
*  @param speed :: the instantanious speed of a neutron in metres per second
366
367
*  @return the energy in joules
*/
368
369
370
371
372
373
double GetEi::neutron_E_At(double speed) const
{
  // E_KE = mv^2/2
  return PhysicalConstants::NeutronMass*speed*speed/(2);
}

374
375
376
377
378
379
380
381
/// Update the percentage complete estimate assuming that the algorithm has completed a task with estimated RunTime toAdd
void GetEi::advanceProgress(double toAdd)
{
  m_fracCompl += toAdd;
  progress(m_fracCompl);
  // look out for user cancel messgages
  interruption_point();
}
382
383
384

} // namespace Algorithms
} // namespace Mantid