Statistics.cpp 7.27 KB
Newer Older
1
2
3
4
5
6
#include <algorithm>
#include <functional>
#include <limits>
#include <math.h>
#include <numeric>
#include <string>
Campbell, Stuart's avatar
Campbell, Stuart committed
7
#include <iostream>
8
9
10
11
#include "MantidKernel/Statistics.h"

namespace Mantid
{
Campbell, Stuart's avatar
Campbell, Stuart committed
12
  namespace Kernel
13
14
  {

Campbell, Stuart's avatar
Campbell, Stuart committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    using std::string;
    using std::vector;

    /**
     * Generate a Statistics object where all of the values are NaN. This is a good initial default.
     */
    Statistics getNanStatistics()
    {
      double nan = std::numeric_limits<double>::quiet_NaN();

      Statistics stats;
      stats.minimum = nan;
      stats.maximum = nan;
      stats.mean = nan;
      stats.median = nan;
      stats.standard_deviation = nan;

      return stats;
    }

    /**
     * There are enough special cases in determining the median where it useful to
     * put it in a single function.
     */
    template<typename TYPE>
    double getMedian(const vector<TYPE>& data, const size_t num_data, const bool sorted)
    {
      double left = 0.0;
      double right = 0.0;

      if (num_data == 1)
        return static_cast<double> (*(data.begin()));

      bool is_even = ((num_data % 2) == 0);
      if (is_even)
      {
        if (sorted)
        {
          // Just get the centre two elements.
          left = static_cast<double> (*(data.begin() + num_data / 2 - 1));
          right = static_cast<double> (*(data.begin() + num_data / 2));
        }
        else
        {
          // If the data is not sorted, make a copy we can mess with
          vector<TYPE> temp(data.begin(), data.end());
          // Get what the centre two elements should be...
          std::nth_element(temp.begin(), temp.begin() + num_data / 2 - 1, temp.end());
          left = static_cast<double> (*(temp.begin() + num_data / 2 - 1));
          std::nth_element(temp.begin(), temp.begin() + num_data / 2, temp.end());
          right = static_cast<double> (*(temp.begin() + num_data / 2));
        }
        // return the average
        return (left + right) / 2.;
      }
      else
      // Odd number
      {
        if (sorted)
        {
          // If sorted and odd, just return the centre value
          return static_cast<double> (*(data.begin() + num_data / 2));
        }
        else
        {
          // If the data is not sorted, make a copy we can mess with
          vector<TYPE> temp(data.begin(), data.end());
          // Make sure the centre value is in the correct position
          std::nth_element(temp.begin(), temp.begin() + num_data / 2, temp.end());
          // Now return the centre value
          return static_cast<double> (*(temp.begin() + num_data / 2));
        }
      }
    }
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    /**
     * There are enough special cases in determining the Z score where it useful to
     * put it in a single function.
     */
    template<typename TYPE>
    std::vector<double> getZscore(const vector<TYPE>& data, const bool sorted)
    {
      if (data.size() < 3)
      {
    	  std::vector<double>Zscore(data.size(),0.);
    	  return Zscore;
      }
      std::vector<double> Zscore;
      double tmp;
      Statistics stats = getStatistics(data, sorted);
104
105
106
107
108
      if(stats.standard_deviation == 0.)
      {
    	  std::vector<double>Zscore(data.size(),0.);
    	  return Zscore;
      }
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
      typename vector<TYPE>::const_iterator it = data.begin();
      for (; it != data.end(); ++it)
      {
    	tmp = static_cast<double> (*it);
        Zscore.push_back(fabs((tmp - stats.mean) / stats.standard_deviation));
      }
      return Zscore;
    }
    /**
     * There are enough special cases in determining the modified Z score where it useful to
     * put it in a single function.
     */
    template<typename TYPE>
    std::vector<double> getModifiedZscore(const vector<TYPE>& data, const bool sorted)
    {
124
125
126
127
128
      if (data.size() < 3)
      {
    	  std::vector<double>Zscore(data.size(),0.);
    	  return Zscore;
      }
129
      std::vector<double>MADvec;
130
131
132
133
134
135
136
137
138
139
      double tmp;
      size_t num_data = data.size(); // cache since it is frequently used
      double median = getMedian(data, num_data, sorted);
      typename vector<TYPE>::const_iterator it = data.begin();
      for (; it != data.end(); ++it)
      {
    	tmp = static_cast<double> (*it);
        MADvec.push_back(fabs(tmp - median));
      }
      double MAD = getMedian(MADvec, num_data, sorted);
140
141
142
143
144
      if(MAD == 0.)
      {
    	  std::vector<double>Zscore(data.size(),0.);
    	  return Zscore;
      }
145
      MADvec.empty();
146
      std::vector<double> Zscore;
147
148
149
150
151
152
153
154
      it = data.begin();
      for (; it != data.end(); ++it)
      {
    	tmp = static_cast<double> (*it);
        Zscore.push_back(0.6745*fabs((tmp - median) / MAD));
      }
      return Zscore;
    }
Campbell, Stuart's avatar
Campbell, Stuart committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

    /**
     * Determine the statistics for a vector of data. If it is sorted then let the
     * function know so it won't make a copy of the data for determining the median.
     */
    template<typename TYPE>
    Statistics getStatistics(const vector<TYPE>& data, const bool sorted)
    {
      Statistics stats = getNanStatistics();
      size_t num_data = data.size(); // chache since it is frequently used

      if (num_data == 0)
      { // don't do anything
        return stats;
      }

      // calculate the mean
      stats.mean = std::accumulate(data.begin(), data.end(), 0., std::plus<double>());
      stats.mean /= (static_cast<double> (num_data));

      // calculate the standard deviation, min, max
      stats.minimum = stats.mean;
      stats.maximum = stats.mean;
      double stddev = 0.;
      double temp;
      typename vector<TYPE>::const_iterator it = data.begin();
      for (; it != data.end(); ++it)
      {
        temp = static_cast<double> (*it);
        stddev += ((temp - stats.mean) * (temp - stats.mean));
        if (temp > stats.maximum)
          stats.maximum = temp;
        if (temp < stats.minimum)
          stats.minimum = temp;
      }
      stats.standard_deviation = sqrt(stddev / (static_cast<double> (num_data)));

      // calculate the median
      stats.median = getMedian(data, num_data, sorted);

      return stats;
    }

    /// Getting statistics of a string array should just give a bunch of NaNs
    template<>
    DLLExport Statistics getStatistics<string> (const vector<string>& data, const bool sorted)
    {
202
203
      UNUSED_ARG(sorted);
      UNUSED_ARG(data);
Campbell, Stuart's avatar
Campbell, Stuart committed
204
205
206
      return getNanStatistics();
    }

207
208
209
210
211
212
213
214
    /// Getting statistics of a boolean array should just give a bunch of NaNs
    template<>
    DLLExport Statistics getStatistics<bool> (const vector<bool>& data, const bool sorted)
    {
      UNUSED_ARG(sorted);
      UNUSED_ARG(data);
      return getNanStatistics();
    }
215

216
217
218
219
220
221
222
223
224
    // -------------------------- Macro to instantiation concrete types --------------------------------
#define INSTANTIATE(TYPE) \
    template MANTID_KERNEL_DLL Statistics getStatistics<TYPE> (const vector<TYPE> &, const bool); \
    template MANTID_KERNEL_DLL std::vector<double> getZscore<TYPE> (const vector<TYPE> &, const bool); \
    template MANTID_KERNEL_DLL std::vector<double> getModifiedZscore<TYPE> (const vector<TYPE> &, const bool);

    // --------------------------- Concrete instantiations ---------------------------------------------
    INSTANTIATE(float);
    INSTANTIATE(double);
225
226
    INSTANTIATE(int);
    INSTANTIATE(long);
227
    INSTANTIATE(long long);
228
229
    INSTANTIATE(unsigned int);
    INSTANTIATE(unsigned long);
230
    INSTANTIATE(unsigned long long);
Campbell, Stuart's avatar
Campbell, Stuart committed
231
232

  } // namespace Kernel
233
} // namespace Mantid