GetEi.cpp 19.6 KB
Newer Older
1
2
#include "MantidAlgorithms/GetEi.h"
#include "MantidKernel/ArrayProperty.h"
3
#include "MantidAPI/FileProperty.h"
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "MantidKernel/PhysicalConstants.h"
#include "MantidAPI/WorkspaceValidators.h"
#include "MantidAPI/SpectraDetectorMap.h"
#include <boost/lexical_cast.hpp>
#include "MantidKernel/Exception.h" 
#include <cmath>

namespace Mantid
{
namespace Algorithms
{

// Register the algorithm into the algorithm factory
DECLARE_ALGORITHM(GetEi)

using namespace Kernel;
using namespace API;
using namespace Geometry;

23
// adjustable fit criteria, increase the first number or reduce any of the last three for more promiscuous peak fitting
24
// from the estimated location of the peak search forward by the following fraction and backward by the same fraction
25
const double GetEi::HALF_WINDOW = 8.0/100;
26
27
28
29
30
31
32
33
const double GetEi::PEAK_THRESH_H = 3.0;
const double GetEi::PEAK_THRESH_A = 5.0;
const int GetEi::PEAK_THRESH_W = 3;

// progress estimates
const double GetEi::CROP = 0.15;
const double GetEi::GET_COUNT_RATE = 0.15;
const double GetEi::FIT_PEAK = 0.2;
34
35
36

/// Empty default constructor algorith() calls the constructor in the base class
GetEi::GetEi() : Algorithm(),
37
  m_tempWS(), m_fracCompl(0.0)
38
39
40
41
{
}

void GetEi::init()
42
{
43
44
  //this->setWikiSummary("Calculates the kinetic energy of neutrons leaving the source based on the time it takes for them to travel between two monitors.");
  //this->setOptionalMessage("Calculates the kinetic energy of neutrons leaving the source based on the time it takes for them to travel between two monitors.");
45
// Declare required input parameters for algorithm and do some validation here
46
47
48
  CompositeValidator<> *val = new CompositeValidator<>;
  val->add(new WorkspaceUnitValidator<>("TOF"));
  val->add(new HistogramValidator<>);
49
  val->add(new InstrumentValidator<>);
50
  declareProperty(new WorkspaceProperty<>(
51
    "InputWorkspace","",Direction::Input,val),
52
53
54
55
56
57
58
59
60
61
62
63
    "The X units of this workspace must be time of flight with times in\n"
    "micro-seconds");
  BoundedValidator<int> *mustBePositive = new BoundedValidator<int>();
  mustBePositive->setLower(0);
  declareProperty("Monitor1Spec", -1, mustBePositive,
    "The spectrum number of the output of the first monitor, e.g. MAPS\n"
    "41474, MARI 2, MERLIN 69634");
  declareProperty("Monitor2Spec", -1, mustBePositive->clone(),
    "The spectrum number of the output of the second monitor e.g. MAPS\n"
    "41475, MARI 3, MERLIN 69638");
  BoundedValidator<double> *positiveDouble = new BoundedValidator<double>();
  positiveDouble->setLower(0);
64
65
  declareProperty("EnergyEstimate", -1.0, positiveDouble,
    "An approximate value for the typical incident energy, energy of\n"
66
    "neutrons leaving the source (meV)");
67
  declareProperty("IncidentEnergy", -1.0, Direction::Output);
68
  declareProperty("FirstMonitorPeak", -1.0, Direction::Output);
69
70
71
72
73
74

  m_fracCompl = 0.0;
}

/** Executes the algorithm
*  @throw out_of_range if the peak runs off the edge of the histogram
75
*  @throw NotFoundError if one of the requested spectrum numbers was not found in the workspace
76
77
*  @throw IndexError if there is a problem converting spectra indexes to spectra numbers, which would imply there is a problem with the workspace
*  @throw invalid_argument if a good peak fit wasn't made or the input workspace does not have common binning
78
*  @throw runtime_error if there is a problem with the SpectraDetectorMap or a sub-algorithm falls over
79
80
81
*/
void GetEi::exec()
{
82
  MatrixWorkspace_const_sptr inWS = getProperty("InputWorkspace");
83
84
  const int mon1Spec = getProperty("Monitor1Spec");
  const int mon2Spec = getProperty("Monitor2Spec");
85
  double dist2moni0 = -1, dist2moni1 = -1;
86
  getGeometry(inWS, mon1Spec, mon2Spec, dist2moni0, dist2moni1);
87
88
89

  // the E_i estimate is used to find (identify) the monitor peaks, checking prior to fitting will throw an exception if this estimate is too big or small
  const double E_est = getProperty("EnergyEstimate");
90
  // we're assuming that the time units for the X-values in the workspace are micro-seconds
91
  const double peakLoc0 = 1e6*timeToFly(dist2moni0, E_est);
92
93
  // write a lot of stuff to the log at user level as it is very possible for fit routines not to the expected thing
  g_log.information() << "Based on the user selected energy the first peak will be searched for at TOF " << peakLoc0 << " micro seconds +/-" << boost::lexical_cast<std::string>(100.0*HALF_WINDOW) << "%\n";
94
  const double peakLoc1 = 1e6*timeToFly(dist2moni1, E_est);
95
  g_log.information() << "Based on the user selected energy the second peak will be searched for at TOF " << peakLoc1 << " micro seconds +/-" << boost::lexical_cast<std::string>(100.0*HALF_WINDOW) << "%\n";
96

97
98
99
    // get the histograms created by the monitors
  std::vector<int> indexes = getMonitorSpecIndexs(inWS, mon1Spec, mon2Spec);

100
101
  g_log.information() << "Looking for a peak in the first monitor spectrum, spectra index " << indexes[0] << std::endl;
  double t_monitor0 = getPeakCentre(inWS, indexes[0], peakLoc0);
102
103
104
  g_log.notice() << "The first peak has been found at TOF = " << t_monitor0 << " microseconds\n";
  setProperty("FirstMonitorPeak", t_monitor0);

105
106
  g_log.information() << "Looking for a peak in the second monitor spectrum, spectra index " << indexes[1] << std::endl;
  double t_monitor1 = getPeakCentre(inWS, indexes[1], peakLoc1);
107
  g_log.information() << "The second peak has been found at TOF = " << t_monitor1 << " microseconds\n";
108
109
110
111
112
113

  // assumes that the source and the both mintors lie on one straight line, the 1e-6 converts microseconds to seconds as the mean speed needs to be in m/s
  double meanSpeed = (dist2moni1 - dist2moni0)/(1e-6*(t_monitor1 - t_monitor0));

  // uses 0.5mv^2 to get the kinetic energy in joules which we then convert to meV
  double E_i = neutron_E_At(meanSpeed)/PhysicalConstants::meV;
114
  g_log.notice() << "The incident energy has been calculated to be " << E_i << " meV" << " (your estimate was " << E_est << " meV)\n";
115
116
117
118

  setProperty("IncidentEnergy", E_i);
}
/** Gets the distances between the source and detectors whose IDs you pass to it
119
120
121
122
123
*  @param WS :: the input workspace
*  @param mon0Spec :: Spectrum number of the output from the first monitor
*  @param mon1Spec :: Spectrum number of the output from the second monitor
*  @param monitor0Dist :: the calculated distance to the detector whose ID was passed to this function first
*  @param monitor1Dist :: calculated distance to the detector whose ID was passed to this function second
124
*  @throw NotFoundError if no detector is found for the detector ID given
125
*  @throw runtime_error if there is a problem with the SpectraDetectorMap
126
*/
127
void GetEi::getGeometry(API::MatrixWorkspace_const_sptr WS, int mon0Spec, int mon1Spec, double &monitor0Dist, double &monitor1Dist) const
128
{
129
  const IObjComponent_sptr source = WS->getInstrument()->getSource();
130
131

  // retrieve a pointer to the first detector and get its distance
132
133
134
135
136
137
  std::vector<int> dets = WS->spectraMap().getDetectors(mon0Spec);
  if ( dets.size() != 1 )
  {
    g_log.error() << "The detector for spectrum number " << mon0Spec << " was either not found or is a group, grouped monitors are not supported by this algorithm\n";
    g_log.error() << "Error retrieving data for the first monitor" << std::endl;
    throw std::bad_cast();
138
  }
139
140
141
  IDetector_sptr det = WS->getInstrument()->getDetector(dets[0]);
  monitor0Dist = det->getDistance(*(source.get()));

142
  // repeat for the second detector
143
  dets = WS->spectraMap().getDetectors(mon1Spec);
144
145
146
147
148
  if ( dets.size() != 1 )
  {
    g_log.error() << "The detector for spectrum number " << mon1Spec << " was either not found or is a group, grouped monitors are not supported by this algorithm\n";
    g_log.error() << "Error retrieving data for the second monitor\n";
    throw std::bad_cast();
149
  }
150
151
  det = WS->getInstrument()->getDetector(dets[0]);
  monitor1Dist = det->getDistance(*(source.get()));
152
}
153
/** Converts detector IDs to spectra indexes
154
155
156
*  @param WS :: the workspace on which the calculations are being performed
*  @param specNum1 :: spectrum number of the output of the first monitor
*  @param specNum2 :: spectrum number of the output of the second monitor
157
*  @return the indexes of the histograms created by the detector whose ID were passed
158
*  @throw NotFoundError if one of the requested spectrum numbers was not found in the workspace
159
*/
160
std::vector<int> GetEi::getMonitorSpecIndexs(API::MatrixWorkspace_const_sptr WS, int specNum1, int specNum2) const
161
162
{// getting spectra numbers from detector IDs is hard because the map works the other way, getting index numbers from spectra numbers has the same problem and we are about to do both
  std::vector<int> specInds;
163
164
165
  
  // get the index number of the histogram for the first monitor
  std::vector<int> specNumTemp(&specNum1, &specNum1+1);
166
  WS->getIndicesFromSpectra(specNumTemp, specInds);
167
168
169
170
171
172
173
174
175
  if ( specInds.size() != 1 )
  {// the monitor spectrum isn't present in the workspace, we can't continue from here
    g_log.error() << "Couldn't find the first monitor spectrum, number " << specNum1 << std::endl;
    throw Exception::NotFoundError("GetEi::getMonitorSpecIndexs()", specNum1);
  }

  // nowe the second monitor
  std::vector<int> specIndexTemp;
  specNumTemp[0] = specNum2;
176
  WS->getIndicesFromSpectra(specNumTemp, specIndexTemp);
177
178
179
180
181
182
183
  if ( specIndexTemp.size() != 1 )
  {// the monitor spectrum isn't present in the workspace, we can't continue from here
    g_log.error() << "Couldn't find the second monitor spectrum, number " << specNum2 << std::endl;
    throw Exception::NotFoundError("GetEi::getMonitorSpecIndexs()", specNum2);
  }
  
  specInds.push_back(specIndexTemp[0]);
184
185
  return specInds;
}
186
187
/** Uses E_KE = mv^2/2 and s = vt to calculate the time required for a neutron
*  to travel a distance, s
188
189
* @param s :: ditance travelled in meters
* @param E_KE :: kinetic energy in meV
190
191
192
193
194
195
196
197
198
199
200
201
202
* @return the time to taken to travel that uninterrupted distance in seconds
*/
double GetEi::timeToFly(double s, double E_KE) const
{
  // E_KE = mv^2/2, s = vt
  // t = s/v, v = sqrt(2*E_KE/m)
  // t = s/sqrt(2*E_KE/m)

  // convert E_KE to joules kg m^2 s^-2
  E_KE *= PhysicalConstants::meV;

  return s/sqrt(2*E_KE/PhysicalConstants::NeutronMass);
}
203
204
205

/** Looks for and examines a peak close to that specified by the input parameters and
*  examines it to find a representative time for when the neutrons hit the detector
206
207
208
*  @param WS :: the workspace containing the monitor spectrum
*  @param monitIn :: the index of the histogram that contains the monitor spectrum
*  @param peakTime :: the estimated TOF of the monitor peak in the time units of the workspace
209
*  @return a time of flight value in the peak in microseconds
210
211
212
213
*  @throw invalid_argument if a good peak fit wasn't made or the input workspace does not have common binning
*  @throw out_of_range if the peak runs off the edge of the histogram
*  @throw runtime_error a sub-algorithm just falls over
*/
214
double GetEi::getPeakCentre(API::MatrixWorkspace_const_sptr WS, const int monitIn, const double peakTime)
215
{
216
  const MantidVec& timesArray = WS->readX(monitIn);
217
  // we search for the peak only inside some window because there are often more peaks in the monitor histogram
218
  double halfWin = ( timesArray.back() - timesArray.front() )*HALF_WINDOW;
219
220
  // runs CropWorkspace as a sub-algorithm to and puts the result in a new temporary workspace that will be deleted when this algorithm has finished
  extractSpec(monitIn, peakTime-halfWin, peakTime+halfWin);
221
222
223
224
225
  // converting the workspace to count rate is required by the fitting algorithm if the bin widths are not all the same
  WorkspaceHelpers::makeDistribution(m_tempWS);
  // look out for user cancel messgages as the above command can take a bit of time
  advanceProgress(GET_COUNT_RATE);

226
  // to store fit results
227
228
229
  int centreGausInd;
  double height, backGroundlev;
  getPeakEstimates(height, centreGausInd, backGroundlev);
230
231
  // look out for user cancel messgages
  advanceProgress(FIT_PEAK);
232
233
234

  // the peak centre is defined as the centre of the two half maximum points as this is better for asymmetric peaks
  // first loop backwards along the histogram to get the first half height point
235
  const double lHalf = findHalfLoc(centreGausInd, height, backGroundlev, GO_LEFT);
236
  // go forewards to get the half height on the otherside of the peak
237
238
239
  const double rHalf = findHalfLoc(centreGausInd, height, backGroundlev, GO_RIGHT);
  // the peak centre is defined as the mean of the two half height times 
  return (lHalf + rHalf)/2;
240
}
241
/** Calls CropWorkspace as a sub-algorithm and passes to it the InputWorkspace property
242
243
244
*  @param specInd :: the index number of the histogram to extract
*  @param start :: the number of the first bin to include (starts counting bins at 0)
*  @param end :: the number of the last bin to include (starts counting bins at 0)
245
*  @throw out_of_range if start, end or specInd are set outside of the vaild range for the workspace
246
*  @throw runtime_error if the algorithm just falls over
247
248
*  @throw invalid_argument if the input workspace does not have common binning
*/
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
void GetEi::extractSpec(int specInd, double start, double end)
{
  IAlgorithm_sptr childAlg =
    createSubAlgorithm("CropWorkspace", 100*m_fracCompl, 100*(m_fracCompl+CROP) );
  m_fracCompl += CROP;
  
  childAlg->setPropertyValue( "InputWorkspace",
                              getPropertyValue("InputWorkspace") );
  childAlg->setProperty( "XMin", start);
  childAlg->setProperty( "XMax", end);
  childAlg->setProperty( "StartWorkspaceIndex", specInd);
  childAlg->setProperty( "EndWorkspaceIndex", specInd);

  try
  {
    childAlg->execute();
  }
  catch (std::exception&)
  {
    g_log.error("Exception thrown while running CropWorkspace as a sub-algorithm");
    throw;
  }

  if ( ! childAlg->isExecuted() )
  {
    g_log.error("The CropWorkspace algorithm failed unexpectedly, aborting.");
    throw std::runtime_error(name() + " failed trying to run CropWorkspace");
  }
  m_tempWS = childAlg->getProperty("OutputWorkspace");

//DEBUGGING CODE uncomment out the line below if you want to see the TOF window that was analysed
//AnalysisDataService::Instance().addOrReplace("croped_dist_del", m_tempWS);
  progress(m_fracCompl);
  interruption_point();
}

/** Finds the largest peak by looping through the histogram and finding the maximum
*  value 
287
288
289
* @param height :: its passed value ignored it is set to the peak height
* @param centreInd :: passed value is ignored it will be set to the bin index of the peak center
* @param background :: passed value ignored set mean number of counts per bin in the spectrum
290
* @throw invalid_argument if the peak is not clearly above the background
291
*/
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
void GetEi::getPeakEstimates(double &height, int &centreInd, double &background) const
{
  // take note of the number of background counts as error checking, do we have a peak or just a bump in the background
  background = 0;
  // start at the first Y value
  height = m_tempWS->readY(0)[0];
  centreInd = 0;
  // then loop through all the Y values and find the tallest peak
  for ( MantidVec::size_type i = 1; i < m_tempWS->readY(0).size()-1; ++i )
  {
    background += m_tempWS->readY(0)[i];
    if ( m_tempWS->readY(0)[i] > height )
    {
      centreInd = i;
      height = m_tempWS->readY(0)[centreInd];
    }
  }
  
  background = background/m_tempWS->readY(0).size();
  if ( height < PEAK_THRESH_H*background )
  {
    throw std::invalid_argument("No peak was found or its height is less than the threshold of " + boost::lexical_cast<std::string>(PEAK_THRESH_H) + " times the mean background, was the energy estimate (" + getPropertyValue("EnergyEstimate") + " meV) close enough?");
  }

  g_log.debug() << "Peak position is the bin that has the maximum Y value in the monitor spectrum, which is at TOF " << (m_tempWS->readX(0)[centreInd]+m_tempWS->readX(0)[centreInd+1])/2 << " (peak height " << height << " counts/microsecond)\n";

}
319
320
/** Estimates the closest time, looking either or back, when the number of counts is
*  half that in the bin whose index that passed
321
322
323
324
*  @param startInd :: index of the bin to search around, e.g. the index of the peak centre
*  @param height :: the number of counts (or count rate) to compare against e.g. a peak height
*  @param noise :: mean number of counts in each bin in the workspace
*  @param go :: either GetEi::GO_LEFT or GetEi::GO_RIGHT
325
*  @return estimated TOF of the half maximum point
326
327
328
*  @throw out_of_range if the end of the histogram is reached before the point is found
*  @throw invalid_argument if the peak is too thin
*/
329
double GetEi::findHalfLoc(MantidVec::size_type startInd, const double height, const double noise, const direction go) const
330
331
{
  MantidVec::size_type endInd = startInd;
332

333
  while ( m_tempWS->readY(0)[endInd] >  (height+noise)/2.0 )
334
335
  {
    endInd += go;
336
    if ( endInd < 1 )
337
    {
338
      throw std::out_of_range("Can't analyse peak, some of the peak is outside the " + boost::lexical_cast<std::string>(HALF_WINDOW*100) + "% window, at TOF values that are too low. Was the energy estimate close enough?");
339
    }
340
    if ( endInd > m_tempWS->readY(0).size()-2)
341
    {
342
      throw std::out_of_range("Can't analyse peak, some of the peak is outside the " + boost::lexical_cast<std::string>(HALF_WINDOW*100) + "% window, at TOF values that are too high. Was the energy estimate close enough?");
343
344
    }
  }
345

346
347
348
349
350
351
352
353
354
355
  if ( std::abs(static_cast<int>(endInd - startInd)) < PEAK_THRESH_W )
  {// we didn't find a significant peak
    g_log.error() << "Likely precision problem or error, one half height distance is less than the threshold number of bins from the central peak: " << std::abs(static_cast<int>(endInd - startInd)) << "<" << PEAK_THRESH_W << ". Check the monitor peak\n";
  }
  // we have a peak in range, do an area check to see if the peak has any significance
  double hOverN = (height-noise)/noise;
  if ( hOverN < PEAK_THRESH_A && std::abs(hOverN*(endInd - startInd)) < PEAK_THRESH_A )
  {// the peak could just be noise on the background, ignore it
    throw std::invalid_argument("No good peak was found. The ratio of the height to the background multiplied either half widths must be above the threshold (>" + boost::lexical_cast<std::string>(PEAK_THRESH_A) + " bins). Was the energy estimate close enough?");
  }
356
357
358
  // get the TOF value in the middle of the bin with the first value below the half height
  double halfTime = (m_tempWS->readX(0)[endInd]+m_tempWS->readX(0)[endInd+1])/2;
  // interpolate back between the first bin with less than half the counts to the bin before it
359
360
  if ( endInd != startInd )
  {// let the bin that we found have coordinates (x_1, y_1) the distance of the half point (x_2, y_2) from this is (y_1-y_2)/gradient. Gradient = (y_3-y_1)/(x_3-x_1) where (x_3, y_3) are the coordinates of the other bin we are using
361
362
363
364
365
366
    double gradient = ( m_tempWS->readY(0)[endInd] - m_tempWS->readY(0)[endInd-go] )/
      ( m_tempWS->readX(0)[endInd] - m_tempWS->readX(0)[endInd-go] );
    // we don't need to check for a zero or negative gradient if we assume the endInd bin was found when the Y-value dropped below the threshold
    double deltaY = m_tempWS->readY(0)[endInd]-(height+noise)/2.0;
    // correct for the interpolation back in the direction towards the peak centre
    halfTime -= deltaY/gradient;
367
368
  }

369
  g_log.debug() << "One half height point found at TOF = " << halfTime << " microseconds\n";
370
  return halfTime;
371
}
372
/** Get the kinetic energy of a neuton in joules given it speed using E=mv^2/2
373
*  @param speed :: the instantanious speed of a neutron in metres per second
374
375
*  @return the energy in joules
*/
376
377
378
379
380
381
double GetEi::neutron_E_At(double speed) const
{
  // E_KE = mv^2/2
  return PhysicalConstants::NeutronMass*speed*speed/(2);
}

382
383
384
385
386
387
388
389
/// Update the percentage complete estimate assuming that the algorithm has completed a task with estimated RunTime toAdd
void GetEi::advanceProgress(double toAdd)
{
  m_fracCompl += toAdd;
  progress(m_fracCompl);
  // look out for user cancel messgages
  interruption_point();
}
390
391
392

} // namespace Algorithms
} // namespace Mantid