
A Bound-Constrained Levenburg-Marquardt Algorithm
for a Parameter Identification Problem in

Electromagnetics

Johnathan M. Bardsley∗

February 19, 2004

Abstract

Our objective is to solve a parameter identification inverse problem arising in elec-
tromagnetics. We give a brief discussion of the methodology used for obtaining forward
solutions to Maxwell’s equations in two dimensions, in the presence of a Debye medium.
A careful consideration of the noise model for data generation leads to a nonlinear least
squares formulation of the inverse problem, and the physical constraints on the param-
eters lead to bound constraints. An unconstrained Levenburg-Marquardt algorithm is
presented, and modifications of this algorithm for use on bound-constrained problems are
discussed. Some convergence properties of the constrained algorithm, as well as numerical
results from the application of interest are also presented.

1 Introduction

In [2] the authors discuss techniques for solving Maxwell’s equations in two dimensions in a
Debye medium, and for solving the associated parameter estimation or inverse problem. The
experimental setup assumed in the formulation of the two dimensional problem includes an
infinite strip antenna which is infinite in the y direction, but is finite in the x direction. This
setup is illustrated schematically in Figure 1. The resulting Maxwell system involves oblique
incident waves on the dielectric slab and hence is two dimensional. Solutions of the Maxwell
system are obtained via the finite difference time-domain (FDTD) algorithm [11]. Perfectly
matched layer (PML) absorbing boundary conditions are implemented in order to model the
(effectively) infinite spatial domain by a finite computational domain. A brief discussion of the
computational methodology used to obtain forward solutions, as well as numerical results from
forward simulations are presented in Section 2.1.

In Section 2.2 we discuss the associated parameter identification inverse problem. That is,
given data generated from the experimental setup illustrated in Figure 1 with a Debye dielectric
slab, determine the parameters that characterize the Debye medium. We begin the section with

∗Department of Mathematical Sciences, University of Montana, Missoula, MT 59812-0864

1

z
2

z
1

z

x

y

E(t,x,z)

Figure 1: Infinite strip antenna and dielectric slab.

the noise model for data generation for such experiments. Using this noise model, we are led
to the negative log-likelihood function, which takes a nonlinear least squares form. The inverse
problem is then to minimize this function subject to the physical constraints on the parameters.
To this end, we use a modified Levenburg-Marquardt method for bound constrained nonlinear
least squares problems. It is this algorithm that is the subject of this paper.

Section 3 is devoted to the development of the bound-constrained Levenburg-Marquardt
algorithm. To provide both motivation and a general algorithmic frame-work, we begin with an
unconstrained Levenburg-Marquardt algorithm in Section 3.1, and then discuss modifications
to this algorithm for use on bound constrained problems in 3.2. The major modification is in the
choice of quadratic models during the trust-region subproblem at each iteration. Motivation for
each of the modifications is discussed, and convergence properties of the constrained algorithm
are presented. Finally, in Section 4, the algorithm is applied to the parameter identification
inverse problem discussed in the previous paragraph, and is shown to converge. Conclusions
are presented in Section 5

2 Problem Statement

In this section we present the computational methodology for the forward solution of Maxwell’s
Equations together with the associated parameter identification inverse problem of interest. Our
presentation follows [2] closely.

2

2.1 Forward Problem

We begin with Maxwell’s equations for a region with free charge density ρ = 0, which are given
by

∇ ·D = 0 (1)

∇ ·B = 0 (2)

∇× E = −∂tB (3)

∇×H = ∂tD + J, (4)

where the vectors in (1)-(4) are functions of position r = (x, y, z) and time t, and J = Jc + Js,
where Jc is the conduction current density and Js is the source current density. We assume only
free space can have a source current, and thus either Jc = 0 or Js = 0, depending on whether
or not the region is free space. For a Debye medium, magnetic effects can be neglected, and we
assume that Ohm’s law governs the electric conductivity. Hence, within the dielectric medium

B = µ0H, (5)

Jc = σE. (6)

The displacement vector D, on the other hand, has a more complex representation, namely,

D = ε0ε∞E + P, (7)

where P is the electric polarization vector, and satisfies the differential equation

τṖ + P = ε0(εs − ε∞)E (8)

inside of the dielectric and is 0 outside of the dielectric.
Provided certain assumptions are made, the system (1)-(8) can be simplified substantially.

First, facilitated by the fact that we have assumed uniformity along the y-axis, the computa-
tional domain for our problem is contained in the x,z plane. Secondly, we assume that the
electromagnetic pulse emitted from the antenna is polarized so that it only has a y component.
These simplifying assumption are counteracted somewhat by a difficulty that arise when nu-
merical solutions of the resulting system are sought. In particular, in order to obtain numerical
solutions, a finite computational grid is necessary. For our problem, the resulting computa-
tional boundaries will generally reflect electromagnetic waves, and hence, numerical solutions
will contain non-physical artifacts. One of the more effective ways to combat this difficulty is
to use Perfectly Matched Layers (PMLs). The PML is a fictitious medium that is placed on
the outside of the region of interest in order to absorb incoming energy without reflection.

Taking into account the simplifying assumptions discussed in the previous paragraph, and
including a PDE model for the PMLs, one can obtain (see [2] for details) the following system

3

of PDEs:

∂tD
∗
y +

σ̂(x)

ε0

D∗
y = c0 (∂xHz − ∂zHx) , (9)

∂tDy +
σ̂(z)

ε0

Dy = ∂tD
∗
y, (10)

∂tH
∗
x +

σ̂(z)

ε0

H∗
x = c0∂zEy, (11)

∂tHx = ∂tH
∗
x +

σ̂(x)

ε0

H∗
x, (12)

∂tH
∗
z +

σ̂(x)

ε0

H∗
z = −c0∂xEy, (13)

∂tHz = ∂tH
∗
z +

σ̂(z)

ε0

H∗
z . (14)

The quantities D∗
y, H∗

x, and H∗
z in (9)-(14) are defined by equations (10), (12), and (14) re-

spectively. The function σ̂(z) = 0 outside of the PML. Inside of the PML, σ̂(z) is a smooth
function of z that increases from a value of zero at the free-space/PML interface to a value
of σmax at the boundary. The function σ̂(x) is defined similarly. Outside of the PML regions
σ̂(x) = σ̂(z) = 0.

The quantity Dy in (10) is given by

Dy(t) = ε∞Ey(t) + Py(t) + Cy(t), (15)

where the polarization Py satisfies

τ Ṗy + Py = (εs − ε∞)Ey, (16)

and the conductivity term Cy satisfies

Ċy = (σ/ε0)Ey (17)

inside of the dielectric. Outside of the dielectric, Cy = Py = 0. Note that in order to simplify
the implementation of the numerical algorithm, Ey was rescaled by a constant. This is not
reflected in any notation change in (9)-(14), and accounts for the change in form from (8)
to (16). Also, note that Dy in (15) is not the y component of the displacement vector D of
equation (7). It is, rather, the y component of the rescaled displacement vector that results
from the rescaling of Ey.

Equations (9)-(16) are the full set of equations that we solve numerically. We use finite
differences. In particular, we use the FDTD algorithm [10, 11], which uses forward differences
to approximate the time and spatial derivatives. For implementation details, see [2].

In order to attempt the parameter identification inverse problem, we must collect data within
the computational domain at a pre-specified sampling rate. We collect data at the center of
the antenna at each time step. Then, our data consists of the set {Ey(i∆t, 0, z̄,q)}Nt

i=1, where
Ey is the solution of Maxwell’s equations given by the FDTD algorithm, q = (σ, τ, εs, ε∞) is
the set of parameters that characterize the Debye medium, and Nt is the total number of time

4

0 200 400 600 800 1000 1200 1400 1600 1800
−150

−100

−50

0

50

100

150

Figure 2: Data for the Debye model for water. The vertical axis gives the magnitude of the
electric field. The horizontal axis gives the time in the units ∆t seconds.

steps. Notice that we have now made explicit the dependence of solutions of (9)-(16) on the
parameter set q. We will continue to use this convention in the sequel. For the discretization
mentioned above, we take Nt = 1800, in which case the data includes both the outgoing energy
and the energy that is reflected off of the free-space/dielectric interface.

In [5], it is noted that the polarization behavior of water is reasonably modelled by (15),
(17), and (16) with parameter values:

σ = 1× 10−5 mhos/meter,

τ = 8.1× 10−12 seconds, (18)

εs = 80.1 relative static permittivity,

ε∞ = 5.5 relative high frequency permittivity.

With this information, numerical approximations to (9)-(16) can be obtained. The resulting
data set {Ey(i∆t, 0, z̄,q)}Nt

i=1 is plotted in Figure 2. In [2], the formation of Brillouin precursors
[1] is noted within the dielectric, suggesting that the FDTD solutions are accurately capturing
the dispersivity of the Debye medium.

2.2 Inverse Problem

We now present the parameter identification inverse problem of interest. In the previous section,
we focused our attention on the problem of solving Maxwell’s equations in the presence of a
Debye polarization model. Implicit in this problem is the knowledge of the “true” parameter
vector, which we will denote q∗, and which is given by (18). In the inverse problem, on the other
hand, we have measurements of the electric field at the point (0, z̄) in the computational domain
at uniform intervals of time ti. Given this data, our goal is to then identify, or reconstruct, the
“true” parameter vector q∗.

5

In the laboratory setting, noise enters into the problem both through the resistor, which
generates the electric pulse, and through the antenna/receiver, which reads electric field inten-
sities at the point (0, z̄) at discrete time steps. The noise in the data is well-approximated by
a zero mean, additive Gaussian random variable with a constant variance across time (see [2]
for details). Thus our data vector

Edata
y = (Edata

y,1 , . . . , Edata
y,Nt

) (19)

is a random vector with components

Edata
y,i ∼ N(Ey(ti, 0, z̄,q

∗), σ2) for i = 1, . . . , Nt. (20)

To generate synthetic, noisy data, we use the FDTD method to obtain the set {Ey(ti, 0, z̄,q
∗)}Nt

i=1,
together with noise model (20). We then seek the maximum likelihood estimator (MLE) of the
true parameter vector q∗ given by (18). Assuming that d is a realization from the random
vector (19), (20), the MLE q̂ for q∗ is given by

q̂ = arg min
q∈Q

f(q), where f(q) =
1

2
||Ey(0, z̄,q)− d||22, (21)

where Ey(0, z̄,q) = (Ey(0, z̄, t1,q), . . . , Ey(0, z̄, tNt ,q)), and Q is the constraint set for the
parameter values.

Problem (21) is a constrained, nonlinear least squares problem. A standard algorithm for
solving such a problem without constraints is the Levenburg-Marquardt (LM) algorithm. This
algorithm is very effective on a wide range of applied problems. In the next section, we present
a straightforward modification of the LM algorithm for bound constrained problems. Note that
the constraints on the parameters in our problem consist only of lower bounds.

3 The Optimization Algorithm

We begin by first establishing some notation. We express f in (21) as

f(q) =
1

2

n∑
j=1

r2
j (q),

where rj(q) := (Ey(ti, 0, z̄,q)− dj)
2 for j = 1, . . . , n. We define the vector valued function r by

r(q) = (r1(q), r2(q), . . . , rn(q)).

In order to discuss the algorithm in a more general setting, we assume that the parameter
vector q is a vector with m components; that is, q = (q1, q2, . . . , qm). The Jacobian of r is then
given by

J(q) =

[
∂rj

∂qi

]
j = 1, . . . , n
i = 1, . . . , m

.

6

The gradient and Hessian of f can then be defined using J as follows (see [9]):

grad f(q) = J(q)T r(q), (22)

Hess f(q) = J(q)T J(q) +
m∑

j=1

rj(q)Hess rj(q). (23)

From (22), (23) we see that once we have obtained J(q), we can easily compute both the
gradient of f and the first term in (23), i.e. J(q)T J(q), which is known as the Gauss-Newton
(GN) approximation of the Hessian. The GN approximation will be accurate provided the
second term in (23) is small compared to the first term. This will occur if the residuals are
small, i.e. rj(q) ≈ 0 for each j; or if f is approximately linear, in which case Hess rj(q) will be
approximately equal to the zero matrix for each j.

Before continuing, we will state two definitions and two theorems. First, we define what it
means to be a local solution of (21).

Definition 3.1 The vector q̄ ∈ Q is a local solution of (21) if there exists a neighborhood U
containing q̄ such that f(q̄) ≤ f(q) for all q ∈ U ∩Q.

When Q = Rm, a necessary condition for q̄ to be a local solution of f is given in the following
theorem.

Theorem 3.2 If q̄ ∈ Q is a local solution of (21) with Q = Rm, then grad f(q̄) = 0.

This well known result will be used to determine stopping criteria for our unconstrained method
below, and the analogous result for the bound constrained case will be stated when we present
the constrained method.

Since it is our objective to solve a minimization problem, it is important that we are explicit
about what it means to be moving in a direction in which (at least locally) the value of our
function f decreases. Such a direction is known as a descent direction and is defined as follows:

Definition 3.3 The vector p ∈ Rm is a descent direction for f at q ∈ Rm if there exists ᾱ > 0
such that f(q + αp) < f(q) for 0 < α ≤ ᾱ.

A practical check for determining whether or not a vector p is a descent direction for f at q is
given by the following theorem.

Theorem 3.4 A vector p ∈ Rm is a descent direction for f : Rm → R at q ∈ Rm if and only
if pT grad f(p) < 0.

The constrained minimization algorithm that we will present for solving (21) is a modification
of the Levenburg-Marquardt algorithm for unconstrained, nonlinear least squares problems.
For this reason, we begin in the next section by presenting a specific implementation of an
unconstrained Levenburg-Marquardt algorithm. We then adapt this algorithm for use on bound
constrained problems.

7

3.1 A Levenburg-Marquardt Algorithm

In order to simplify notation, in the sequel we will use the notation fk = f(qk), gk = grad f(qk),
Jk = J(qk), and rk = r(qk). The LM algorithm generates a sequence of approximate solutions
of (21) when Q = Rm as follows:

Algorithm 1: Given the kth approximate solution qk of (21), the trust-region radius ∆k

and the positive definite, diagonal scaling matrix Dk, we generate qk+1, ∆k, and Dk as follows:

1. Approximately solve the constrained least squares problem

pk = arg min
p
||Jkp + rk||2 subject to ||Dkp|| ≤ ∆k; (24)

2. If qk + pk yields a sufficient decrease in the value of the function f , set qk+1 = qk + pk;
Otherwise, set qk+1 = qk;

3. Update ∆k and Dk.

We will assume, until stated otherwise, that n ≥ m and that Jk has full column rank for
all k. The important consequence of this assumption is that JT

k Jk is then positive definite and
is therefore invertible. In this case, the unconstrained minimizer of ||Jkp + rk||2 is also the
solution of the linear system

JT
k Jkpk = −JT

k rk. (25)

We will denote this choice of search direction by pGN
k , since it is the search direction used in the

well-known Gauss-Newton method [9]. The following argument shows that pGN
k is a descent

direction: (
pGN

k

)T
gk =

(
pGN

k

)T
JT

k rk = − (
pGN

k

)T
JT

k Jkp
GN
k < 0. (26)

The first equality in (26) follows from (22), the second from (25), and the final inequality is due
to the fact that JT

k Jk is positive definite. Hence, by Theorem 3.4, pGN
k is a descent direction.

It is a straightforward exercise to show that minimizing ||Jkp + rk||2 with respect to p is
equivalent to minimizing

mk(p) = fk + pT JT
k rk +

1

2
pT JT

k Jkp (27)

with respect to p. Hence ||Jkp + rk||2 in (24) can be replaced by mk(p). Notice that the
quadratic function (27) is the quadratic Taylor approximation of f at qk with Hess f(qk) re-
placed by the GN approximation JT

k Jk. We can therefore view LM as solving a sequence of
constrained, quadratic minimization problems in which the quadratic function is a local ap-
proximation of the objective function f .

We will now be more explicit about the methodology used in each of the steps in Algorithm 1.
We begin with Step 1.

8

3.1.1 Step 1: Compute pk.

Step 1 of Algorithm 1 is known as the trust-region subproblem and can be approximately solved
using a variety of techniques (see [7, 9]). The specifics of a particular application may determine
which approach is best. One of the most straightforward approaches, and one that is effective
for our application is the dogleg method.

Before presenting the method, we establish some notation. We define p̄k to be the uncon-
strained minimizer of mk(p) for p restricted to the path p = −αgk for α > 0. Then

p̄k = − gT
k gk

gT
k JT

k Jkgk

gk. (28)

As above, we define pGN
k to be the solution of (25). Finally, we define the dogleg path p̃k(t)

for t ∈ [0, 2] by

p̃k(t) =

{
tp̄k, 0 ≤ t ≤ 1,
p̄k + (t− 1)(pGN

k − p̄k), 1 ≤ t ≤ 2.
(29)

The dogleg method chooses the point pk that minimizes mk(p) along this path, subject to the
norm constraint given in (24). The results of the following lemma will suggest an algorithmic
scheme for the dogleg method. The proof of this lemma requires a minor modification of the
proof of Lemma 4.1 found in [9] and is therefore omitted.

Lemma 3.5 Let JT
k Jk be positive definite. Then ||Dkp̃k(t)|| is an increasing function of t, and

mk(p̃k(t)) is a decreasing function of t.

The fact that ||Dkp̃k(t)|| is an increasing function of t implies that the dogleg path intersects
the trust-region boundary ||Dkp|| = ∆k at exactly one point provided ||Dkp

GN
k || ≥ ∆k and

nowhere otherwise. This, together with the fact that mk(p̃k(t)) is a decreasing function of t,
implies that the following algorithm for executing the dogleg method is well-defined.

if ||Dkp
GN
k || ≤ ∆k

pk = pGN
k ;

else if ||Dkp̄k|| ≥ ∆k

pk = p̃(t∗) = t∗p̄k, where t∗ = ∆k/||Dkp̄k||;
else

pk = p̃(t∗) = p̄k + (t∗ − 1)(pGN
k − p̄k), where t∗

solves ||Dk

(
p̄k + (t− 1)(pGN

k − p̄k)
) ||2 = ∆2

k.
end if

3.1.2 Steps 2 and 3: Update qk and ∆k

Once an approximate solution pk of (24) is obtained in Step 1, two tests are performed. The
first test determines the new iterate qk+1 (Step 2) while the second determines the new trust
region radius ∆k+1 (Step 3). Both tests require the following parameter:

ρk =
fk − f(qk + pk)

mk(0)−mk(pk)
. (30)

9

The values qk+1 and ∆k+1 are then determined by the value of ρk.

We now present a specific LM algorithm with the general form of Algorithm 1 that uses the
methodology discussed in this and in the previous section.

3.1.3 Algorithm 1 Revisited

Given ∆max > 0, ∆0 ∈ (0, ∆max), η1 ∈ (0, 1
4
), η1 < η2 < 1, and α1 < 1 < α2:

for k = 0, 1, 2, . . .
Obtain pk via the dogleg algorithm of Section 3.1.1;
Evaluate ρk from (30);
if ρk > η1

qk+1 = qk + pk,
else

qk+1 = qk.
if ρk > η2

∆k+1 = min(α2∆k, ∆max),
else if ρk > η1

∆k+1 = ∆k,
else

∆k+1 = α1∆k.
end (for)

Motivated by Theorem 3.2, we stop the algorithm once ||gk|| ≤ γ, where γ is some small positive
number.

Remark: Provided certain conditions on the function f hold, Theorem 4.8 in [9] guaran-
tees global convergence for this algorithm. That is, regardless of the choice of q0, the above
algorithm will generate a sequence {qk} that converges to a local solution of (21).

3.2 A Bound-Constrained Levenburg-Marquardt Algorithm

We now address the question of how to adapt the LM algorithm of Section 3.1 for use on bound-
constrained problems. Before we begin this discussion, some preliminary tools are needed.

3.2.1 Preliminaries

The projection of a vector q ∈ RM onto the feasible set Q is given by

PQ(q)
def
= arg min

v∈Q
||v − q|| = max{min{q,u}, l},

where l and u are the lower and upper bound vectors respectively for the constraint set Q; that
is, Q is defined

Q = {q ∈ Rm | li ≤ qi ≤ ui, i = 1, . . . , m}; (31)

10

max{v, l} is the vector whose ith component is max{vi, li}; and min{v,u} is the vector whose
ith component is min{vi, ui}.

The active set for a vector q ∈ Q is given by

A(q) = {i | qi = li or qi = ui}. (32)

The complementary set of indices is called the inactive set and is denoted by I(q). The inactive,
or free, variables consist of the components qi for which the index i is in the inactive set.

We now define the projected gradient, which can be viewed as the analogue of the gradient in
the constrained setting. The projected gradient of f at q ∈ Q is the m-vector with components

[gradP f(q)]i =

{ ∂f(q)
∂qi

, i ∈ I(q) or (i ∈ A(q) and ∂f(q)
∂qi

< 0)

0, otherwise.
(33)

The following theorem relates the local solutions of (21) with the projected gradient.

Theorem 3.6 If q̄ ∈ Q is a local solution of (21) with Q defined by (31), then gradP f(q̄) = 0.

It is important to note the similarity between this result and Theorem 3.2, but also that
gradP f(q) = 0 does not imply that grad f(q) = 0. With the result of Theorem (3.6) in mind,
it is not surprising that for many constrained algorithms, the projected gradient plays the same
role that the gradient plays in the analogous algorithms for unconstrained problems. We will
see that this is the case for our constrained algorithm as well.

Finally, we define the reduced Hessian to be

[HessR f(q)]ij =

{
∂2f(q)
∂qi∂qj

, if i ∈ I(q) or j ∈ I(q)

δij, otherwise.

Let DI denote the diagonal matrix with components

[DI(q)]ii =

{
1, i ∈ I(q)
0, i ∈ A(q).

(34)

Then

HessR f(q) = DI(q) Hess f(q) DI(q) + DA(q), (35)

where DA(q) = I −DI(q).

3.2.2 The Algorithm

We now present the modifications of the LM algorithm that enable the incorporation of con-
straints.

Modification 1: Our first modification is to the quadratic function (27) that is approximately
minimized in Step 1 of the algorithm. In (27) we replace JT

k Jk by

Ak = DI(qk) JT
k Jk DI(qk) + DA(qk)

11

and gk by ḡk = gradP f(qk). Thus, mk is replaced by

m̄k(p) = fk + pT ḡk + pT Akp. (36)

Note that the matrix Ak is the Gauss-Newton approximation of the reduced Hessian HessR f(qk)
defined by (35).

These modifications to mk result in corresponding changes in the dogleg path defined by
(29). In particular, (28) in (29) is replaced by

p̄k = − gT
k ḡk

ḡT
k Akḡk

ḡk, (37)

and pGN
k is replaced by the solution of the linear system

Akp = −ḡk. (38)

Because we have assumed that JT
k Jk is positive definite, Ak is also positive definite, and hence,

(38) has a solution, which we will denote p̄GN
k . An argument analogous to (26) shows that p̄GN

k

is a descent direction.
The results of Lemma 3.5 will hold for m̄k. This is due to the fact that the proof of the

lemma only required that JT
k Jk be positive definite. Thus, since Ak is positive definite, no

change in the proof is required. In addition, replacing gk by ḡk results in no modifications of
the proof. Hence, if p̃k(t) is our dogleg path, ||Dkp̃k(t)|| is an increasing function of t, and
m̄k(p̃k(t)) is a decreasing function of t. Consequently, the dogleg algorithm found in Section
3.1.1 can be used with the modified dogleg path defined above, and it will be well-defined.

Modification 2: The step generated by the dogleg method using m̄k may take us outside
of the constraints. To remedy this problem, once the dogleg solution pk is obtained, we project
the new step onto the constraint set Q. Then our new step pk is given by

pk = PQ(qk + p̄k)− qk. (39)

Modification 3: Finally, we accept or reject our step and update our trust region radius
∆k following the frame work of the algorithm in Section 3.2.2, with the modification that mk

replaced by m̄k in the definition of ρk given by equation (30).

The primary modification that we have made is the replacement of mk by m̄k. This occurs in
both Modification 1 and 3. We can motivate this choice in several ways. First, both p̄k and
p̄GN

k are feasible search directions; that is qk + αp̄k and qk + αpGN
k are in Q for α small and

positive. This is not the case in general if p̄k is defined as in (28) and if p̄GN
k is replaced by

pGN
k .

Secondly, using only the projected gradient as a search direction with either a trust-region or
line search globalization scheme and (39) to enforce constraints, global convergence results can
be attained for problems of the form (21) [6, 8]. Consequently, one expects, with the reduction
in m̄k along the dogleg path from p̄k to p̄GN

k , that in using the dogleg method, these global
converge properties will be retained, while the resulting algorithm will have a much improved
convergence rate.

Finally, our choice of m̄k can be motivated by the following result, which is found in [6].

12

Theorem 3.7 Let f : Rm → R be continuously differentiable on Q, and let {qk} be an arbitrary
sequence in Q which converges to q̂. If {gradP f(qk)} converges to zero and q̂ is nondegenerate,
then there exists a positive number K such that A(qk) = A(q̂) for all k ≥ K.

(Note that q̂ is nondegenerate if [grad f(q̂)]i 6= 0 whenever i ∈ A(q̂).) From this result we see
that if our algorithm constructs a sequence that converges to a nondegenerate local solution of
(21) then eventually the active set at the solution is identified. Once this occurs, the problem
is no longer constrained, and our choice of m̄k guarantees that our algorithm reduces to the
unconstrained Levenburg-Marquardt algorithm presented in Section 3.1, which is desirable.

Remark: It is important to note that the changes discussed above are independent of the
choice of the algorithm that is used for approximately solving the trust-region subproblem.
In this paper, we use the dogleg method, but other methods (see [7, 9]) can be used as well.
Regardless of the choice that is made, the above modifications with yield a viable constrained
LM algorithm.

In addition, we mention that a line search globalization scheme can also be used in which
the search direction at each iteration is chosen to be the solution of (38). This approach follows
the framework found in [4].

4 Numerical Results

In this section, we apply the bound constrained Levenburg-Marquardt algorithm from Section
3.2 to the problem of solving the bound constrained minimization problem (21). The constraint
set Q is determined by the following physical constraints on the parameters: σ ≥ 0, τ ≥ 0,
εs ≥ 1, and ε∞ ≥ 1. Notice that there is no upper-bound vector. The data d is a realization of
the random vector (19), (20) with {Ey(ti, 0, z̄,q

∗)}Nt
i=1 gotten via solving Maxwell’s equations in

the fashion discussed in Section 2.1 with the ”true” parameter vector q∗ defined by (18). We
choose σ2 in (20) so that the `2-norm of the noise taken componentwise is 2% of the norm of the
signal without noise. We take an initial guess q0 = (σ0, τ0, εs,0, ε∞,0) given by σ0 = 1.5× 10−5,
τ0 = 10.0 × 10−12, εs,0 = 73.1, and ε∞,0 = 6.0. (These range between 50% relative to 10%
relative error from the true values and are typical of values used in testing algorithms [3].).
The parameters that are necessary for the implementation of our algorithm (see Section 3.2.2)
are chose to be α1 = 0.25, α2 = 2, η1 = 0.25, and η2 = 0.75, ∆0 = 1, and ∆max = 1000.

The results are given in Figure 3. We see that convergence is attained. The flat spots in
the convergence plot are the result of iterations in which the step pk computed in the dogleg
step was not accepted. The value of the reconstructed parameters at the end of the iteration
was σ̃ = 0, τ̃ = 9.989 × 10−12, ε̃s = 80.01, and ε̃∞ = 10.66. Note that the component of q
corresponding to σ is active at the approximate solution. It is important to mention at this
point that initially the unconstrained Levenburg-Marquardt algorithm discussed in Section 3.1
was used on this problem, and the values of the reconstructed parameters were in most cases
non-physical for σ and were often non-physical for ε∞. A constrained algorithm was therefore
a necessity.

Also note that, relatively speaking, the only parameters that are accurately reconstructed
are εs and τ . In [2], the sensitivity of the cost function f in (21) to each of the four parameters is

13

0 2 4 6 8 10 12
10

−2

10
−1

10
0

10
1

Figure 3: Norm of the Projected Gradient of f verses Iteration Count. The horizontal axis
denotes iteration count k. The vertical axis denotes the natural log of the projected gradient
of f at the current iterate qk.

discussed in detail and is lengthy. We will, therefore, not reproduce it in its entirety here. One
important conclusion that was made, via a frequency domain analysis, was that for values of the
parameters of the same order of magnitude as the true values, the solutions of the corresponding
Maxwell systems are most sensitive to εs, and hence, that only accurate reconstructions of εs can
be expected. This is supported by the results from the attempts at solving the inverse problem
found in [2]. In fact, in other attempts, the reconstructed value of τ ∗ is not as accurate as it
was in this case.

5 Conclusions

We present an inverse problem that arises from an application in electromagnetics. In particular,
we seek to reconstruct the parameters that characterize a Debye medium, e.g. water, via the
inversion of scattered, electric field data. The methodology used for solving Maxwell’s equation
is discussed briefly. The parameter identification inverse problem has a nonlinear least squares
form with bound constraints.

After an unconstrained Levenburg-Marquardt algorithm is presented, straightforward mod-
ifications are discussed for use on bound-constrained nonlinear least squares problems. A
convergence analysis of the resulting algorithm is given. In addition, it is shown that the
bound-constrained algorithm reduces to the original, unconstrained Levenburg-Marquardt al-
gorithm once the active set at the solution has been identified, which is desirable.

Finally, the algorithm is applied to the inverse problem of interest, and convergence is

14

attained. The Debye parameters that characterize the dispersive effects of water are used as
the true parameters.

6 Acknowledgements

I would like to thank Dr. H. T. Banks of North Carolina State University for providing me
with the opportunity to work on this project. This research was supported in part by the
U.S. Air Force Office of Scientific Research under grant AFOSR F49620-01-1-0026 and in part
by the National Science Foundation under grant DMS-0112069 to the Statistical and Applied
Mathematical Sciences Institute.

References

[1] Richard Albanese, John Penn, and Richard Medina. Short-rise-time microwave pulse
propagation through dispersive biological media. J. Optical Society of America A,
6(9):1441-1446, 1989.

[2] H. T. Banks, J. M. Bardsley. Parameter Identification for a Dispersive Dielectric in 2D
Electromagnetics: Forward and Inverse Methodology with Statistical Considerations.
Inverse Problems, submitted.

[3] H. T. Banks and K. Kunisch. Estimation Techniques for Distributed Parameter Sys-
tems. Birkhauser, Boston, 1989.

[4] Dimitri P. Bertsekas. Projected Newton Methods for Optimization Problems with
Simple Constraints. SIAM Journal on Control and Optimization, 20(2), 1982, pp.
221-246.

[5] J. G. Blaschak and J. Franzen. Precursor propagation in dispersive media from short-
rise-time pulses at oblique incidence. Journal of the Optical Society of America A, 12,
1995, pp. 1501-1512.

[6] P. H. Calamai and Jorge J. Moré. Projected Gradient Methods for Linearly Constrained
Problems. Mathematical Programming, 39, 1987, pp.93-116.

[7] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods, SIAM, 2000.

[8] C. T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, 1999.

[9] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer, 2000.

[10] Dennis M. Sullivan. Electromagnetic Simulation using the FDTD Method. IEEE Press,
2000.

[11] Allen Taflove and Susan C. Hagness. Computational Electrodynamics: The Finite
Difference Time Domain Method. Artech House, 2000.

15

