util.cc 8.78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
/*
 * File:   util.cc
 * Author: a16
 *
 * Created on January 17, 2013, 9:27 AM
 */

#include "radixmath/util.hh"
#include "radixmath/point3d.hh"
#include "radixmath/vector3d.hh"
11
#include <algorithm>
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#include <cstddef>

namespace radix
{

std::vector<Real> getEqualAreaRadii( const std::vector<Real>& radii, const std::vector<unsigned short>& subrings )
{
    std::vector<Real> newRadii;
    Real              prevRadius;

    prevRadius = 0;

    for( size_t index = 0; index < radii.size(); index++ )
    {
        Real _prevRadius;
        int          _subrings;
        Real area;
        Real radius;
        Real subarea;

        radius      = radii[index];
        _prevRadius = prevRadius;
        _subrings   = subrings[index];

        area    = PI * radius * radius - PI * prevRadius * prevRadius;
        subarea = area / _subrings;

        for( int count = 1; count < _subrings; count++ )
        {
            Real _radius;

            _radius     = std::sqrt( (subarea + PI * _prevRadius * _prevRadius) / PI );
            _prevRadius = _radius;

            newRadii.push_back( _radius );
        }

        newRadii.push_back( radius );

        prevRadius = radius;
    }

    return newRadii;
}

Real lineIntersect(const Point3D &p, const Vector3D &v
                   , const Point3D &sp, const Point3D &ep)
{
    Real t = maxReal;
    Point3D p2(p+v); // second point for line intersect
    Real x1=p.x;
    Real y1=p.y;
    Real x2=p2.x;
    Real y2=p2.y;

    Real x3=sp.x;
    Real y3=sp.y;
    Real x4=ep.x;
    Real y4=ep.y;

    Real denominator = (y1-y2)*(x3-x4) - (x1-x2)*(y3-y4) ;

    if( isWithin(0.0,denominator) ) return t;

    Real n1 = (x1 - x2)*(x3*y4 - y3*x4) - (x1*y2 - y1*x2)*(x3 - x4) ; //px numerator
    Real n2 = (y1 - y2)*(x3*y4 - y3*x4) - (x1*y2 - y1*x2)*(y3 - y4) ; //py numerator

    Real px = n1/denominator;
    Real py = n2/denominator;

    Real tx = px - p.x;
    Real ty = py - p.y;
    Real xymag = sqrt(v.x*v.x+v.y*v.y);
    Real zratio = xymag == 0 ? 0 : v.z/xymag;

    t = std::sqrt(tx*tx + ty*ty);
    Real tz = t*zratio;
    t = std::sqrt(tx*tx + ty*ty + tz*tz);
    t *= denominator < 0 ? -1 : 1;
    return t;
}
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

Real haversine(Real lat1, Real lon1, Real lat2, Real lon2)
{
    // Haversine formula
    Real dlat = toRadians(lat2 - lat1);
    Real dlon = toRadians(lon2 - lon1);
    Real haversine_dlat = std::sin(dlat / 2.0);
    haversine_dlat *= haversine_dlat;
    Real haversine_dlon = std::sin(dlon / 2.0);
    haversine_dlon *= haversine_dlon;
    Real delta_sigma = haversine_dlat
            + std::cos(toRadians(lat1))
            * std::cos(toRadians(lat2))
            * haversine_dlon;
    delta_sigma = 2.0 * std::asin(std::sqrt(delta_sigma));
    return delta_sigma;
}

Real greatCircleDistance(Real lat1, Real lon1, Real lat2, Real lon2, Real radius)
{
113
    return radius * haversine(lat1, lon1, lat2, lon2);
114
115
}

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
Real greatCircleVolume(Real lat1, Real lon1, Real lat2, Real lon2, Real r1, Real r2)
{
    Real r11 = r1, r22 = r2;
    r1 = std::min(r11, r22);
    r2 = std::max(r11, r22);

    double northa = radix::greatCircleDistance(lat1, lon1
                                            , lat1, lon2
                                            , r1);
    double southa = radix::greatCircleDistance(lat2, lon1
                                               , lat2, lon2
                                               , r1);
    double westa = radix::greatCircleDistance(lat1, lon1
                                             , lat2, lon1
                                             , r1);

    double northb = radix::greatCircleDistance(lat1, lon1
                                            , lat1, lon2
                                            , r2);
    double southb = radix::greatCircleDistance(lat2, lon1
                                               , lat2, lon2
                                               , r2);
    double westb = radix::greatCircleDistance(lat1, lon1
                                             , lat2, lon1
                                             , r2);
    //
    // approximate with a square
    double north =(northa + northb + southa + southb)/4.0;
    double west = (westa + westb)/2.0;
    double height = r2 - r1;

    return (north*west*height);
}

150
151
152
153
154
Real cylinderVolume(Real r, Real h)
{
    return (PI * std::pow(r, 2) * h);
}

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
Real cspanf(Real value, Real begin, Real end)
{
    Real first = 0.0, last = 0.0;
    first = std::min(begin, end);
    last = std::max(begin, end);
    value = std::fmod(value - first,last - first);
    if(value <= 0)
    {
        return value + last;
    } else
    {
        return value + first;
    }
}

170
171
172
173
174
Real hpaToAltitude(Real hpa)
{
    return 0.3048 * (1 - std::pow(hpa/1013.25, 0.190284)) * 145366.45;
}

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
double interpolate(const std::vector<double> &xvals, const std::vector<double> &yvals, double x, bool linear)
{
    // iterator to upper bound
    auto ub = std::upper_bound(xvals.begin(), xvals.end(), x);

    // below range, return first item
    if(ub == xvals.begin())
    {
        return yvals.front();
    }
    // above range, return last item
    else if(ub == xvals.end())
    {
        return yvals.back();
    }

    // indices to right/left side
    auto r = std::distance(xvals.begin(), ub);
    auto l = r - 1;

    // min/max vals
    auto xmin = xvals[l];
    auto xmax = xvals[r];
    auto ymin = yvals[l];
    auto ymax = yvals[r];

    // adjust for log interpolation
    if(!linear)
    {
        xmin = std::log(xmin);
        xmax = std::log(xmax);
        ymin = std::log(ymin);
        ymax = std::log(ymax);
        x = std::log(x);
    }

    // scaling ratio
    auto ratio = (x - xmin) / (xmax - xmin);

    // interpolation result
    auto result = yvals[l] + (ymax - ymin) * ratio;
    return result;
}

double gammaRayAbsorptionInAir(double energy, bool linear)
{
    // supported energies in MeV
    static const std::vector<double> energies =
    {
        0.001, 0.0015, 0.002, 0.003,
        0.004, 0.005,  0.006, 0.008,
        0.01,  0.015,  0.02,  0.03,
        0.04,  0.05,   0.06,  0.08,
        0.1,   0.15,   0.2,   0.3,
        0.4,   0.5,    0.6,   0.8,
        1,     1.25,   1.5,   2,
        3,     4,      5,     6,
        8,     10,     15,    20
    };

    // absorption coefficients
    const std::vector<double> absorption =
    {
        3599,    1188,    526.2,   161.4,
        76.36,   39.31,   22.7,    9.446,
        4.742,   1.334,   0.5389,  0.1537,
        0.6833,  0.04098, 0.03041, 0.02407,
        0.02325, 0.02496, 0.02672, 0.02872,
        0.02949, 0.02966, 0.02953, 0.02882,
        0.02789, 0.02666, 0.02547, 0.02345,
        0.02057, 0.0187,  0.0174,  0.01647,
        0.01525, 0.0145,  0.01353, 0.01311
    };

    // interpolate to determine the absorption for the given energy
    return interpolate(energies, absorption, energy, linear);
}

double gammaRayAttenuationInAir(double energy, bool linear)
{
    // supported energies in MeV
    static const std::vector<double> energies =
    {
        0.001, 0.0015, 0.002, 0.003,
        0.004, 0.005,  0.006, 0.008,
        0.01,  0.015,  0.02,  0.03,
        0.04,  0.05,   0.06,  0.08,
        0.1,   0.15,   0.2,   0.3,
        0.4,   0.5,    0.6,   0.8,
        1,     1.25,   1.5,   2,
        3,     4,      5,     6,
        8,     10,     15,    20
    };

    // attenuation coefficients
    static const std::vector<double> attenuation =
    {
        3606,    1191,    527.9,   162.5,
        77.88,   40.27,   23.41,   9.921,
        5.12,    1.614,   0.7779,  0.3538,
        0.2485,  0.208,   0.1875,  0.1662,
        0.1541,  0.1356,  0.1233,  0.1067,
        0.09549, 0.08712, 0.08055, 0.07074,
        0.06358, 0.05687, 0.05175, 0.04447,
        0.03581, 0.03079, 0.02751, 0.02522,
        0.02225, 0.02045, 0.0181,  0.01705
    };

    // interpolate to determine the attenuation for the given energy
    return interpolate(energies, attenuation, energy, linear);
}
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

double exponentialIntegral(double d)
{
    return std::exp(d);
//    // based on polynomial approximation in document provided by Vince
//    // specialization for d <= 1
//    if(d <= 1)
//    {
//        return 0.00107857 * (d * d * d * d * d)
//             - 0.00976004 * (d * d * d *d)
//             + 0.05519968 * (d * d * d)
//             - 0.24991055 * (d * d)
//             + 0.99999193 * d
//             - 0.57721566
//             - std::log(d);
//    }
//
//    // specialization for d > 1
//    auto numer = 1             * (d * d * d * d)
//               + 8.5733287401  * (d * d * d)
//               + 18.0590169730 * (d * d)
//               + 8.6347608925  * d
//               + 0.2677737343;
//    auto denom = 1             * (d * d * d * d)
//               + 9.5733223454  * (d * d * d)
//               + 25.6329561486 * (d * d)
//               + 21.0996530827 * d
//               + 3.9584969228;
//
//    return numer / denom / (d * std::exp(d));
}
317
} // namespace radix