radixsnd2arl.cc 21 KB
Newer Older
1
2
3
4
5
/*
 * Example utility to convert a vertical profile of meteorological
 * data to the ARL format
 */

6
#include <algorithm>
7
#include <cmath>
8
#include <ctime>
9
10
11
12
#include <iostream>
#include <string>
#include <vector>

13
14
#include "radixcommand/commandline.hh"
#include "radixcore/stringfunctions.hh"
15
#include "radixmath/constants.hh"
16
#include "radixmath/interpolate.hh"
17
#include "radixmath/util.hh"
18

19
#include "radixio/arldatastream.hh"
20
21
22
#include "radixio/csvfile.hh"

using namespace radix;
23

24
25
26
27
28
29
30
31
32
void addHour(struct tm *time, int hours)
{
  int seconds = hours * 60 * 60;

  time_t date_seconds = mktime(time) + seconds;

  *time = *localtime(&date_seconds);
}

33
34
int main(int argc, char **argv)
{
35
36
37
38
39
40
41
42
43
44
45
  std::cout << "************************" << std::endl;
  std::cout << "***** radixsnd2arl *****" << std::endl;
  std::cout << "************************" << std::endl;

  // Set up command line options
  CommandLine commandLine(argc, argv);
  commandLine.addOption("i", "Input csv file containing met data", true);
  commandLine.addOption("clat", "Centre latitude of output ARL file (degrees)",
                        true);
  commandLine.addOption("clon", "Centre longitude of output ARL file (degrees)",
                        true);
46
47
  commandLine.addOption("e", "Extent of output ARL file (km) [500]", false);
  commandLine.addOption("r", "Resolution of output ARL file (km) [10]", false);
48
49
  commandLine.addOption("t", "Time of data start (YYYYMMDDHH) [1951111917]",
                        false);
50
51
  commandLine.addOption("n", "Number of one hour timesteps to output [1]",
                        false);
52
53
  commandLine.addOption("g", "Add ground level elevation to height values",
                        false);
54
55
56
57
58
  commandLine.addOption("o", "Output ARL file", false);

  // Ensure required options present
  std::vector<std::string> commandErrors;
  if (!commandLine.validate(commandErrors))
59
  {
60
61
62
63
64
65
    std::cout << "Error in arguments..." << std::endl;
    for (std::string error : commandErrors)
    {
      std::cout << "\t" << error << std::endl;
    }
    std::cout << std::endl;
Purves, Murray's avatar
Purves, Murray committed
66
    commandLine.printParsedLine(std::cout);
67

68
69
    return -1;
  }
70
71
72
73
74

  // Get command line options
  std::string inputCsvPath = commandLine.get<std::string>("i");
  std::string outputArlPath =
      commandLine.get<std::string>("o", inputCsvPath + ".bin");
75
76
  float extent          = commandLine.get<float>("e", 500.0);
  float resolution      = commandLine.get<float>("r", 10.0);
77
78
79
  float centreLat       = commandLine.get<float>("clat");
  float centreLon       = commandLine.get<float>("clon");
  int numberTimesteps   = commandLine.get<int>("n", 1);
80
  float groundElevation = commandLine.get<float>("g", 0.f);
81
  std::string startTime = commandLine.get<std::string>("t", "1951111917");
82
83
84
85
86
87
88
89
90
91
92
93
  // Get the grid size
  int numberGridCells = (int)(extent / resolution);
  if (!numberGridCells % 2 == 1)
  {
    numberGridCells++;
  }
  // Parse the start time
  int year  = from_string(startTime.substr(0, 4), 1951);
  int month = from_string(startTime.substr(4, 2), 11);
  int day   = from_string(startTime.substr(6, 2), 19);
  int hour  = from_string(startTime.substr(8, 2), 17);

94
95
96
97
98
99
  struct tm metTime = {0, 0, 0};
  metTime.tm_year   = year - 1900;
  metTime.tm_mon    = month - 1;
  metTime.tm_mday   = day;
  metTime.tm_hour   = hour;

100
  std::cout << "Creating ARL-formatted met file with parameters:" << std::endl;
101
  std::cout << "  " << extent << " by " << extent << " km grid centred on ("
102
103
104
105
            << centreLat << "," << centreLon << ") with resolution "
            << resolution << " (" << numberGridCells
            << " cells in each direction)" << std::endl;
  std::cout << "  " << numberTimesteps
106
            << " timesteps (of 1 hour each) starting from " << metTime.tm_year
Purves, Murray's avatar
Purves, Murray committed
107
            << "-" << metTime.tm_mon + 1 << "-" << metTime.tm_mday << " at "
108
            << metTime.tm_hour << "00" << std::endl
109
110
111
112
113
114
            << std::endl;

  // If we have correct options, parse input file
  std::cout << "Reading input csv file: " << inputCsvPath << std::endl;

  // Header strings to denote fields
115
  std::string pressureString = "pres", tempString = "temp", relHumString = "rh",
116
117
              dewPtString = "tdew", wDirString = "wdir", wSpdString = "wspd",
              heightString = "zhgt";
118
119
120
  int pressureIndex = -1, tempIndex = -1, relHumIndex = -1, dewPtIndex = -1,
      wDirIndex = -1, wSpdIndex = -1, heightIndex = -1;
  bool usingRelHum = false, usingDewPt = false;
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

  // Open and read the csv
  CSVFile inputCsv(inputCsvPath);
  std::vector<std::vector<std::string>> inputData;
  bool inputReadSuccess = inputCsv.data(inputData);
  if (!inputReadSuccess)
  {
    std::cout << "Failed to read input csv!" << std::endl;
    std::cout
        << "Please ensure the file exists and has the appropriate permissions."
        << std::endl;
    return -2;
  }
  // Ensure there is data in here
  if (inputData.size() < 5)
  {
    std::cout << "Not enough data in input csv!" << std::endl;
    std::cout
        << "There are only " << inputData.size()
        << " lines in this file - at least 5 are required (4 headers + data)"
        << std::endl;
    return -3;
  }

  // Work out which fields are which data points - should be 2nd line (1)
  std::cout << "Finding data fields..." << std::endl;
  for (int entry = 0; entry < inputData[1].size(); ++entry)
  {
    if (inputData[1][entry] == pressureString)
    {
      std::cout << "  Found pressure at index " << entry << std::endl;
      pressureIndex = entry;
    }
    else if (inputData[1][entry] == tempString)
    {
      std::cout << "  Found temperature at index " << entry << std::endl;
      tempIndex = entry;
    }
    else if (inputData[1][entry] == relHumString)
    {
      std::cout << "  Found relative humidity at index " << entry << std::endl;
      relHumIndex = entry;
163
164
165
166
167
168
169
      usingRelHum = true;
    }
    else if (inputData[1][entry] == dewPtString)
    {
      std::cout << "  Found dew point at index " << entry << std::endl;
      dewPtIndex = entry;
      usingDewPt = true;
170
171
172
173
174
175
176
177
178
179
180
    }
    else if (inputData[1][entry] == wDirString)
    {
      std::cout << "  Found wind direction at index " << entry << std::endl;
      wDirIndex = entry;
    }
    else if (inputData[1][entry] == wSpdString)
    {
      std::cout << "  Found wind speed at index " << entry << std::endl;
      wSpdIndex = entry;
    }
181
182
183
184
185
    else if (inputData[1][entry] == heightString)
    {
      std::cout << "  Found height at index " << entry << std::endl;
      heightIndex = entry;
    }
186
187
  }
  // If we are missing one, we can't continue
188
189
190
  if ((pressureIndex == -1) || (tempIndex == -1) ||
      (relHumIndex == -1 && dewPtIndex == -1) || (wDirIndex == -1) ||
      (wSpdIndex == -1))
191
  {
Purves, Murray's avatar
Purves, Murray committed
192
    std::cout << "Missing data fields in input!" << std::endl;
193
194
195
196
197
198
199
200
201
202
    if (pressureIndex == -1)
    {
      std::cout << "  Missing pressure field (denoted by " << pressureString
                << ")";
    }
    if (tempIndex == -1)
    {
      std::cout << "  Missing temperature field (denoted by " << tempString
                << ")";
    }
203
    if (relHumIndex == -1 && dewPtIndex == -1)
204
    {
205
206
207
      std::cout << "  Missing both relative humidity field (denoted by "
                << relHumString << ") and dew point field (denoted by "
                << dewPtString << ") - need at least one of these";
208
209
210
211
212
213
214
215
216
217
218
    }
    if (wDirIndex == -1)
    {
      std::cout << "  Missing wind direction field (denoted by " << wDirString
                << ")";
    }
    if (wSpdIndex == -1)
    {
      std::cout << "  Missing wind speed field (denoted by " << wSpdString
                << ")";
    }
219
220
221
222
    if (heightIndex == -1)
    {
      std::cout << "  Missing height field (denoted by " << heightString << ")";
    }
223
224
225
226
    std::cout << "Please ensure these fields are present and rerun.";
    return -4;
  }

227
228
  // Ensure we aren't using both relative humidity and dew point (duplicate
  // data) Prefer use of relative humidity
229
230
231
232
233
  if (usingRelHum)
  {
    usingDewPt = false;
  }

234
  // Read the data
235
236
  std::vector<float> inputPressures, inputTemps, inputRelHums, inputDewPts,
      inputWDirs, inputWSpds, inputHeights;
237
238
239
240
241
242
243
244
245
246
247
  std::cout << "Data fields found - reading data..." << std::endl;
  float missingValue = -9999.f;
  for (int row = 4; row < inputData.size(); ++row)
  {
    if (inputData[row].size() < inputData[1].size())
    {
      std::cout << "  Warning: this row (" << row + 1
                << ") has less entries than the field names row" << std::endl;
      ;
    }

248
    bool foundPressure = false, foundTemp = false, foundRelHum = false,
249
250
         foundDewPt = false, foundWDir = false, foundWSpd = false,
         foundHeight = false;
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    for (int entry = 0; entry < inputData[row].size(); ++entry)
    {
      float thisValue = from_string(inputData[row][entry], missingValue);

      if (entry == pressureIndex)
      {
        foundPressure = true;
        inputPressures.push_back(thisValue);
      }
      else if (entry == tempIndex)
      {
        foundTemp = true;
        inputTemps.push_back(thisValue);
      }
265
      else if (usingRelHum && entry == relHumIndex)
266
267
268
269
      {
        foundRelHum = true;
        inputRelHums.push_back(thisValue);
      }
270
271
272
273
274
      else if (usingDewPt && entry == dewPtIndex)
      {
        foundDewPt = true;
        inputDewPts.push_back(thisValue);
      }
275
276
277
278
279
280
281
282
283
284
      else if (entry == wSpdIndex)
      {
        foundWSpd = true;
        inputWSpds.push_back(thisValue);
      }
      else if (entry == wDirIndex)
      {
        foundWDir = true;
        inputWDirs.push_back(thisValue);
      }
285
286
287
288
289
      else if (entry == heightIndex)
      {
        foundHeight = true;
        inputHeights.push_back(thisValue);
      }
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    }
    // Add missing data if any of the above weren't found
    if (!foundPressure)
    {
      std::cout << "  Warning: couldn't find pressure in row " << row
                << std::endl;
      inputPressures.push_back(missingValue);
    }
    if (!foundTemp)
    {
      std::cout << "  Warning: couldn't find temperature in row " << row
                << std::endl;
      inputTemps.push_back(missingValue);
    }
304
    if (usingRelHum && !foundRelHum)
305
306
307
308
309
    {
      std::cout << "  Warning: couldn't find relative humidity in row " << row
                << std::endl;
      inputRelHums.push_back(missingValue);
    }
310
311
312
313
314
315
    if (usingDewPt && !foundDewPt)
    {
      std::cout << "  Warning: couldn't find dew point in row " << row
                << std::endl;
      inputDewPts.push_back(missingValue);
    }
316
317
318
319
320
321
322
323
324
325
326
327
    if (!foundWSpd)
    {
      std::cout << "  Warning: couldn't find wind speed in row " << row
                << std::endl;
      inputWSpds.push_back(missingValue);
    }
    if (!foundWDir)
    {
      std::cout << "  Warning: couldn't find wind direction in row " << row
                << std::endl;
      inputWDirs.push_back(missingValue);
    }
328
329
330
331
332
333
    if (!foundHeight)
    {
      std::cout << "  Warning: couldn't find height in row " << row
                << std::endl;
      inputHeights.push_back(missingValue);
    }
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

    // If pressure value in this row is -9999, remove the row
    //  - pressure entry is required for interpolation & by HYSPLIT
    if (inputPressures.back() == missingValue)
    {
      std::cout << "  Warning: pressure entry in row " << row
                << " is -9999; removing row" << std::endl;
      inputPressures.pop_back();
      inputTemps.pop_back();
      if (usingRelHum)
      {
        inputRelHums.pop_back();
      }
      if (usingDewPt)
      {
        inputDewPts.pop_back();
      }
      inputWSpds.pop_back();
      inputWDirs.pop_back();
      inputHeights.pop_back();
    }
355
356
357
358
  }
  std::cout << "Data read complete: " << inputPressures.size()
            << " entries read." << std::endl;

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
  // Check if the grid is of appropriate size - with too small grid/too many
  // vertical levels, the index header can become oversized leading to errors
  int indexBase = 108, levelBase = 48;
  int indexSize  = indexBase + (inputPressures.size() * levelBase);
  int recordSize = numberGridCells * numberGridCells;
  if (indexSize > recordSize)
  {
    // The index header will be too big - instruct user to either reduce number
    // of vertical levels or increase number of grid cells
    std::cout << "Error: index header will be too large!" << std::endl
              << "  The size of the index header in the ARL-formatted output ("
              << indexBase << " + number of vertical levels * " << levelBase
              << " = " << indexSize
              << ") will be larger than the size of each record (number of "
                 "grid cells ^ 2 = "
              << recordSize << ")." << std::endl;
    std::cout << "  Please either increase the number of horizontal grid cells "
                 "(increase extent/resolution) or reduce the number of input "
                 "vertical levels."
              << std::endl;
    throw std::exception();
  }

382
383
384
  // Interpolate the data to remove missing values
  std::cout << "Interpolating values to remove missing data..." << std::endl;
  std::cout << "Temperature:" << std::endl;
385
  inputTemps = interpolateValues(inputPressures, inputTemps);
386
387
388
  if (usingRelHum)
  {
    std::cout << "Relative humidity:" << std::endl;
389
    inputRelHums = interpolateValues(inputPressures, inputRelHums);
390
391
392
393
  }
  if (usingDewPt)
  {
    std::cout << "Dew point:" << std::endl;
394
    inputDewPts = interpolateValues(inputPressures, inputDewPts);
395
  }
396
  std::cout << "Wind speed:" << std::endl;
397
  inputWSpds = interpolateValues(inputPressures, inputWSpds);
398
  std::cout << "Wind direction:" << std::endl;
399
  inputWDirs = interpolateValues(inputPressures, inputWDirs, true);
400
  std::cout << "Height:" << std::endl;
401
  inputHeights = interpolateValues(inputPressures, inputHeights);
402
403
  std::cout << "Interpolation complete." << std::endl;

404
405
406
407
408
409
410
411
412
  // Convert the data into ARL format
  std::cout << "Converting data to ARL format..." << std::endl;
  ARLDataStream outputStream(outputArlPath, std::ios::out);
  for (int timestep = 0; timestep < numberTimesteps; ++timestep)
  {
    // Write index header section
    std::cout << "    Writing index headers for timestep " << timestep << "..."
              << std::endl;
    ARLRecordHeader thisRecordHeader;
413
414
415
416
    thisRecordHeader.year  = metTime.tm_year;
    thisRecordHeader.month = metTime.tm_mon + 1;
    thisRecordHeader.day   = metTime.tm_mday;
    thisRecordHeader.hour  = metTime.tm_hour;
417
418
419
420
421
422
423
424
    thisRecordHeader.ic    = 0;
    thisRecordHeader.il    = 0;
    thisRecordHeader.cgrid = "99";
    thisRecordHeader.kvar  = "INDX";
    thisRecordHeader.nexp  = 0;
    thisRecordHeader.prec  = 0.f;
    thisRecordHeader.var1  = 0.f;
    ARLIndexHeader thisIndexHeader;
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    thisIndexHeader.model_id = "NFDB";
    thisIndexHeader.icx      = 0;
    thisIndexHeader.mn       = 0;
    thisIndexHeader.pole_lat = centreLat;
    thisIndexHeader.pole_lon = centreLon;
    thisIndexHeader.ref_lat  = centreLat;
    thisIndexHeader.ref_lon  = centreLon;
    thisIndexHeader.size     = resolution;
    thisIndexHeader.orient   = 0.f;
    thisIndexHeader.tang_lat = centreLat;
    thisIndexHeader.sync_xp  = (numberGridCells + 1) / 2;
    thisIndexHeader.sync_yp  = (numberGridCells + 1) / 2;
    thisIndexHeader.sync_lat = centreLat;
    thisIndexHeader.sync_lon = centreLon;
    thisIndexHeader.dummy    = 0.f;
    thisIndexHeader.nx       = numberGridCells;
    thisIndexHeader.ny       = numberGridCells;
    thisIndexHeader.nz       = inputPressures.size();
    thisIndexHeader.z_flag   = 2;
    thisIndexHeader.lenh     = numberGridCells * numberGridCells;
    thisIndexHeader.levels   = inputPressures;
    thisIndexHeader.num_vars_at_levels =
        std::vector<int>(inputPressures.size(), 5);
448
449
450
451
    std::vector<std::string> surfaceVarNames = {"PRSS", "TEMP", "RELH", "UWND",
                                                "VWND"};
    std::vector<std::string> varNames        = {"HGTS", "TEMP", "RELH", "UWND",
                                         "VWND"};
452

453
    thisIndexHeader.var_names.push_back(surfaceVarNames);
454
455
    for (size_t level = 1; level < inputPressures.size(); ++level)
    {
456
      thisIndexHeader.var_names.push_back(varNames);
457
458
459
460
    }
    std::vector<int> checkSums = std::vector<int>(5, 0);
    for (size_t level = 0; level < inputPressures.size(); ++level)
    {
461
      thisIndexHeader.check_sums.push_back(checkSums);
462
    }
463

464
465
466
467
468
469
470
471
472
473
474
    // Write the headers
    outputStream.write_record_header(thisRecordHeader);
    outputStream.write_index_header(thisRecordHeader, thisIndexHeader);
    std::cout << "    Headers written" << std::endl;

    // Write meteorological variables for each level
    for (int level = 0; level < inputPressures.size(); ++level)
    {
      std::cout << "    Writing meteorological data for timestep " << timestep
                << ", level " << level << "..." << std::endl;

475
476
477
      thisRecordHeader.il = level;

      // Write pressure/height variables
478
      {
479
480
481
        if (level == 0)
        {
          thisRecordHeader.kvar = "PRSS";
482
483
          float groundPressure  = inputPressures[level];
          thisRecordHeader.var1 = groundPressure;
484
          std::vector<std::vector<float>> thisData(
485
              numberGridCells, std::vector<float>(numberGridCells, thisHeight));
486
487
488
489
490
          std::cout << "      pressure...";
          outputStream.write_record_header(thisRecordHeader);
          outputStream.write_record(thisRecordHeader, thisIndexHeader,
                                    thisData);
          std::cout << "written" << std::endl;
491
492
493
        }
        else
        {
494
          thisRecordHeader.kvar = "HGTS";
495
          thisRecordHeader.var1 = inputHeights[level] + groundElevation;
496
497
498
499
500
501
502
503
          std::vector<std::vector<float>> thisData(
              numberGridCells,
              std::vector<float>(numberGridCells, inputHeights[level]));
          std::cout << "      height...";
          outputStream.write_record_header(thisRecordHeader);
          outputStream.write_record(thisRecordHeader, thisIndexHeader,
                                    thisData);
          std::cout << "written" << std::endl;
504
        }
505
506
507
      }

      // Write temperature levels
508
509
      // First convert temperature from Celsius to Kelvin
      inputTemps[level] = inputTemps[level] - ABS_ZERO_CELSIUS;
510
511
512
513
514
515
516
517
518
519
520
521
      {
        thisRecordHeader.kvar = "TEMP";
        thisRecordHeader.var1 = inputTemps[level];
        std::vector<std::vector<float>> thisData(
            numberGridCells,
            std::vector<float>(numberGridCells, inputTemps[level]));
        std::cout << "      temperature...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }

522
      // Write relative humidity levels
523
      {
524
525
526
527
528
        double thisVar = 0.0;
        if (usingRelHum)
        {
          thisVar = inputRelHums[level];
        }
529
530
        else if (usingDewPt)
        {
531
532
          thisVar =
              dewPointToRelativeHumidity(inputDewPts[level], inputTemps[level]);
533
        }
534

535
536
        thisRecordHeader.kvar = "RELH";
        thisRecordHeader.var1 = thisVar;
537
        std::vector<std::vector<float>> thisData(
538
            numberGridCells, std::vector<float>(numberGridCells, thisVar));
539
540
541
        std::cout << "      relative humidity...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
542
543
544
545
546
547
        std::cout << "written" << std::endl;
      }

      // Write wind data
      // Need to calculate wind u and v components from direction/speed
      float thisWindU =
Purves, Murray's avatar
Purves, Murray committed
548
549
          (inputWSpds[level] * 0.5144444444) *
          sin(toRadians(fmod((inputWDirs[level] + 180.0), 360.0)));
550
      float thisWindV =
Purves, Murray's avatar
Purves, Murray committed
551
552
          (inputWSpds[level] * 0.5144444444) *
          cos(toRadians(fmod((inputWDirs[level] + 180.0), 360.0)));
553
      std::cout << "      Initial wspd = " << inputWSpds[level]
554
555
                << " knots, wdir: " << inputWDirs[level] << " degrees"
                << std::endl;
556
      std::cout << "      Converted wind components: u = " << thisWindU
557
                << " m/s, v = " << thisWindV << "m/s" << std::endl;
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
      {
        thisRecordHeader.kvar = "UWND";
        thisRecordHeader.var1 = thisWindU;
        std::vector<std::vector<float>> thisData(
            numberGridCells, std::vector<float>(numberGridCells, thisWindU));
        std::cout << "      wind (u component)...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }
      {
        thisRecordHeader.kvar = "VWND";
        thisRecordHeader.var1 = thisWindV;
        std::vector<std::vector<float>> thisData(
            numberGridCells, std::vector<float>(numberGridCells, thisWindV));
        std::cout << "      wind (v component)...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }
    }
    std::cout << " Written timestep " << timestep << std::endl;
580
581

    // Add an hour to time for next timestep
582
583
584
#ifdef _WIN32
    metTime.tm_year = metTime.tm_year + 400;
#endif  // _WIN32
585
    addHour(&metTime, 1);
586
587
588
#ifdef _WIN32
    metTime.tm_year = metTime.tm_year - 400;
#endif
589
590
591
592
  }

  std::cout << "File write complete!" << std::endl;

593
594
  return 0;
}