radixsnd2arl.cc 20.7 KB
Newer Older
1
2
3
4
5
/*
 * Example utility to convert a vertical profile of meteorological
 * data to the ARL format
 */

6
#include <ctime>
7
8
9
10
#include <iostream>
#include <string>
#include <vector>

11
12
#include "radixcommand/commandline.hh"
#include "radixcore/stringfunctions.hh"
13
#include "radixmath/util.hh"
14

15
#include "radixio/arldatastream.hh"
16
17
18
#include "radixio/csvfile.hh"

using namespace radix;
19

20
21
22
23
24
25
26
27
28
void addHour(struct tm *time, int hours)
{
  int seconds = hours * 60 * 60;

  time_t date_seconds = mktime(time) + seconds;

  *time = *localtime(&date_seconds);
}

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/**
 * @brief interpolateValues Interpolate/extrapolate missing values from a data
 * vector Basic capability for now - linear interpolation, extrapolation assumes
 * constant from ends.
 * @param pressureValues Pressure vector for meteorology - requires all values
 * to be present. Used for determining 'interpolation bounds' (there's
 * definitely a better phrase for this)
 * @param valuesToInterpolate
 */
bool interpolateValues(const std::vector<float> &pressureValues,
                       std::vector<float> &valuesToInterpolate)
{
  float missingValue = -9999.f;

  // Ensure pressure and other vector are same length for interpolation
  if (pressureValues.size() != valuesToInterpolate.size())
  {
    std::cout << "Error! Pressure vector is not same size ("
              << pressureValues.size() << ") as vector to interpolate ("
              << valuesToInterpolate.size() << ") - can't use to interpolate"
              << std::endl;
    return false;
  }

  // Ensure we have no missing values in the pressure dataset
  for (float pressure : pressureValues)
  {
    if (pressure == -9999.f)
    {
      std::cout << "Error! Pressure vector contains " << missingValue
                << " values - can't use to interpolate" << std::endl;
      return false;
    }
  }

  // Write out initial values
  std::cout << "Interpolating " << valuesToInterpolate.size()
            << " values; initial:" << std::endl
            << "  ";
  for (float f : valuesToInterpolate)
  {
    std::cout << f << " ";
  }
  std::cout << std::endl;

  // Loop through vector first to find first/last non-missing indices
  size_t firstIndex = valuesToInterpolate.size(), lastIndex = 0;
  bool foundFirst = false;
  for (size_t i = 0; i < valuesToInterpolate.size(); ++i)
  {
    if (valuesToInterpolate[i] != missingValue)
    {
      if (!foundFirst)
      {
        firstIndex = i;
        foundFirst = true;
      }
      lastIndex = i;
    }
  }
  // Fill in values before first and after last indices
  std::cout << "  Found first (" << firstIndex << ") and last (" << lastIndex
            << ") non-missing indices; filling in values before & after..."
            << std::endl;
  for (size_t i = 0; i < firstIndex; ++i)
  {
    valuesToInterpolate[i] = valuesToInterpolate[firstIndex];
  }
  for (size_t i = lastIndex + 1; i < valuesToInterpolate.size(); ++i)
  {
    valuesToInterpolate[i] = valuesToInterpolate[lastIndex];
  }

  // Fill in missing values in central parts of vector
  std::cout << "  Filling in missing data in central part of vector..."
            << std::endl;
  for (size_t i = firstIndex + 1; i < lastIndex; ++i)
  {
    // Search for a missing value
    size_t lastGood = i - 1;
    if (valuesToInterpolate[i] == missingValue)
    {
      // Get the next good value
      while (valuesToInterpolate[i] == missingValue)
      {
        i++;
      }
      size_t nextGood = i;
      // Interpolate between the two good values
      for (size_t j = lastGood + 1; j < nextGood; ++j)
      {
        valuesToInterpolate[j] =
            valuesToInterpolate[lastGood] +
            ((valuesToInterpolate[nextGood] - valuesToInterpolate[lastGood]) *
             ((pressureValues[j] - pressureValues[lastGood]) /
              (pressureValues[nextGood] - pressureValues[lastGood])));
      }
    }
  }

  // Write out final values
  std::cout << "Interpolation complete; final:" << std::endl << "  ";
  for (float f : valuesToInterpolate)
  {
    std::cout << f << " ";
  }
  std::cout << std::endl;

  return true;
}

140
141
int main(int argc, char **argv)
{
142
143
144
145
146
147
148
149
150
151
152
  std::cout << "************************" << std::endl;
  std::cout << "***** radixsnd2arl *****" << std::endl;
  std::cout << "************************" << std::endl;

  // Set up command line options
  CommandLine commandLine(argc, argv);
  commandLine.addOption("i", "Input csv file containing met data", true);
  commandLine.addOption("clat", "Centre latitude of output ARL file (degrees)",
                        true);
  commandLine.addOption("clon", "Centre longitude of output ARL file (degrees)",
                        true);
153
154
  commandLine.addOption("e", "Extent of output ARL file (km) [500]", false);
  commandLine.addOption("r", "Resolution of output ARL file (km) [10]", false);
155
156
  commandLine.addOption("t", "Time of data start (YYYYMMDDHH) [1951111917]",
                        false);
157
158
  commandLine.addOption("n", "Number of one hour timesteps to output [1]",
                        false);
159
160
161
162
163
  commandLine.addOption("o", "Output ARL file", false);

  // Ensure required options present
  std::vector<std::string> commandErrors;
  if (!commandLine.validate(commandErrors))
164
  {
165
166
167
168
169
170
171
172
    std::cout << "Error in arguments..." << std::endl;
    for (std::string error : commandErrors)
    {
      std::cout << "\t" << error << std::endl;
    }
    std::cout << std::endl;
    commandLine.printParsedLine(std::cout);

173
174
    return -1;
  }
175
176
177
178
179

  // Get command line options
  std::string inputCsvPath = commandLine.get<std::string>("i");
  std::string outputArlPath =
      commandLine.get<std::string>("o", inputCsvPath + ".bin");
180
181
  float extent          = commandLine.get<float>("e", 500.0);
  float resolution      = commandLine.get<float>("r", 10.0);
182
183
184
  float centreLat       = commandLine.get<float>("clat");
  float centreLon       = commandLine.get<float>("clon");
  int numberTimesteps   = commandLine.get<int>("n", 1);
185
  std::string startTime = commandLine.get<std::string>("t", "1951111917");
186
187
188
189
190
191
192
193
194
195
196
197
  // Get the grid size
  int numberGridCells = (int)(extent / resolution);
  if (!numberGridCells % 2 == 1)
  {
    numberGridCells++;
  }
  // Parse the start time
  int year  = from_string(startTime.substr(0, 4), 1951);
  int month = from_string(startTime.substr(4, 2), 11);
  int day   = from_string(startTime.substr(6, 2), 19);
  int hour  = from_string(startTime.substr(8, 2), 17);

198
199
200
201
202
203
  struct tm metTime = {0, 0, 0};
  metTime.tm_year   = year - 1900;
  metTime.tm_mon    = month - 1;
  metTime.tm_mday   = day;
  metTime.tm_hour   = hour;

204
  std::cout << "Creating ARL-formatted met file with parameters:" << std::endl;
205
  std::cout << "  " << extent << " by " << extent << " km grid centred on ("
206
207
208
209
210
211
212
213
214
215
216
217
            << centreLat << "," << centreLon << ") with resolution "
            << resolution << " (" << numberGridCells
            << " cells in each direction)" << std::endl;
  std::cout << "  " << numberTimesteps
            << " timesteps (of 1 hour each) starting from " << year << "-"
            << month << "-" << day << " at " << hour << "00" << std::endl
            << std::endl;

  // If we have correct options, parse input file
  std::cout << "Reading input csv file: " << inputCsvPath << std::endl;

  // Header strings to denote fields
218
  std::string pressureString = "pres", tempString = "temp", relHumString = "rh",
219
220
              dewPtString = "tdew", wDirString = "wdir", wSpdString = "wspd",
              heightString = "zhgt";
221
  int pressureIndex = -1, tempIndex = -1, relHumIndex = -1, wDirIndex = -1,
222
      wSpdIndex = -1, heightIndex = -1;
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

  // Open and read the csv
  CSVFile inputCsv(inputCsvPath);
  std::vector<std::vector<std::string>> inputData;
  bool inputReadSuccess = inputCsv.data(inputData);
  if (!inputReadSuccess)
  {
    std::cout << "Failed to read input csv!" << std::endl;
    std::cout
        << "Please ensure the file exists and has the appropriate permissions."
        << std::endl;
    return -2;
  }
  // Ensure there is data in here
  if (inputData.size() < 5)
  {
    std::cout << "Not enough data in input csv!" << std::endl;
    std::cout
        << "There are only " << inputData.size()
        << " lines in this file - at least 5 are required (4 headers + data)"
        << std::endl;
    return -3;
  }

  // Work out which fields are which data points - should be 2nd line (1)
  std::cout << "Finding data fields..." << std::endl;
  for (int entry = 0; entry < inputData[1].size(); ++entry)
  {
    if (inputData[1][entry] == pressureString)
    {
      std::cout << "  Found pressure at index " << entry << std::endl;
      pressureIndex = entry;
    }
    else if (inputData[1][entry] == tempString)
    {
      std::cout << "  Found temperature at index " << entry << std::endl;
      tempIndex = entry;
    }
    else if (inputData[1][entry] == relHumString)
    {
      std::cout << "  Found relative humidity at index " << entry << std::endl;
      relHumIndex = entry;
    }
    else if (inputData[1][entry] == wDirString)
    {
      std::cout << "  Found wind direction at index " << entry << std::endl;
      wDirIndex = entry;
    }
    else if (inputData[1][entry] == wSpdString)
    {
      std::cout << "  Found wind speed at index " << entry << std::endl;
      wSpdIndex = entry;
    }
276
277
278
279
280
    else if (inputData[1][entry] == heightString)
    {
      std::cout << "  Found height at index " << entry << std::endl;
      heightIndex = entry;
    }
281
282
  }
  // If we are missing one, we can't continue
283
284
  if (pressureIndex == -1 || tempIndex == -1 || relHumIndex == -1 ||
      wDirIndex == -1 || wSpdIndex == -1)
285
  {
Purves, Murray's avatar
Purves, Murray committed
286
    std::cout << "Missing data fields in input!" << std::endl;
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    if (pressureIndex == -1)
    {
      std::cout << "  Missing pressure field (denoted by " << pressureString
                << ")";
    }
    if (tempIndex == -1)
    {
      std::cout << "  Missing temperature field (denoted by " << tempString
                << ")";
    }
    if (relHumIndex == -1)
    {
      std::cout << "  Missing relative humidity field (denoted by "
                << relHumString << ")";
    }
    if (wDirIndex == -1)
    {
      std::cout << "  Missing wind direction field (denoted by " << wDirString
                << ")";
    }
    if (wSpdIndex == -1)
    {
      std::cout << "  Missing wind speed field (denoted by " << wSpdString
                << ")";
    }
312
313
314
315
    if (heightIndex == -1)
    {
      std::cout << "  Missing height field (denoted by " << heightString << ")";
    }
316
317
318
319
320
    std::cout << "Please ensure these fields are present and rerun.";
    return -4;
  }

  // Read the data
321
  std::vector<float> inputPressures, inputTemps, inputRelHums, inputWDirs,
322
      inputWSpds, inputHeights;
323
324
325
326
327
328
329
330
331
332
333
  std::cout << "Data fields found - reading data..." << std::endl;
  float missingValue = -9999.f;
  for (int row = 4; row < inputData.size(); ++row)
  {
    if (inputData[row].size() < inputData[1].size())
    {
      std::cout << "  Warning: this row (" << row + 1
                << ") has less entries than the field names row" << std::endl;
      ;
    }

334
    bool foundPressure = false, foundTemp = false, foundRelHum = false,
335
         foundWDir = false, foundWSpd = false, foundHeight = false;
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    for (int entry = 0; entry < inputData[row].size(); ++entry)
    {
      float thisValue = from_string(inputData[row][entry], missingValue);

      if (entry == pressureIndex)
      {
        foundPressure = true;
        inputPressures.push_back(thisValue);
      }
      else if (entry == tempIndex)
      {
        foundTemp = true;
        inputTemps.push_back(thisValue);
      }
      else if (entry == relHumIndex)
      {
        foundRelHum = true;
        inputRelHums.push_back(thisValue);
      }
      else if (entry == wSpdIndex)
      {
        foundWSpd = true;
        inputWSpds.push_back(thisValue);
      }
      else if (entry == wDirIndex)
      {
        foundWDir = true;
        inputWDirs.push_back(thisValue);
      }
365
366
367
368
369
      else if (entry == heightIndex)
      {
        foundHeight = true;
        inputHeights.push_back(thisValue);
      }
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    }
    // Add missing data if any of the above weren't found
    if (!foundPressure)
    {
      std::cout << "  Warning: couldn't find pressure in row " << row
                << std::endl;
      inputPressures.push_back(missingValue);
    }
    if (!foundTemp)
    {
      std::cout << "  Warning: couldn't find temperature in row " << row
                << std::endl;
      inputTemps.push_back(missingValue);
    }
    if (!foundRelHum)
    {
      std::cout << "  Warning: couldn't find relative humidity in row " << row
                << std::endl;
      inputRelHums.push_back(missingValue);
    }
    if (!foundWSpd)
    {
      std::cout << "  Warning: couldn't find wind speed in row " << row
                << std::endl;
      inputWSpds.push_back(missingValue);
    }
    if (!foundWDir)
    {
      std::cout << "  Warning: couldn't find wind direction in row " << row
                << std::endl;
      inputWDirs.push_back(missingValue);
    }
402
403
404
405
406
407
    if (!foundHeight)
    {
      std::cout << "  Warning: couldn't find height in row " << row
                << std::endl;
      inputHeights.push_back(missingValue);
    }
408
409
410
411
  }
  std::cout << "Data read complete: " << inputPressures.size()
            << " entries read." << std::endl;

412
413
414
415
416
417
418
419
420
421
  // Interpolate the data to remove missing values
  std::cout << "Interpolating values to remove missing data..." << std::endl;
  std::cout << "Temperature:" << std::endl;
  interpolateValues(inputPressures, inputTemps);
  std::cout << "Relative humidity:" << std::endl;
  interpolateValues(inputPressures, inputRelHums);
  std::cout << "Wind speed:" << std::endl;
  interpolateValues(inputPressures, inputWSpds);
  std::cout << "Wind direction:" << std::endl;
  interpolateValues(inputPressures, inputWDirs);
422
423
  std::cout << "Height:" << std::endl;
  interpolateValues(inputPressures, inputHeights);
424
425
  std::cout << "Interpolation complete." << std::endl;

426
427
428
429
430
431
432
433
434
435
  // Convert the data into ARL format
  std::cout << "Converting data to ARL format..." << std::endl;
  ARLDataStream outputStream(outputArlPath, std::ios::out);
  for (int timestep = 0; timestep < numberTimesteps; ++timestep)
  {
    // Write index header section
    std::cout << "    Writing index headers for timestep " << timestep << "..."
              << std::endl;
    ARLRecordHeader thisRecordHeader;
    thisRecordHeader.year  = year;
436
437
438
439
    thisRecordHeader.year  = metTime.tm_year;
    thisRecordHeader.month = metTime.tm_mon + 1;
    thisRecordHeader.day   = metTime.tm_mday;
    thisRecordHeader.hour  = metTime.tm_hour;
440
441
442
443
444
445
446
447
    thisRecordHeader.ic    = 0;
    thisRecordHeader.il    = 0;
    thisRecordHeader.cgrid = "99";
    thisRecordHeader.kvar  = "INDX";
    thisRecordHeader.nexp  = 0;
    thisRecordHeader.prec  = 0.f;
    thisRecordHeader.var1  = 0.f;
    ARLIndexHeader thisIndexHeader;
448
449
450
451
452
453
454
    thisIndexHeader.model_id      = "NFDB";
    thisIndexHeader.icx           = 0;
    thisIndexHeader.mn            = 0;
    thisIndexHeader.pole_lat      = centreLat;
    thisIndexHeader.pole_lon      = centreLon;
    thisIndexHeader.ref_lat       = centreLat;
    thisIndexHeader.ref_lon       = centreLon;
455
    thisIndexHeader.size          = resolution;
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    thisIndexHeader.orient        = 0.f;
    thisIndexHeader.tang_lat      = centreLat;
    thisIndexHeader.sync_xp       = (numberGridCells + 1) / 2;
    thisIndexHeader.sync_yp       = (numberGridCells + 1) / 2;
    thisIndexHeader.sync_lat      = centreLat;
    thisIndexHeader.sync_lon      = centreLon;
    thisIndexHeader.dummy         = 0.f;
    thisIndexHeader.nx            = numberGridCells;
    thisIndexHeader.ny            = numberGridCells;
    thisIndexHeader.nz            = inputPressures.size();
    thisIndexHeader.z_flag        = 2;
    thisIndexHeader.lenh          = numberGridCells * numberGridCells;
    thisIndexHeader.levels        = inputPressures;
    thisIndexHeader.nVarsAtLevels = std::vector<int>(inputPressures.size(), 5);
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    std::vector<std::string> surfaceVarNames = {"PRSS", "TEMP", "RELH", "UWND",
                                                "VWND"};
    std::vector<std::string> varNames        = {"HGTS", "TEMP", "RELH", "UWND",
                                         "VWND"};
    thisIndexHeader.varNames.push_back(surfaceVarNames);
    for (size_t level = 1; level < inputPressures.size(); ++level)
    {
      thisIndexHeader.varNames.push_back(varNames);
    }
    std::vector<int> checkSums = std::vector<int>(5, 0);
    for (size_t level = 0; level < inputPressures.size(); ++level)
    {
      thisIndexHeader.checkSums.push_back(checkSums);
    }
484

485
486
487
488
489
490
491
492
493
494
495
    // Write the headers
    outputStream.write_record_header(thisRecordHeader);
    outputStream.write_index_header(thisRecordHeader, thisIndexHeader);
    std::cout << "    Headers written" << std::endl;

    // Write meteorological variables for each level
    for (int level = 0; level < inputPressures.size(); ++level)
    {
      std::cout << "    Writing meteorological data for timestep " << timestep
                << ", level " << level << "..." << std::endl;

496
497
498
      thisRecordHeader.il = level;

      // Write pressure/height variables
499
      {
500
501
502
        if (level == 0)
        {
          thisRecordHeader.kvar = "PRSS";
503
504
505
506
507
508
509
510
511
          thisRecordHeader.var1 = inputPressures[level];
          std::vector<std::vector<float>> thisData(
              numberGridCells,
              std::vector<float>(numberGridCells, inputPressures[level]));
          std::cout << "      pressure...";
          outputStream.write_record_header(thisRecordHeader);
          outputStream.write_record(thisRecordHeader, thisIndexHeader,
                                    thisData);
          std::cout << "written" << std::endl;
512
513
514
        }
        else
        {
515
516
517
518
519
520
521
522
523
524
          thisRecordHeader.kvar = "HGTS";
          thisRecordHeader.var1 = inputHeights[level];
          std::vector<std::vector<float>> thisData(
              numberGridCells,
              std::vector<float>(numberGridCells, inputHeights[level]));
          std::cout << "      height...";
          outputStream.write_record_header(thisRecordHeader);
          outputStream.write_record(thisRecordHeader, thisIndexHeader,
                                    thisData);
          std::cout << "written" << std::endl;
525
        }
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
      }

      // Write temperature levels
      {
        thisRecordHeader.kvar = "TEMP";
        thisRecordHeader.var1 = inputTemps[level];
        std::vector<std::vector<float>> thisData(
            numberGridCells,
            std::vector<float>(numberGridCells, inputTemps[level]));
        std::cout << "      temperature...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }

      // Write relative humidity levels
      {
        thisRecordHeader.kvar = "RELH";
        thisRecordHeader.var1 = inputRelHums[level];
        std::vector<std::vector<float>> thisData(
            numberGridCells,
            std::vector<float>(numberGridCells, inputRelHums[level]));
        std::cout << "      relative humidity...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }

      // Write wind data
      // Need to calculate wind u and v components from direction/speed
      float thisWindU =
Purves, Murray's avatar
Purves, Murray committed
557
558
          (inputWSpds[level] * 0.5144444444) *
          sin(toRadians(fmod((inputWDirs[level] + 180.0), 360.0)));
559
      float thisWindV =
Purves, Murray's avatar
Purves, Murray committed
560
561
          (inputWSpds[level] * 0.5144444444) *
          cos(toRadians(fmod((inputWDirs[level] + 180.0), 360.0)));
562
      std::cout << "      Initial wspd = " << inputWSpds[level]
563
564
                << " knots, wdir: " << inputWDirs[level] << " degrees"
                << std::endl;
565
      std::cout << "      Converted wind components: u = " << thisWindU
566
                << " m/s, v = " << thisWindV << "m/s" << std::endl;
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
      {
        thisRecordHeader.kvar = "UWND";
        thisRecordHeader.var1 = thisWindU;
        std::vector<std::vector<float>> thisData(
            numberGridCells, std::vector<float>(numberGridCells, thisWindU));
        std::cout << "      wind (u component)...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }
      {
        thisRecordHeader.kvar = "VWND";
        thisRecordHeader.var1 = thisWindV;
        std::vector<std::vector<float>> thisData(
            numberGridCells, std::vector<float>(numberGridCells, thisWindV));
        std::cout << "      wind (v component)...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }
    }
    std::cout << " Written timestep " << timestep << std::endl;
589
590
591

    // Add an hour to time for next timestep
    addHour(&metTime, 1);
592
593
594
595
  }

  std::cout << "File write complete!" << std::endl;

596
597
  return 0;
}