radixsnd2arl.cc 18 KB
Newer Older
1
2
3
4
5
6
7
8
9
/*
 * Example utility to convert a vertical profile of meteorological
 * data to the ARL format
 */

#include <iostream>
#include <string>
#include <vector>

10
11
#include "radixcommand/commandline.hh"
#include "radixcore/stringfunctions.hh"
12
#include "radixmath/util.hh"
13

14
#include "radixio/arldatastream.hh"
15
16
17
#include "radixio/csvfile.hh"

using namespace radix;
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/**
 * @brief interpolateValues Interpolate/extrapolate missing values from a data
 * vector Basic capability for now - linear interpolation, extrapolation assumes
 * constant from ends.
 * @param pressureValues Pressure vector for meteorology - requires all values
 * to be present. Used for determining 'interpolation bounds' (there's
 * definitely a better phrase for this)
 * @param valuesToInterpolate
 */
bool interpolateValues(const std::vector<float> &pressureValues,
                       std::vector<float> &valuesToInterpolate)
{
  float missingValue = -9999.f;

  // Ensure pressure and other vector are same length for interpolation
  if (pressureValues.size() != valuesToInterpolate.size())
  {
    std::cout << "Error! Pressure vector is not same size ("
              << pressureValues.size() << ") as vector to interpolate ("
              << valuesToInterpolate.size() << ") - can't use to interpolate"
              << std::endl;
    return false;
  }

  // Ensure we have no missing values in the pressure dataset
  for (float pressure : pressureValues)
  {
    if (pressure == -9999.f)
    {
      std::cout << "Error! Pressure vector contains " << missingValue
                << " values - can't use to interpolate" << std::endl;
      return false;
    }
  }

  // Write out initial values
  std::cout << "Interpolating " << valuesToInterpolate.size()
            << " values; initial:" << std::endl
            << "  ";
  for (float f : valuesToInterpolate)
  {
    std::cout << f << " ";
  }
  std::cout << std::endl;

  // Loop through vector first to find first/last non-missing indices
  size_t firstIndex = valuesToInterpolate.size(), lastIndex = 0;
  bool foundFirst = false;
  for (size_t i = 0; i < valuesToInterpolate.size(); ++i)
  {
    if (valuesToInterpolate[i] != missingValue)
    {
      if (!foundFirst)
      {
        firstIndex = i;
        foundFirst = true;
      }
      lastIndex = i;
    }
  }
  // Fill in values before first and after last indices
  std::cout << "  Found first (" << firstIndex << ") and last (" << lastIndex
            << ") non-missing indices; filling in values before & after..."
            << std::endl;
  for (size_t i = 0; i < firstIndex; ++i)
  {
    valuesToInterpolate[i] = valuesToInterpolate[firstIndex];
  }
  for (size_t i = lastIndex + 1; i < valuesToInterpolate.size(); ++i)
  {
    valuesToInterpolate[i] = valuesToInterpolate[lastIndex];
  }

  // Fill in missing values in central parts of vector
  std::cout << "  Filling in missing data in central part of vector..."
            << std::endl;
  for (size_t i = firstIndex + 1; i < lastIndex; ++i)
  {
    // Search for a missing value
    size_t lastGood = i - 1;
    if (valuesToInterpolate[i] == missingValue)
    {
      // Get the next good value
      while (valuesToInterpolate[i] == missingValue)
      {
        i++;
      }
      size_t nextGood = i;
      // Interpolate between the two good values
      for (size_t j = lastGood + 1; j < nextGood; ++j)
      {
        valuesToInterpolate[j] =
            valuesToInterpolate[lastGood] +
            ((valuesToInterpolate[nextGood] - valuesToInterpolate[lastGood]) *
             ((pressureValues[j] - pressureValues[lastGood]) /
              (pressureValues[nextGood] - pressureValues[lastGood])));
      }
    }
  }

  // Write out final values
  std::cout << "Interpolation complete; final:" << std::endl << "  ";
  for (float f : valuesToInterpolate)
  {
    std::cout << f << " ";
  }
  std::cout << std::endl;

  return true;
}

130
131
int main(int argc, char **argv)
{
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
  std::cout << "************************" << std::endl;
  std::cout << "***** radixsnd2arl *****" << std::endl;
  std::cout << "************************" << std::endl;

  // Set up command line options
  CommandLine commandLine(argc, argv);
  commandLine.addOption("i", "Input csv file containing met data", true);
  commandLine.addOption("clat", "Centre latitude of output ARL file (degrees)",
                        true);
  commandLine.addOption("clon", "Centre longitude of output ARL file (degrees)",
                        true);
  commandLine.addOption("e", "Extent of output ARL file (degrees)", true);
  commandLine.addOption("r", "Resolution of output ARL file (degrees)", true);
  commandLine.addOption("t", "Time of data start (YYYYMMDDHH)", true);
  commandLine.addOption("n", "Number of one hour timesteps to output", false);
  commandLine.addOption("o", "Output ARL file", false);

  // Ensure required options present
  std::vector<std::string> commandErrors;
  if (!commandLine.validate(commandErrors))
152
  {
153
154
155
156
157
158
159
160
    std::cout << "Error in arguments..." << std::endl;
    for (std::string error : commandErrors)
    {
      std::cout << "\t" << error << std::endl;
    }
    std::cout << std::endl;
    commandLine.printParsedLine(std::cout);

161
162
    return -1;
  }
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

  // Get command line options
  std::string inputCsvPath = commandLine.get<std::string>("i");
  std::string outputArlPath =
      commandLine.get<std::string>("o", inputCsvPath + ".bin");
  float extent          = commandLine.get<int>("e");
  float resolution      = commandLine.get<int>("r");
  float centreLat       = commandLine.get<float>("clat");
  float centreLon       = commandLine.get<float>("clon");
  int numberTimesteps   = commandLine.get<int>("n", 1);
  std::string startTime = commandLine.get<std::string>("t");
  // Get the grid size
  int numberGridCells = (int)(extent / resolution);
  if (!numberGridCells % 2 == 1)
  {
    numberGridCells++;
  }
  // Parse the start time
  // TODO: Check string is the right length
  int year  = from_string(startTime.substr(0, 4), 1951);
  int month = from_string(startTime.substr(4, 2), 11);
  int day   = from_string(startTime.substr(6, 2), 19);
  int hour  = from_string(startTime.substr(8, 2), 17);

  std::cout << "Creating ARL-formatted met file with parameters:" << std::endl;
  std::cout << "  " << extent << " by " << extent << " degree grid centred on ("
            << centreLat << "," << centreLon << ") with resolution "
            << resolution << " (" << numberGridCells
            << " cells in each direction)" << std::endl;
  std::cout << "  " << numberTimesteps
            << " timesteps (of 1 hour each) starting from " << year << "-"
            << month << "-" << day << " at " << hour << "00" << std::endl
            << std::endl;

  // If we have correct options, parse input file
  std::cout << "Reading input csv file: " << inputCsvPath << std::endl;

  // Header strings to denote fields
201
202
203
204
  std::string pressureString = "pres", tempString = "temp", relHumString = "rh",
              dewPtString = "tdew", wDirString = "wdir", wSpdString = "wspd";
  int pressureIndex = -1, tempIndex = -1, relHumIndex = -1, wDirIndex = -1,
      wSpdIndex = -1;
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

  // Open and read the csv
  CSVFile inputCsv(inputCsvPath);
  std::vector<std::vector<std::string>> inputData;
  bool inputReadSuccess = inputCsv.data(inputData);
  if (!inputReadSuccess)
  {
    std::cout << "Failed to read input csv!" << std::endl;
    std::cout
        << "Please ensure the file exists and has the appropriate permissions."
        << std::endl;
    return -2;
  }
  // Ensure there is data in here
  if (inputData.size() < 5)
  {
    std::cout << "Not enough data in input csv!" << std::endl;
    std::cout
        << "There are only " << inputData.size()
        << " lines in this file - at least 5 are required (4 headers + data)"
        << std::endl;
    return -3;
  }

  // Work out which fields are which data points - should be 2nd line (1)
  std::cout << "Finding data fields..." << std::endl;
  for (int entry = 0; entry < inputData[1].size(); ++entry)
  {
    if (inputData[1][entry] == pressureString)
    {
      std::cout << "  Found pressure at index " << entry << std::endl;
      pressureIndex = entry;
    }
    else if (inputData[1][entry] == tempString)
    {
      std::cout << "  Found temperature at index " << entry << std::endl;
      tempIndex = entry;
    }
    else if (inputData[1][entry] == relHumString)
    {
      std::cout << "  Found relative humidity at index " << entry << std::endl;
      relHumIndex = entry;
    }
    else if (inputData[1][entry] == wDirString)
    {
      std::cout << "  Found wind direction at index " << entry << std::endl;
      wDirIndex = entry;
    }
    else if (inputData[1][entry] == wSpdString)
    {
      std::cout << "  Found wind speed at index " << entry << std::endl;
      wSpdIndex = entry;
    }
  }
  // If we are missing one, we can't continue
260
261
  if (pressureIndex == -1 || tempIndex == -1 || relHumIndex == -1 ||
      wDirIndex == -1 || wSpdIndex == -1)
262
  {
Purves, Murray's avatar
Purves, Murray committed
263
    std::cout << "Missing data fields in input!" << std::endl;
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    if (pressureIndex == -1)
    {
      std::cout << "  Missing pressure field (denoted by " << pressureString
                << ")";
    }
    if (tempIndex == -1)
    {
      std::cout << "  Missing temperature field (denoted by " << tempString
                << ")";
    }
    if (relHumIndex == -1)
    {
      std::cout << "  Missing relative humidity field (denoted by "
                << relHumString << ")";
    }
    if (wDirIndex == -1)
    {
      std::cout << "  Missing wind direction field (denoted by " << wDirString
                << ")";
    }
    if (wSpdIndex == -1)
    {
      std::cout << "  Missing wind speed field (denoted by " << wSpdString
                << ")";
    }
    std::cout << "Please ensure these fields are present and rerun.";
    return -4;
  }

  // Read the data
294
295
  std::vector<float> inputPressures, inputTemps, inputRelHums, inputWDirs,
      inputWSpds;
296
297
298
299
300
301
302
303
304
305
306
  std::cout << "Data fields found - reading data..." << std::endl;
  float missingValue = -9999.f;
  for (int row = 4; row < inputData.size(); ++row)
  {
    if (inputData[row].size() < inputData[1].size())
    {
      std::cout << "  Warning: this row (" << row + 1
                << ") has less entries than the field names row" << std::endl;
      ;
    }

307
308
    bool foundPressure = false, foundTemp = false, foundRelHum = false,
         foundWDir = false, foundWSpd = false;
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    for (int entry = 0; entry < inputData[row].size(); ++entry)
    {
      float thisValue = from_string(inputData[row][entry], missingValue);

      if (entry == pressureIndex)
      {
        foundPressure = true;
        inputPressures.push_back(thisValue);
      }
      else if (entry == tempIndex)
      {
        foundTemp = true;
        inputTemps.push_back(thisValue);
      }
      else if (entry == relHumIndex)
      {
        foundRelHum = true;
        inputRelHums.push_back(thisValue);
      }
      else if (entry == wSpdIndex)
      {
        foundWSpd = true;
        inputWSpds.push_back(thisValue);
      }
      else if (entry == wDirIndex)
      {
        foundWDir = true;
        inputWDirs.push_back(thisValue);
      }
    }
    // Add missing data if any of the above weren't found
    if (!foundPressure)
    {
      std::cout << "  Warning: couldn't find pressure in row " << row
                << std::endl;
      inputPressures.push_back(missingValue);
    }
    if (!foundTemp)
    {
      std::cout << "  Warning: couldn't find temperature in row " << row
                << std::endl;
      inputTemps.push_back(missingValue);
    }
    if (!foundRelHum)
    {
      std::cout << "  Warning: couldn't find relative humidity in row " << row
                << std::endl;
      inputRelHums.push_back(missingValue);
    }
    if (!foundWSpd)
    {
      std::cout << "  Warning: couldn't find wind speed in row " << row
                << std::endl;
      inputWSpds.push_back(missingValue);
    }
    if (!foundWDir)
    {
      std::cout << "  Warning: couldn't find wind direction in row " << row
                << std::endl;
      inputWDirs.push_back(missingValue);
    }
  }
  std::cout << "Data read complete: " << inputPressures.size()
            << " entries read." << std::endl;

374
375
376
377
378
379
380
381
382
383
384
385
  // Interpolate the data to remove missing values
  std::cout << "Interpolating values to remove missing data..." << std::endl;
  std::cout << "Temperature:" << std::endl;
  interpolateValues(inputPressures, inputTemps);
  std::cout << "Relative humidity:" << std::endl;
  interpolateValues(inputPressures, inputRelHums);
  std::cout << "Wind speed:" << std::endl;
  interpolateValues(inputPressures, inputWSpds);
  std::cout << "Wind direction:" << std::endl;
  interpolateValues(inputPressures, inputWDirs);
  std::cout << "Interpolation complete." << std::endl;

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
  // Convert the data into ARL format
  std::cout << "Converting data to ARL format..." << std::endl;
  ARLDataStream outputStream(outputArlPath, std::ios::out);
  for (int timestep = 0; timestep < numberTimesteps; ++timestep)
  {
    // Write index header section
    std::cout << "    Writing index headers for timestep " << timestep << "..."
              << std::endl;
    ARLRecordHeader thisRecordHeader;
    thisRecordHeader.year  = year;
    thisRecordHeader.month = month;
    thisRecordHeader.day   = day;
    thisRecordHeader.hour  = hour + timestep;
    thisRecordHeader.ic    = 0;
    thisRecordHeader.il    = 0;
    thisRecordHeader.cgrid = "99";
    thisRecordHeader.kvar  = "INDX";
    thisRecordHeader.nexp  = 0;
    thisRecordHeader.prec  = 0.f;
    thisRecordHeader.var1  = 0.f;
    ARLIndexHeader thisIndexHeader;
    thisIndexHeader.model_id = "NFDB";
    thisIndexHeader.icx      = 0;
    thisIndexHeader.mn       = 0;
    thisIndexHeader.pole_lat = centreLat;
    thisIndexHeader.pole_lon = centreLon;
    thisIndexHeader.ref_lat  = centreLat;
    thisIndexHeader.ref_lon  = centreLon;
    thisIndexHeader.size     = 000.f;
    thisIndexHeader.orient   = 0.f;
    thisIndexHeader.tang_lat = centreLat;
    thisIndexHeader.sync_xp  = (numberGridCells + 1) / 2;
    thisIndexHeader.sync_yp  = (numberGridCells + 1) / 2;
    thisIndexHeader.sync_lat = centreLat;
    thisIndexHeader.sync_lon = centreLon;
    thisIndexHeader.dummy    = 0.f;
    thisIndexHeader.nx       = numberGridCells;
    thisIndexHeader.ny       = numberGridCells;
    thisIndexHeader.nz       = inputPressures.size();
    thisIndexHeader.z_flag   = 2;
    thisIndexHeader.lenh =
        inputPressures.size() * numberGridCells * numberGridCells;
    // Write the headers
    outputStream.write_record_header(thisRecordHeader);
    outputStream.write_index_header(thisRecordHeader, thisIndexHeader);
    std::cout << "    Headers written" << std::endl;

    // Write meteorological variables for each level
    for (int level = 0; level < inputPressures.size(); ++level)
    {
      std::cout << "    Writing meteorological data for timestep " << timestep
                << ", level " << level << "..." << std::endl;

      // Write pressure variables
      {
        thisRecordHeader.kvar = "PRSS";
        thisRecordHeader.var1 = inputPressures[level];
        std::vector<std::vector<float>> thisData(
            numberGridCells,
            std::vector<float>(numberGridCells, inputPressures[level]));
        std::cout << "      pressure...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }

      // Write temperature levels
      {
        thisRecordHeader.kvar = "TEMP";
        thisRecordHeader.var1 = inputTemps[level];
        std::vector<std::vector<float>> thisData(
            numberGridCells,
            std::vector<float>(numberGridCells, inputTemps[level]));
        std::cout << "      temperature...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }

      // Write relative humidity levels
      {
        thisRecordHeader.kvar = "RELH";
        thisRecordHeader.var1 = inputRelHums[level];
        std::vector<std::vector<float>> thisData(
            numberGridCells,
            std::vector<float>(numberGridCells, inputRelHums[level]));
        std::cout << "      relative humidity...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }

      // Write wind data
      // Need to calculate wind u and v components from direction/speed
      float thisWindU =
481
482
          (float)(toRadians(cos(90.0 - (inputWDirs[level] - 180.0))) *
                  inputWSpds[level] * 0.51444444444);
483
      float thisWindV =
484
485
          (float)(toRadians(sin(90.0 - (inputWDirs[level] - 180.0))) *
                  inputWSpds[level] * 0.51444444444);
486
      std::cout << "      Initial wspd = " << inputWSpds[level]
487
488
                << " knots, wdir: " << inputWDirs[level] << " degrees"
                << std::endl;
489
      std::cout << "      Converted wind components: u = " << thisWindU
490
                << " m/s, v = " << thisWindV << "m/s" << std::endl;
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
      {
        thisRecordHeader.kvar = "UWND";
        thisRecordHeader.var1 = thisWindU;
        std::vector<std::vector<float>> thisData(
            numberGridCells, std::vector<float>(numberGridCells, thisWindU));
        std::cout << "      wind (u component)...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }
      {
        thisRecordHeader.kvar = "VWND";
        thisRecordHeader.var1 = thisWindV;
        std::vector<std::vector<float>> thisData(
            numberGridCells, std::vector<float>(numberGridCells, thisWindV));
        std::cout << "      wind (v component)...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }
    }
    std::cout << " Written timestep " << timestep << std::endl;
  }

  std::cout << "File write complete!" << std::endl;

517
518
  return 0;
}