gfsfile.cc 29.2 KB
Newer Older
1
2
#include "radixio/gfsfile.hh"

3
#include "radixbug/bug.hh"
4
#include "radixio/eafstream.hh"
5
#include "radixmath/util.hh"
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
namespace radix {

float total_seconds(int year, int month, int day, int hour) {
  // assume 1900 as start of time
  float start = 365 * 86400;
  // years = hours*days*years
  return year * 365.f * 86400.f + (month - 1.f) * (365.f / 12.f) * 86400.f +
         (day - 1.f) * 86400.f + hour * 3600.f - start;
}  // total_seconds
int ord(char c) { return (unsigned char)c; }
std::vector<std::vector<float>> pakinp(const std::string &cvar, int nx, int ny,
                                       int nx1, int ny1, int lx, int ly,
                                       float prec, int nexp, float var1) {
  int k, jj, ii;
  float rnew;
  float rold  = var1;
  float scexp = 1.0f / std::pow(2.0f, float(7 - nexp));  // scaling exponent
  std::vector<std::vector<float>> rvar(nx);
  for (size_t i = 0; i < rvar.size(); ++i)
    rvar[i] = std::vector<float>(ny, 0.0);
  // initialize column 1 data
  for (int j = 0; j < ny; ++j) {
    k    = j * nx;  // position at column 1
    jj   = j - ny1;
    rnew = (float(ord(cvar[k]) - 127) * scexp) + rold;
    rold = rnew;
    if (jj >= 0 && jj <= ly) {
      rvar[0][jj] = rnew;
    }
  }  // 1st for j < ny
  for (int j = ny1; j < (ny1 + ly); ++j) {
    jj   = j - ny1;  // sub-grid array (1 to ly)
    rold = rvar[0][jj];
    for (int i = 1; i < (nx1 + lx); ++i) {
      k    = j * nx + i;
      rnew = (float(ord(cvar[k]) - 127) * scexp) + rold;
      rold = rnew;
      ii   = i - nx1;
      if (std::abs(rnew) < prec) rnew = 0.0f;
      if (ii >= 0 && ii <= lx) {
        rvar[ii][jj] = rnew;
      }
    }  // for i < (ny1+ly)
  }    // 2nd for j < ny
  return rvar;
}  // pakinp

std::vector<std::string> GFSFile::mVarb = {
    "    ", "PRSS", "TPPA", "TPPT", "TPP6", "PRT6", "TPP1", "CPP1", "TPP3",
    "CPP3", "MSLP", "SHGT", "U10M", "V10M", "RH2M", "DP2M", "MXHT", "VSBY",
    "T02M", "LHTF", "SHTF", "USTR", "RGHS", "DSWF", "UWND", "VWND", "WWND",
    "SPHU", "TEMP", "RELH", "HGTS", "TKEN", "TMPS", "SOLT", "SOLW", "P10M",
    "LCLD", "MCLD", "HCLD", "TCLD", "PBLH", "THET", "DZDT", "PRT3"};
std::vector<std::string> GFSFile::mUnits = {
    "    ", " hPa", "  mm", "  mm", "  mm", "mm/h", "  mm", "  mm", "  mm",
    "  mm", " hPa", "   m", " m/s", " m/s", "   %", "  oC", "   m", "  km",
    "  oC", "W/m2", "W/m2", "cm/s", "   m", "W/m2", " m/s", " m/s", "mb/h",
    "g/kg", "  oC", "   %", "   m", "Joul", "  oC", "  oK", "kgm2", "  oK",
    "   %", "   %", "   %", "   %", "   m", "  oC", " m/h", "mm/h"};
std::vector<float> GFSFile::mFact = {
    1.0f,   1.0f, 1000.f, 1000.f, 1000.f, 60000.f, 1000.f, 1000.f, 1000.f,
    1000.f, 1.0f, 1.0f,   1.0f,   1.0f,   1.0f,    1.0f,   1.0f,   0.001f,
    1.0f,   1.0f, 1.0f,   100.f,  1.0f,   1.0f,    1.0f,   1.0f,   3600.f,
    1000.f, 1.0f, 1.0f,   1.0f,   1.0f,   1.0f,    1.0f,   1.0f,   1.0f,
    1.0f,   1.0f, 1.0f,   1.0f,   1.0f,   1.0f,    3600.f, 60000.f};
GFSFile::GFSFile(std::string file) : mFile(file), mStrcmp(9, 0.0f) {
  radix_tagged_line("GFSFile(" << file << ")");
  // initialize data structure
  eafstream *rstream =
      new eafstream(file.c_str(), std::ifstream::in | std::ifstream::binary);
  std::string label  = rstream->readString(50);
  std::string header = rstream->readString(108);
  // initialize
  mLabel.expand(label);
  mHeader.expand(header);
  mHeader.latlon = false;
  mHeader.global = false;
  mHeader.gbldat = false;
  mHeader.prime  = false;

  // calculate length of records
  int ldat    = mHeader.nx * mHeader.ny;
  int rec_len = ldat + 50;
  mLrec       = rec_len;
  int nndx    = mHeader.lenh / ldat + 1;
  // rewind to beginning of file
  rstream->seekg(0, rstream->beg);

  // loop over remaining index records
  for (int i = 0; i < nndx; ++i) {
    std::string recl = rstream->readString(mLrec);
    label            = recl.substr(0, 50);
    header           = recl.substr(50);
100
101
    mLabel.expand(label);
    mHeader.expand(header);
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    radix_tagged_line("Found grid: " << mHeader.toString());
  }
  //
  // determine if this is a lat-lon grid
  if (mHeader.size == 0.f) {
    mHeader.latlon = true;
  }
  if (mHeader.model_id.compare("RAMS") == 0) {
    mHeader.tang_lat = mHeader.pole_lat;
  }
  if (!mHeader.latlon) {
    //
    // initialize grid conversion variable (into gbase)
    stlmbr(mHeader.tang_lat, mHeader.ref_lon);
116
    //
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    // use single point grid definition
    radix_line("sync_xp=" << mHeader.sync_xp << " sync_yp=" << mHeader.sync_yp
                          << " sync_lat=" << mHeader.sync_lat << " sync_lon="
                          << mHeader.sync_lon << " ref_lat=" << mHeader.ref_lat
                          << " ref_lon=" << mHeader.ref_lon << " size="
                          << mHeader.size << " orient=" << mHeader.orient);
    stcm1p(mHeader.sync_xp, mHeader.sync_yp, mHeader.sync_lat, mHeader.sync_lon,
           mHeader.ref_lat, mHeader.ref_lon, mHeader.size, mHeader.orient);
  }
  int kol  = 108;
  int nrec = nndx;
  int nlvl = mHeader.nz;
  mNumVarb.clear();
  mNumVarb.resize(nlvl);
  mVarbId.clear();
  mVarbId.resize(nlvl);
  mHeight.clear();
  mHeight.resize(nlvl);
  std::vector<std::vector<int>> chk_sum(mHeader.nz);
  for (int l = 0; l < nlvl; ++l) {
    mHeight[l]  = (float)std::atof(header.substr(kol, 6).c_str());
    mNumVarb[l] = std::atoi(header.substr(kol + 6, 2).c_str());

    kol += 8;

    mVarbId[l].resize(mNumVarb[l]);
    chk_sum[l].resize(mNumVarb[l]);
    for (int k = 0; k < mNumVarb[l]; ++k) {
      mVarbId[l][k] = header.substr(kol, 4);
      chk_sum[l][k] = std::atoi(header.substr(kol + 4, 3).c_str());

      kol += 8;
      nrec++;
150
    }
151
152
153
154
155
156
157
158
159
160
161
  }
  // skip to the next time period index record to find the time interval
  // between date periods (minutes)
  nrec++;

  bool first_date_loaded = false;
  mRecordTimes.clear();
  while (rstream->good()) {
    std::string recl = rstream->readString(mLrec);
    if (recl.empty()) {
      break;
162
    }
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    label = recl.substr(0, 50);
    mLabel.expand(label);
    mRecordTimes.push_back(mLabel.totalSeconds());
    if (!first_date_loaded) {
      first_date_loaded = true;
      std::stringstream ss;
      ss << mLabel.month << "/" << mLabel.day << "/" << mLabel.year << " "
         << mLabel.hour;
      mStartTime = ss.str();
      mProfiles.push_back(ss.str());
    } else {
      // if we changed time then record profile time.
      if (mRecordTimes[mRecordTimes.size() - 2] != mLabel.totalSeconds()) {
        std::stringstream ss;
        ss << mLabel.month << "/" << mLabel.day << "/" << mLabel.year << " "
           << mLabel.hour;
        mProfiles.push_back(ss.str());
      }
181
    }
182
183
184
185
186
187
188
189
    // peek ahead to check for eof etc...
    rstream->peek();
    if (!rstream->good()) {
      std::stringstream ss;
      // if we are at the end of the file dump the ending time
      ss << mLabel.month << "/" << mLabel.day << "/" << mLabel.year << " "
         << mLabel.hour;
      mEndTime = ss.str();
190
    }
191
192
193
194
195
196
    //        radix_tagged_line("Profile time: " <<
    //        mProfiles[mProfiles.size()-1]
    //                << mLabel.toString());
  }
  rstream->close();
  delete rstream;
197
}
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
std::pair<float, float> GFSFile::gbl2xy(float clat, float clon, float sync_lat,
                                        float ref_lat, float sync_lon,
                                        float ref_lon) const {
  radix_tagged_line("gbl2xy(" << clat << "," << clon << "," << sync_lat << ","
                              << ref_lat << "," << sync_lon << "," << ref_lon
                              << ")");
  float tlat = clat;
  std::pair<float, float> result;
  if (tlat > 90.0f) tlat = 180.0f - tlat;
  if (tlat < -90.0f) tlat = -180.0f - tlat;
  result.second = 1.0f + (tlat - sync_lat) / ref_lat;
  radix_tagged_line("\tcomputed y =" << result.second);

  float tlon = clon;
  if (!mHeader.prime) {
    if (tlon < 0.0f) tlon = 360.0f + tlon;
    if (tlon > 360.0) tlon = tlon - 360.0f;
  }
  tlon = tlon - sync_lon;
  if (tlon < 0.0f) tlon = tlon + 360.0f;
  result.first = 1.0f + tlon / ref_lon;
  radix_tagged_line("\tcomputed x =" << result.first);
  return result;
221
}
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
std::pair<float, float> GFSFile::gbl2ll(int x, int y, float sync_lat,
                                        float ref_lat, float sync_lon,
                                        float ref_lon) const {
  std::pair<float, float> result;
  radix_tagged_line("gbl2ll(" << x << "," << y << "," << sync_lat << ","
                              << ref_lat << "," << sync_lon << "," << ref_lon
                              << ")");
  if (!mHeader.latlon) return result;
  float clat = sync_lat + (y - 1.0f) * ref_lat;
  if (clat > 90.0f) clat = 180.0f - clat;
  if (clat < -90.0f) clat = -180.0f - clat;

  float clon = sync_lon + (x - 1.0f) * ref_lon;
  clon       = std::fmod(clon, 360.f);
  if (clon > 180.0f) clon = clon - 360.f;
  result.first  = clat;
  result.second = clon;
  return result;
241
242
}

243
244
245
246
247
248
249
250
251
252
253
254
std::pair<float, float> GFSFile::cnxyll(float xi, float eta) const {
  float gamma = mStrcmp[0];
  float cgeta = 1.f - gamma * eta;
  float gxi   = gamma * xi;
  // calculate equivalent mercator coordinate
  float arg2 = eta + (eta * cgeta - gxi * xi);
  float arg1 = gamma * arg2;
  float xlat = 0, xlong = 0, temp = 0, ymerc = 0, along = 0;
  // distance to north (or south) pole is zero (or imaginary)
  if (arg1 >= 1.f) {
    xlat  = std::copysign(90., mStrcmp[0]);
    xlong = 90. + xlat;
255
    return std::make_pair(xlat, xlong);
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
  }
  if (std::abs(arg1) < 0.01f) {
    // this avoids round-off error or divide-by zero in case of mercator
    // projects
    temp  = std::pow(arg1 / (2.f - arg1), 2);
    ymerc = arg2 / (2.f - arg1) *
            (1.f + temp * (1.f / 3.f + temp * (1.f / 5.f + temp * 1.f / 7.f)));
  } else {
    // code for moderate values of gamma
    ymerc = -std::log(1.f - arg1) / 2.f / gamma;
  }
  // convert ymerc to latitude
  temp = std::exp(-std::abs(ymerc));
  xlat =
      std::copysign(std::atan2((1.f - temp) * (1.f + temp), 2.f * temp), ymerc);
  // find longitudes
  if (std::abs(gxi) < 0.01f * cgeta) {
    // this avoids round-off error or divide-by zero in case of mercator
    // projects
    temp  = std::pow(gxi / cgeta, 2);
    along = xi / cgeta *
            (1.f - temp * (1.f / 3.f - temp * (1.f / 5.f - temp * 1.f / 7.f)));
  } else {
    along = std::atan2(gxi, cgeta) / gamma;
  }
  xlong = mStrcmp[1] + PI_BELOW_180 * along;
  xlat  = xlat * PI_BELOW_180;
  return std::make_pair(xlat, xlong);
284
}
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
std::pair<float, float> GFSFile::cnllxy(float clat, float clon) const {
  std::pair<float, float> result;
  float almost1 = .99999;
  float gamma   = mStrcmp[0];
  float dlat    = clat;
  float dlong   = cspanf(clon - mStrcmp[1], -180, 180);
  dlong         = dlong * PI_ON_180;
  float gdlong  = gamma * dlong;
  float csdgam = 0.0, sndgam = 0.0;
  if (std::abs(gdlong) < 0.01) {
    // For gamma small or zero. avoids round-off error or division
    // by zero in the case of mercator or near-mercator projections.
    gdlong = gdlong * gdlong;
    sndgam =
        dlong *
        (1.f - 1.f / 6.f * gdlong *
                   (1.f - 1.f / 20.f * gdlong * (1.f - 1.f / 42.f * gdlong)));
    csdgam =
        dlong * dlong * .5f *
        (1.f - 1.f / 12.f * gdlong *
                   (1.f - 1.f / 30.f * gdlong * (1.f - 1.f / 56.f * gdlong)));
  } else {
    sndgam = std::sin(gdlong) / gamma;
    csdgam = (1.f - std::cos(gdlong)) / gamma / gamma;
  }
  float slat = std::sin(dlat * PI_ON_180);
  if ((slat >= almost1) || (slat <= -almost1)) {
    result.first  = 0.0f;
    result.second = 1.f / gamma;
314
    return result;
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
  }
  float mercy  = .5f * std::log((1.f + slat) / (1.f - slat));
  float gmercy = gamma * mercy;
  float rhog1  = 0.f;
  if (std::abs(gmercy) < .001f) {
    // For gamma small or zero. avoids round-off error or division
    // by zero in the case of mercator or near-mercator projections.
    rhog1 = mercy *
            (1.f - .5f * gmercy *
                       (1.f - 1.f / 3.f * gmercy * (1.f - 1.f / 4.f * gmercy)));
  } else {
    rhog1 = (1.f - std::exp(-gmercy)) / gamma;
  }
  result.first  = (1.f - gamma * rhog1) * sndgam;
  result.second = rhog1 + (1.f - gamma * rhog1) * gamma * csdgam;

  return result;
332
}
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
std::pair<float, float> GFSFile::cll2xy(float clat, float clon) const {
  radix_tagged_line("cll2xy(" << clat << "," << clon << ")");
  std::pair<float, float> xi_eta = cnllxy(clat, clon);
  radix_tagged_line("\txi=" << xi_eta.first << " eta=" << xi_eta.second);

  float radius = EARTH_RADIUS_MEAN / 1000.f;
  float x =
      mStrcmp[2] + radius / mStrcmp[6] *
                       (xi_eta.first * mStrcmp[4] + xi_eta.second * mStrcmp[5]);
  float y =
      mStrcmp[3] + radius / mStrcmp[6] *
                       (xi_eta.second * mStrcmp[4] - xi_eta.first * mStrcmp[5]);
  radix_tagged_line("\tx=" << x << " y=" << y);
  return std::make_pair(x, y);
348
349
}

350
351
352
353
354
355
356
357
358
359
360
std::pair<float, float> GFSFile::cxy2ll(float x, float y) const {
  radix_tagged_line("cxy2ll(" << x << "," << y << ")");
  float radius               = EARTH_RADIUS_MEAN / 1000.f;
  float xi0                  = (x - mStrcmp[2]) * mStrcmp[6] / radius;
  float eta0                 = (y - mStrcmp[3]) * mStrcmp[6] / radius;
  float xi                   = xi0 * mStrcmp[4] - eta0 * mStrcmp[5];
  float eta                  = eta0 * mStrcmp[4] + xi0 * mStrcmp[5];
  std::pair<float, float> ll = cnxyll(xi, eta);
  radix_line("\tcnxy2ll result lat=" << ll.first << " lon=" << ll.second);
  float xlong = cspanf(ll.second, -180.f, 180.f);
  return std::make_pair(ll.first, xlong);
361
362
}

363
364
365
366
367
368
369
370
371
372
373
374
375
376
std::pair<float, float> GFSFile::cg2cll(float xlat, float xlong, float ug,
                                        float vg) const {
  float along = cspanf(xlong - mStrcmp[1], -180.f, 180.f);
  float rot   = -mStrcmp[0] + along;
  // allow cartographic wind vector transformations everywhere
  // with rotation to nominal longitudes at the poles, to match u,v values
  // on a lat-lon grid
  float slong = std::sin(PI_ON_180 * rot);
  float clong = std::cos(PI_ON_180 * rot);
  float xpolg = slong * mStrcmp[4] + clong * mStrcmp[5];
  float ypolg = clong * mStrcmp[4] - slong * mStrcmp[5];
  float vn    = ypolg * ug + xpolg * vg;
  float ue    = ypolg * vg + xpolg * ug;
  return std::make_pair(ue, vn);
377
378
}

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
std::pair<float, float> GFSFile::cg2cxy(float x, float y, float ug, float vg) {
  float xpolg = 0.f, ypolg = 0.f, temp = 0.f, xi0 = 0.f, eta0 = 0.f;
  float radius = EARTH_RADIUS_MEAN / 1000.f;
  xi0          = (x - mStrcmp[2]) * mStrcmp[6] / radius;
  eta0         = (y - mStrcmp[3]) * mStrcmp[6] / radius;
  xpolg        = mStrcmp[5] - mStrcmp[0] * xi0;
  ypolg        = mStrcmp[4] - mStrcmp[0] * eta0;
  temp         = std::sqrt(std::pow(xpolg, 2.f) + std::pow(ypolg, 2.f));
  std::pair<float, float> xy;
  if (temp <= 1e-3) {
    std::pair<float, float> ll = cxy2ll(x, y);
    xy                         = cg2cll(ll.first, ll.second, ug, vg);
  } else {
    // use vector alegbra instread of time consuming trig
    xpolg     = xpolg / temp;
    ypolg     = ypolg / temp;
    xy.first  = ypolg * ug - xpolg * vg;
    xy.second = ypolg * vg + xpolg * ug;
  }
  return xy;
399
400
}

401
402
403
404
405
406
407
408
409
410
411
412
413
void GFSFile::stlmbr(float tnglat, float xlong) {
  float radius                   = EARTH_RADIUS_MEAN / 1000.f;
  mStrcmp[0]                     = std::sin(PI_ON_180 * tnglat);
  mStrcmp[1]                     = cspanf(xlong, -180., 180.);
  mStrcmp[2]                     = 0.;
  mStrcmp[3]                     = 0.;
  mStrcmp[4]                     = 1.;
  mStrcmp[5]                     = 0.;
  mStrcmp[6]                     = radius;
  std::pair<float, float> xi_eta = cnllxy(89., xlong);
  mStrcmp[7] = 2. * xi_eta.second - mStrcmp[0] * xi_eta.second * xi_eta.second;
  xi_eta     = cnllxy(-89., xlong);
  mStrcmp[8] = 2. * xi_eta.second - mStrcmp[0] * xi_eta.second * xi_eta.second;
414
415
}

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
void GFSFile::stcm1p(float x1, float y1, float xlat1, float xlong1, float xlatg,
                     float xlongg, float gridsz, float orient) {
  radix_tagged_line("stcm1p(" << x1 << "," << y1 << "," << xlat1 << ","
                              << xlong1 << "," << xlatg << "," << xlongg << ","
                              << gridsz << "," << orient << ")");
  for (size_t i = 2; i < 4; ++i) {
    mStrcmp[i] = 0.f;
  }
  float turn = PI_ON_180 *
               (orient - mStrcmp[0] * cspanf(xlongg - mStrcmp[1], -180., 180.));
  radix_line("turn=" << turn);
  mStrcmp[4]         = std::cos(turn);
  mStrcmp[5]         = -std::sin(turn);
  mStrcmp[6]         = 1.f;
  float cgszllResult = cgszll(xlatg, mStrcmp[1]);
  radix_line("cgszll=" << cgszllResult);
  mStrcmp[6] = gridsz * mStrcmp[6] / cgszllResult;
  radix_line("mStrcmp[7]=" << mStrcmp[6]);
  std::pair<float, float> a1 = cll2xy(xlat1, xlong1);
  radix_line("x1a=" << a1.first << " y1a=" << a1.second);
  mStrcmp[2] = mStrcmp[2] + x1 - a1.first;
  mStrcmp[3] = mStrcmp[3] + y1 - a1.second;
  radix_line("1=" << mStrcmp[0] << ", 2=" << mStrcmp[1] << ", 3=" << mStrcmp[2]
                  << ", 4=" << mStrcmp[3] << ", 5=" << mStrcmp[4]
                  << ", 6=" << mStrcmp[5] << ", 7=" << mStrcmp[6]
                  << ", 8=" << mStrcmp[7]);
442
443
}

444
445
446
447
448
449
450
451
float GFSFile::cgszll(float xlat, float xlong) const {
  radix_tagged_line("cgszll(" << xlat << "," << xlong);
  float slat = 0.f, ymerc = 0.f, efact = 0.f;
  if (xlat > 89.995f) {
    // close to north pole
    if (mStrcmp[0] > 0.9999f) {
      // and to gamma == 1
      return 2.f * mStrcmp[6];
452
    }
453
454
455
456
457
    efact = std::cos(PI_ON_180 * xlat);
    if (efact <= 0.f) {
      return 0.f;
    } else {
      ymerc = -std::log(efact / (1.f + std::sin(PI_ON_180 * xlat)));
458
    }
459
460
461
462
463
  } else if (xlat < -89.995f) {
    // close to south pole
    if (mStrcmp[0] < -0.9999f) {
      // and to gamma == -1.0
      return 2.f * mStrcmp[6];
464
    }
465
466
467
468
469
    efact = std::cos(PI_ON_180 * xlat);
    if (efact <= 0.f) {
      return 0.f;
    } else {
      ymerc = std::log(efact / (1.f - std::sin(PI_ON_180 * xlat)));
470
    }
471
472
473
474
475
  } else {
    slat  = std::sin(PI_ON_180 * xlat);
    ymerc = std::log((1.f + slat) / (1.f - slat)) / 2.f;
  }
  return mStrcmp[6] * std::cos(PI_ON_180 * xlat) * std::exp(mStrcmp[0] * ymerc);
476
}
477
478
479
480
481
482
483
484
485
486
487
488
489
490
std::pair<int, int> GFSFile::nearestPoint(float lat, float lon) const {
  std::pair<float, float> point;
  radix_tagged_line("nearstPoint(" << lat << "," << lon << ")");
  radix_tagged_line("\tlatlon=" << std::boolalpha << mHeader.latlon);
  if (mHeader.latlon) {
    point = gbl2xy(lat, lon, mHeader.sync_lat, mHeader.ref_lat,
                   mHeader.sync_lon, mHeader.ref_lon);
  } else {
    point = cll2xy(lat, lon);
  }
  std::pair<int, int> ipoint;
  ipoint.first  = (int)std::round(point.first);
  ipoint.second = (int)std::round(point.second);
  return ipoint;
491
}
492
493
494
495
496
497
498
499
500
501

std::pair<float, float> GFSFile::latlon(int y, int x) const {
  std::pair<float, float> result;
  if (mHeader.latlon) {
    result = gbl2ll(x, y, mHeader.sync_lat, mHeader.ref_lat, mHeader.sync_lon,
                    mHeader.ref_lon);
  } else {
    result = cxy2ll(x, y);
  }
  return result;
502
}
503
504
505
506
507
std::string GFSFile::startTime() const { return mStartTime; }
std::string GFSFile::endTime() const { return mEndTime; }
std::string GFSFile::profileTime() const { return mProfileTime; }
const std::vector<std::string> &GFSFile::profileTimes() const {
  return mProfiles;
508
}
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
std::vector<std::vector<float>> GFSFile::query(
    float lat, float lon, int month, int day, int year, int hour,
    std::vector<std::string> columns) {
  float searchTime = total_seconds(year, month, day, hour);
  // assume class was correctly initialized
  // get the grid points for the lon, lat in the met file
  std::pair<int, int> point = nearestPoint(lat, lon);  // gbl2xy(lat, lon
  //, mHeader.sync_lat, mHeader.ref_lat
  //, mHeader.sync_lon, mHeader.ref_lon);

  int x = point.first;   //(int)std::round(point.first);
  int y = point.second;  //(int)std::round(point.second);
  if (x < 0 || x >= mHeader.nx || y < 0 || y >= mHeader.ny) {
    std::cerr << "Selected location is outside of file boundary." << std::endl;
    return std::vector<std::vector<float>>();
  }
  double minDelta = 99999999.f;
  size_t minIndex = 999999999;
  for (size_t i = 0; i < mRecordTimes.size(); ++i) {
    double delta = mRecordTimes.at(i) - searchTime;
    if (delta > 0) {
      if (minDelta > delta) {
        minDelta = delta;
        minIndex = i;
      }
    } else {
      if (std::abs(minDelta) > std::abs(delta)) {
        minDelta = delta;
        minIndex = i;
      }
539
    }
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
  }
  std::vector<size_t> matchingIndex;
  for (size_t i = minIndex; i < mRecordTimes.size(); ++i) {
    // if time has changed then lets break out of loop
    if (mRecordTimes.at(i) != mRecordTimes.at(minIndex)) break;
    matchingIndex.push_back(i);
  }
  float sfcp = 1013.0f;
  float sfct = 0.0f;
  int lp     = 0;
  std::vector<std::vector<float>> vdata(mvar);
  for (size_t i = 0; i < vdata.size(); ++i)
    vdata[i] = std::vector<float>(mlvl, 0.0f);
  std::vector<float> utw(mlvl, 0.0f);
  std::vector<float> vtw(mlvl, 0.0f);

  std::string label, header;
  std::vector<std::vector<float>> rdata;
  // open the file for reading
  radix::eafstream *rstream = new radix::eafstream(
      mFile.c_str(), std::ifstream::in | std::ifstream::binary);
  for (size_t i = 0; i < matchingIndex.size(); ++i) {
    // get the fortran record index
    size_t irec = matchingIndex.at(i) + 1;
    // calculate the file offset
    size_t foffset = mLrec * irec;
    // seek to the position in the file
    rstream->seekg(foffset, rstream->beg);
    std::string recl = rstream->readString(mLrec);
    label            = recl.substr(0, 256);
    mLabel.expand(label);
    if (i == 0) {
      std::stringstream ss;
      ss << mLabel.month << "/" << mLabel.day << "/" << mLabel.year << " "
         << mLabel.hour;
      mProfileTime = ss.str();
576
    }
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    header           = recl.substr(50);
    std::string varb = mLabel.kvar;
    if (varb.compare("INDX") == 0) continue;
    rdata = pakinp(header, mHeader.nx, mHeader.ny, 0, 0, mHeader.nx, mHeader.ny,
                   mLabel.prec, mLabel.nexp, mLabel.var1);

    int ll = mLabel.il;
    // convert level number to array index because input data
    // level index starts at 0 for the surface
    if (ll != lp || irec == (matchingIndex.size() - 1)) {
      if (lp != 0 && !mHeader.latlon) {
        std::pair<float, float> xy = cg2cxy(x - 1, y - 1, utw[lp], vtw[lp]);
        utw[lp]                    = xy.first;
        vtw[lp]                    = xy.second;
      }
      lp = ll;
593
594
    }

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    // find the variable array element number - match the input
    // variable with its position as indicated in the index record
    int nvar = mNumVarb.at(ll);
    int kvar = 0;
    for (int kk = 0; kk < nvar; ++kk) {
      if (varb.compare(mVarbId[ll][kk]) == 0) kvar = kk;
    }
    vdata[kvar][ll] = rdata[x - 1][y - 1];
    // convert unit of temperature to oC
    if (varb.compare("TEMP") == 0 || varb.compare("T02M") == 0 ||
        varb.compare("TMPS") == 0 || varb.compare("DP2M") == 0)
      vdata[kvar][ll] = vdata[kvar][ll] - 273.16f;

    // save the surface pressure and terrain mHeight for scaling
    // of the vertical coordinate system (mHeight = signma*scaling)
    if (varb.compare("PRSS") == 0) sfcp = vdata[kvar][ll];
    if (varb.compare("SHGT") == 0) sfct = vdata[kvar][ll];

    // load the winds for subsequent rotation to true
    if (varb.compare("UWND") == 0 || varb.compare("U10M") == 0)
      utw[ll] = vdata[kvar][ll];
    if (varb.compare("VWND") == 0 || varb.compare("V10M") == 0)
      vtw[ll] = vdata[kvar][ll];
  }  // for matching records
  // close the file
  rstream->close();
  delete rstream;

  // SOUND section of Fortran
  float tpot            = 0.0f;
  float temp            = 0.0f;
  bool sfcwnd           = false;
  float offset          = 0.0f;
  float plevel          = 0.0f;
  float surfaceAltitude = 0.f;

  std::vector<std::vector<float>> results(mHeader.nz);
  for (int ll = 0; ll < mHeader.nz; ++ll) {
    int nvar = mNumVarb[ll];
    // default vertical motion units in mb/s
    for (size_t nn = 0; nn < mUnits.size(); ++nn)
      if (0 == mVarb[ll].compare("WWND")) mUnits[nn] = "mb/h";

    if (mHeader.z_flag == 1) {
      // pressure sigma levels
      offset = mHeader.dummy;
      plevel = offset + (sfcp - offset) * mHeight[ll];
    } else if (mHeader.z_flag == 2) {
      plevel = mHeight[ll];
      if (ll == 0) plevel = sfcp;
    } else if (mHeader.z_flag == 3) {
      float ztop = 20000.0f;
      if (mHeight[mHeader.nz - 1] > ztop) ztop = 34800.0f;
      float factor = 1.0f - sfct / ztop;
      plevel       = factor * mHeight[ll];
      // terrain follow Z system units in m/s
      for (size_t nn = 0; nn < mUnits.size(); ++nn) {
        if (0 == mVarb[ll].compare("WWND")) mUnits[nn] = " m/h";
      }
    } else if (mHeader.z_flag == 4) {
      // ecmwf hubrid coordinate system
      offset       = static_cast<int>(mHeight[ll]);
      float psigma = mHeight[ll] - offset;
      plevel       = sfcp * psigma + offset;
      if (ll == 0) plevel = sfcp;
    }
    // by default assume level = pressure unless PRES variable appears
    // (i.e. terrain data (type=3) will have local pressure variable

    // match variables defined in file's index record with those variables
    // that have been defined in this subroutine and create a variable number
    // for simple table lookup
    std::vector<int> nt(nvar, 0);
    for (int kk = 0; kk < nvar; ++kk) {
      for (size_t nn = 0; nn < mUnits.size(); ++nn) {
        if (mVarbId[ll][kk].compare(mVarb[nn]) == 0) nt[kk] = (int)(nn);
        // check for 10 meter winds
        if ((ll == 0) && (mVarbId[ll][kk].compare("U10M") == 0) &&
            (mVarb[nn].compare("U10M") == 0)) {
          sfcwnd = true;
        } else if ((ll == 0) && (mVarbId[ll][kk].compare("V10M") == 0) &&
                   (mVarb[nn].compare("V10M") == 0)) {
          sfcwnd = true;
678
        }
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
      }
    }
    //
    // convert each variable at that level to standard units as defined
    // from the table lookup. Variales not found are not converted and
    // have no specific units label
    for (int kk = 0; kk < nvar; ++kk) {
      vdata[kk][ll] = vdata[kk][ll] * mFact[nt[kk]];
    }
    // initialize space for results vector
    results[ll] = std::vector<float>(columns.size(), 0.0f);

    // if "HGTS" has been requested add level as the default HGTS
    auto hIt = std::find(columns.begin(), columns.end(), "HGTS");
    if (hIt != columns.end()) {
      results[ll][hIt - columns.begin()] =
          hpaToAltitude(plevel) - surfaceAltitude;
    }
    // check for time
    auto timeIt = std::find(columns.begin(), columns.end(), "TIME");
    if (timeIt != columns.end()) {
      if (minIndex >= mRecordTimes.size()) {
        minIndex = *mRecordTimes.end();
      }
      int hour = (mRecordTimes[minIndex] - searchTime) / 3600.0;
      results[ll][timeIt - columns.begin()] = (float)hour;
    }
    // check for pressure
    auto presIt = std::find(columns.begin(), columns.end(), "PRSS");
    if (presIt != columns.end()) {
      results[ll][presIt - columns.begin()] = plevel;
    }
711

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
    for (int kk = 0; kk < nvar; ++kk) {
      std::string varb = mVarbId[ll][kk];
      if (varb.compare("PRES") == 0) plevel = vdata[kk][ll];
      if (varb.compare("THET") == 0) {
        tpot = vdata[kk][ll];
        // potential temperature defined; replace with ambient
        vdata[kk][ll] = (tpot * std::pow(plevel / 1000.0f, 0.286f)) - 273.16f;
      }
      if (varb.compare("TEMP") == 0) temp = vdata[kk][ll] + 273.16f;

      // map certain surface temperature(T02M) or surface relative
      // humidity(RH2M)
      if (varb.compare("T02M") == 0) varb = "TEMP";
      if (varb.compare("RH2M") == 0) varb = "RELH";
      if (varb.compare("PRSS") == 0) {
        surfaceAltitude = hpaToAltitude(vdata[kk][ll]) - 2.f;
      }
      auto it = std::find(columns.begin(), columns.end(), varb);
      if (it != columns.end()) {
        results[ll][it - columns.begin()] = vdata[kk][ll];
      }
    }
    // check surface data (2 meters)
    if (ll == 0) {
      // check for surface height
      {
        auto it = std::find(columns.begin(), columns.end(), "HGTS");
        if (it != columns.end()) {
          results[ll][it - columns.begin()] = 2.0f;
741
        }
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
      }
    }
    bool hwind = false;  // have wind?
    float wd   = 0.f;
    float ws   = 0.f;
    if (ll > 1) {
      // potential temperature not defined, then compute
      if (tpot == 0.0f) tpot = temp * std::pow(1000.0f / plevel, 0.286f);
      if (kwnd) {
        if (utw[ll] != 0.0f || vtw[ll] != 0.0f) {
          wd    = 57.29578f * std::atan2(utw[ll], vtw[ll]) + 360.0f;
          wd    = std::fmod(wd, 360.0f);
          wd    = std::fmod((wd + 180.0f), 360.0f);
          ws    = std::sqrt(utw[ll] * utw[ll] + vtw[ll] * vtw[ll]);
          hwind = true;
757
        }
758
759
760
761
762
763
764
765
766
767
768
769
770
      } else {
        wd    = utw[ll];
        ws    = vtw[ll];
        hwind = true;
      }
    } else {
      if (kwnd && sfcwnd) {
        if (utw[ll] != 0.0f || vtw[ll] != 0.0f) {
          wd    = 57.295778f * std::atan2(utw[ll], vtw[ll]) + 360.0f;
          wd    = std::fmod(wd, 360.0f);
          wd    = std::fmod((wd + 180.0f), 360.0f);
          ws    = std::sqrt(utw[ll] * utw[ll] + vtw[ll] * vtw[ll]);
          hwind = true;
771
        }
772
773
774
775
776
777
778
779
      }
    }
    if (hwind) {
      // check for WD
      {
        auto it = std::find(columns.begin(), columns.end(), "WD");
        if (it != columns.end()) {
          results[ll][it - columns.begin()] = wd;
780
        }
781
782
783
784
785
      }  // check for WS
      {
        auto it = std::find(columns.begin(), columns.end(), "WS");
        if (it != columns.end()) {
          results[ll][it - columns.begin()] = ws;
786
        }
787
788
789
      }
    }
  }  // for ll < nz
790

791
  return results;
792
}
793
}  // namespace radix