gfsfile.cc 31.4 KB
Newer Older
1
2
3
#include "radixio/gfsfile.hh"

#include "radixio/eafstream.hh"
4
#include "radixbug/bug.hh"
5
#include "radixmath/util.hh"
6
7
8
9
10
11
12
13
14

namespace radix
{

float total_seconds(int year, int month, int day, int hour)
{
    // assume 1900 as start of time
    float start = 365*86400;
    // years = hours*days*years
15
    return year*365.f*86400.f
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
            +(month-1.f)*(365.f/12.f)*86400.f
            +(day-1.f)*86400.f
            +hour*3600.f
            -start;
} // total_seconds
int ord(char c) { return (unsigned char)c; }
std::vector<std::vector<float>> pakinp(const std::string& cvar
                                       , int nx
                                       , int ny
                                       , int nx1
                                       , int ny1
                                       , int lx
                                       , int ly
                                       , float prec
                                       , int nexp
                                       , float var1)
{
    int k, jj, ii;
    float rnew;
    float rold = var1;
    float scexp = 1.0f / std::pow(2.0f, float(7-nexp)); // scaling exponent
    std::vector<std::vector<float>> rvar(nx);
    for(size_t i = 0; i < rvar.size(); ++i) rvar[i] = std::vector<float>(ny, 0.0);
    // initialize column 1 data
    for(int j = 0; j < ny; ++j)
    {
        k = j*nx;  // position at column 1
        jj = j - ny1;
        rnew = (float(ord(cvar[k])-127)*scexp)+rold;
        rold = rnew;
        if(jj >= 0 && jj <= ly)
        {
            rvar[0][jj] = rnew;
        }
    } // 1st for j < ny
    for(int j = ny1; j < (ny1+ly); ++j)
    {
        jj = j - ny1; // sub-grid array (1 to ly)
        rold = rvar[0][jj];
        for(int i = 1; i < (nx1+lx); ++i)
        {
            k = j*nx+i;
            rnew = (float(ord(cvar[k])-127)*scexp)+rold;
            rold = rnew;
            ii = i - nx1;
            if(std::abs(rnew) < prec) rnew = 0.0f;
            if(ii >= 0 && ii <= lx)
            {
                rvar[ii][jj] = rnew;
            }
        } // for i < (ny1+ly)
    } // 2nd for j < ny
    return rvar;
} // pakinp

71
std::vector<std::string> GFSFile::mVarb = { "    ", "PRSS", "TPPA", "TPPT", "TPP6", "PRT6",
72
                                            "TPP1", "CPP1", "TPP3", "CPP3", "MSLP", "SHGT",
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
                                            "U10M", "V10M", "RH2M", "DP2M", "MXHT", "VSBY",
                                            "T02M", "LHTF", "SHTF", "USTR", "RGHS", "DSWF",
                                            "UWND", "VWND", "WWND", "SPHU", "TEMP", "RELH",
                                            "HGTS", "TKEN", "TMPS", "SOLT", "SOLW", "P10M",
                                            "LCLD", "MCLD", "HCLD", "TCLD", "PBLH", "THET",
                                            "DZDT", "PRT3" };
std::vector<std::string> GFSFile::mUnits = { "    ", " hPa", "  mm", "  mm", "  mm", "mm/h",
                                             "  mm", "  mm", "  mm", "  mm", " hPa", "   m",
                                             " m/s", " m/s", "   %", "  oC", "   m", "  km",
                                             "  oC", "W/m2", "W/m2", "cm/s", "   m", "W/m2",
                                             " m/s", " m/s", "mb/h", "g/kg", "  oC", "   %",
                                             "   m", "Joul", "  oC", "  oK", "kgm2", "  oK",
                                             "   %", "   %", "   %", "   %", "   m", "  oC",
                                             " m/h", "mm/h" };
std::vector<float> GFSFile::mFact = { 1.0f, 1.0f, 1000.f, 1000.f, 1000.f, 60000.f,
88
                                      1000.f, 1000.f, 1000.f, 1000.f, 1.0f, 1.0f,
89
90
91
92
93
94
                                      1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.001f,
                                      1.0f, 1.0f, 1.0f, 100.f, 1.0f, 1.0f,
                                      1.0f, 1.0f, 3600.f, 1000.f, 1.0f, 1.0f,
                                      1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
                                      1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
                                      3600.f, 60000.f };
95
96
GFSFile::GFSFile(std::string file)
    : mFile(file)
97
    , mStrcmp(9, 0.0f)
98
{
99
    radix_tagged_line("GFSFile(" << file << ")" );
100
101
102
103
104
105
106
    // initialize data structure
    eafstream * rstream = new eafstream(file.c_str(), std::ifstream::in | std::ifstream::binary);
    std::string label = rstream->readString(50);
    std::string header = rstream->readString(108);
    // initialize
    mLabel.expand(label);
    mHeader.expand(header);
107
108
109
110
    mHeader.latlon = false;
    mHeader.global = false;
    mHeader.gbldat = false;
    mHeader.prime = false;
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    // calculate length of records
    int ldat = mHeader.nx*mHeader.ny;
    int rec_len = ldat+50;
    mLrec = rec_len;
    int nndx = mHeader.lenh/ldat + 1;
    // rewind to beginning of file
    rstream->seekg(0, rstream->beg);

    // loop over remaining index records
    for(int i = 0; i < nndx; ++i)
    {
        std::string recl = rstream->readString(mLrec);
        label = recl.substr(0,50);
        header = recl.substr(50);
        mLabel.expand(label);
        mHeader.expand(header);
128
        radix_tagged_line("Found grid: " << mHeader.toString());
129
    }
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    //
    // determine if this is a lat-lon grid
    if(mHeader.size == 0.f)
    {
        mHeader.latlon = true;
    }
    if(mHeader.model_id.compare("RAMS") == 0)
    {
        mHeader.tang_lat = mHeader.pole_lat;
    }
    if(!mHeader.latlon)
    {
        //
        // initialize grid conversion variable (into gbase)
        stlmbr(mHeader.tang_lat, mHeader.ref_lon);
        //
        // use single point grid definition
        radix_line("sync_xp=" << mHeader.sync_xp
                   << " sync_yp=" << mHeader.sync_yp
                   << " sync_lat=" << mHeader.sync_lat
                   << " sync_lon=" << mHeader.sync_lon
                   << " ref_lat=" << mHeader.ref_lat
                   << " ref_lon=" << mHeader.ref_lon
                   << " size=" << mHeader.size
                   << " orient=" << mHeader.orient);
        stcm1p(mHeader.sync_xp, mHeader.sync_yp
               , mHeader.sync_lat, mHeader.sync_lon
               , mHeader.ref_lat, mHeader.ref_lon
               , mHeader.size, mHeader.orient);
    }
160
161
162
163
164
165
166
167
168
169
170
171
    int kol = 108;
    int nrec = nndx;
    int nlvl = mHeader.nz;
    mNumVarb.clear();
    mNumVarb.resize(nlvl);
    mVarbId.clear();
    mVarbId.resize(nlvl);
    mHeight.clear();
    mHeight.resize(nlvl);
    std::vector<std::vector<int>> chk_sum(mHeader.nz);
    for(int l = 0; l < nlvl; ++l)
    {
LEFEBVREJP email's avatar
LEFEBVREJP email committed
172
        mHeight[l] = (float)std::atof(header.substr(kol,6).c_str());
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        mNumVarb[l] = std::atoi(header.substr(kol+6,2).c_str());

        kol += 8;

        mVarbId[l].resize(mNumVarb[l]);
        chk_sum[l].resize(mNumVarb[l]);
        for(int k = 0; k < mNumVarb[l]; ++k)
        {
            mVarbId[l][k] = header.substr(kol,4);
            chk_sum[l][k] = std::atoi(header.substr(kol+4,3).c_str());

            kol+=8;
            nrec++;
        }
    }
    // skip to the next time period index record to find the time interval
    // between date periods (minutes)
    nrec++;

    bool first_date_loaded = false;
    mRecordTimes.clear();
    while(rstream->good())
    {
        std::string recl = rstream->readString(mLrec);
        if(recl.empty())
        {
            break;
        }
        label = recl.substr(0,50);
        mLabel.expand(label);
203
        mRecordTimes.push_back(mLabel.totalSeconds());
204
205
206
207
208
209
210
        if(!first_date_loaded)
        {
            first_date_loaded = true;
            std::stringstream ss;
            ss << mLabel.month << "/" << mLabel.day << "/" << mLabel.year
               << " " << mLabel.hour;
            mStartTime = ss.str();
211
212
213
214
215
216
217
218
219
220
221
            mProfiles.push_back(ss.str());
        } else
        {
            // if we changed time then record profile time.
            if(mRecordTimes[mRecordTimes.size()-2] != mLabel.totalSeconds())
            {
                std::stringstream ss;
                ss << mLabel.month << "/" << mLabel.day << "/" << mLabel.year
                   << " " << mLabel.hour;
                mProfiles.push_back(ss.str());
            }
222
223
224
225
226
227
228
229
230
231
232
        }
        // peek ahead to check for eof etc...
        rstream->peek();
        if(!rstream->good())
        {
            std::stringstream ss;
            // if we are at the end of the file dump the ending time
            ss << mLabel.month << "/" << mLabel.day << "/" << mLabel.year
               << " " << mLabel.hour;
            mEndTime = ss.str();
        }
233
234
        //        radix_tagged_line("Profile time: " << mProfiles[mProfiles.size()-1]
        //                << mLabel.toString());
235
236
237
238
239
240
241
242
243
244
245
    }
    rstream->close();
    delete rstream;
}
std::pair<float, float> GFSFile::gbl2xy(float clat
                                        , float clon
                                        , float sync_lat
                                        , float ref_lat
                                        , float sync_lon
                                        , float ref_lon) const
{
246
247
248
249
    radix_tagged_line("gbl2xy("
                      << clat << ","
                      << clon << ","
                      << sync_lat << ","
250
                      << ref_lat << ","
251
252
                      << sync_lon << ","
                      << ref_lon << ")");
253
254
255
256
257
    float tlat = clat;
    std::pair<float,float> result;
    if(tlat > 90.0f) tlat = 180.0f-tlat;
    if(tlat < -90.0f) tlat = -180.0f-tlat;
    result.second = 1.0f+(tlat-sync_lat)/ref_lat;
258
    radix_tagged_line("\tcomputed y =" << result.second);
259
260

    float tlon = clon;
261
262
263
264
265
    if(!mHeader.prime)
    {
        if(tlon < 0.0f) tlon = 360.0f+tlon;
        if(tlon > 360.0) tlon = tlon-360.0f;
    }
266
267
268
    tlon = tlon-sync_lon;
    if(tlon < 0.0f) tlon = tlon+360.0f;
    result.first = 1.0f+tlon/ref_lon;
269
    radix_tagged_line("\tcomputed x =" << result.first);
270
271
    return result;
}
272

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
std::pair<float, float> GFSFile::cnxyll(float xi, float eta) const
{
    float gamma = mStrcmp[0];
    float cgeta = 1.f - gamma * eta;
    float gxi = gamma * xi;
    // calculate equivalent mercator coordinate
    float arg2 = eta + (eta*cgeta - gxi * xi);
    float arg1 = gamma * arg2;
    float xlat = 0, xlong = 0, temp = 0, ymerc = 0, along = 0;
    // distance to north (or south) pole is zero (or imaginary)
    if(arg1 >= 1.f)
    {
        xlat = std::copysign(90., mStrcmp[0]);
        xlong = 90. + xlat;
        return std::make_pair(xlat, xlong);
    }
    if(std::abs(arg1) < 0.01f)
    {
        // this avoids round-off error or divide-by zero in case of mercator projects
        temp = std::pow(arg1 / (2.f - arg1), 2);
        ymerc = arg2 / (2.f -arg1) * (1.f + temp *
                                      (1.f/3.f + temp *
                                       (1.f/5.f + temp *
                                        1.f/7.f)));
    } else
    {
        //code for moderate values of gamma
        ymerc = - std::log(1.f-arg1) / 2.f / gamma;
    }
    // convert ymerc to latitude
    temp = std::exp(- std::abs(ymerc));
    xlat = std::copysign(std::atan2((1.f-temp)*(1.f+temp), 2.f*temp),ymerc);
    // find longitudes
    if(std::abs(gxi) < 0.01f*cgeta)
    { // this avoids round-off error or divide-by zero in case of mercator projects
        temp = std::pow(gxi / cgeta, 2);
        ymerc = xi / cgeta * (1.f - temp *
                                      (1.f/3.f - temp *
                                       (1.f/5.f - temp *
                                        1.f/7.f)));
    } else
    {
        along = std::atan2(gxi, cgeta) /gamma;
    }
    xlong = mStrcmp[1] + PI_BELOW_180 * along;
    xlat = xlat * PI_BELOW_180;
    return std::make_pair(xlat, xlong);
}
321
std::pair<float, float> GFSFile::cnllxy(float clat, float clon) const
322
323
324
{
    std::pair<float, float> result;
    float almost1 = .99999;
325
    float gamma = mStrcmp[0];
326
    float dlat = clat;
327
    float dlong = cspanf(clon - mStrcmp[1], -180, 180);
328
329
330
331
332
333
334
335
    dlong = dlong * PI_ON_180;
    float gdlong = gamma * dlong;
    float csdgam = 0.0, sndgam = 0.0;
    if(std::abs(gdlong) < 0.01)
    {
        // For gamma small or zero. avoids round-off error or division
        // by zero in the case of mercator or near-mercator projections.
        gdlong = gdlong * gdlong;
336
337
338
339
340
341
342
        sndgam = dlong * (1.f-1.f/6.f * gdlong *
                          (1.f-1.f/20.f * gdlong *
                           (1.f-1.f/42.f * gdlong)));
        csdgam = dlong * dlong * .5f *
                (1.f-1.f/12.f * gdlong *
                 (1.f-1.f/30.f * gdlong *
                  (1.f-1.f/56.f * gdlong)));
343
344
345
    } else
    {
        sndgam = std::sin(gdlong)/gamma;
346
        csdgam = (1.f-std::cos(gdlong))/gamma/gamma;
347
348
349
350
    }
    float slat = std::sin(dlat*PI_ON_180);
    if((slat >= almost1) || (slat <= -almost1))
    {
351
352
353
        result.first = 0.0f;
        result.second = 1.f/gamma;
        return result;
354
    }
355
    float mercy = .5f * std::log((1.f+slat)/(1.f-slat));
356
    float gmercy = gamma * mercy;
357
358
    float rhog1 = 0.f;
    if(std::abs(gmercy) < .001f)
359
360
361
    {
        // For gamma small or zero. avoids round-off error or division
        // by zero in the case of mercator or near-mercator projections.
362
363
364
        rhog1 = mercy * ( 1.f -.5f * gmercy *
                          (1.f-1.f/3.f * gmercy *
                           (1.f-1.f/4.f * gmercy)));
365
366
    } else
    {
367
        rhog1 = (1.f - std::exp(-gmercy)) / gamma;
368
    }
369
370
    result.first = (1.f-gamma*rhog1)*sndgam;
    result.second = rhog1 + (1.f-gamma*rhog1)*gamma*csdgam;
371
372
373

    return result;
}
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

std::pair<float, float> GFSFile::cll2xy(float clat, float clon) const
{
    radix_tagged_line("cll2xy(" << clat << "," << clon << ")");
    std::pair<float, float> xi_eta = cnllxy(clat, clon);
    radix_tagged_line("\txi=" << xi_eta.first
                      << " eta=" << xi_eta.second);

    float radius = EARTH_RADIUS_MEAN/1000.f;
    float x = mStrcmp[2] + radius/mStrcmp[6]
            * (xi_eta.first*mStrcmp[4] + xi_eta.second * mStrcmp[5]);
    float y = mStrcmp[3] + radius/mStrcmp[6]
            * (xi_eta.second*mStrcmp[4] - xi_eta.first * mStrcmp[5]);
    radix_tagged_line("\tx=" << x << " y=" << y);
    return std::make_pair(x,y);
}

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
std::pair<float, float> GFSFile::cxy2ll(float x, float y) const
{
    radix_tagged_line("cxy2ll(" << x
                      << "," << y << ")");
    float radius = EARTH_RADIUS_MEAN / 1000.f;
    float xi0 = (x -mStrcmp[2]) * mStrcmp[6] / radius;
    float eta0 = (y - mStrcmp[3]) * mStrcmp[6] / radius;
    float xi = xi0 * mStrcmp[4] - eta0 * mStrcmp[5];
    float eta = eta0 * mStrcmp[4] + xi0 * mStrcmp[5];
    std::pair<float, float> ll = cnxyll(xi, eta);
    radix_line("\tcnxy2ll result lat=" << ll.first
               << " lon=" << ll.second);
    float xlong = cspanf(ll.second, -180.f, 180.f);
    return std::make_pair(ll.first, xlong);
}

std::pair<float, float> GFSFile::cg2cll(float xlat, float xlong, float ug, float vg) const
{
    float along = cspanf(xlong - mStrcmp[1], -180.f, 180.f);
    float rot = - mStrcmp[0] + along;
    // allow cartographic wind vector transformations everywhere
    // with rotation to nominal longitudes at the poles, to match u,v values
    // on a lat-lon grid
    float slong = std::sin(PI_ON_180 * rot);
    float clong = std::cos(PI_ON_180 * rot);
    float xpolg = slong * mStrcmp[4] + clong * mStrcmp[5];
    float ypolg = clong * mStrcmp[4] - slong * mStrcmp[5];
    float vn = ypolg * ug + xpolg * vg;
    float ue = ypolg * vg + xpolg * ug;
    return std::make_pair(ue, vn);
}

423
424
425
426
427
428
429
430
431
std::pair<float, float> GFSFile::cg2cxy(float x, float y, float ug, float vg)
{
    float xpolg = 0.f, ypolg = 0.f, temp = 0.f, xi0 = 0.f, eta0 = 0.f;
    float radius = EARTH_RADIUS_MEAN/1000.f;
    xi0 = (x -mStrcmp[2]) * mStrcmp[6]/radius;
    eta0 = (y - mStrcmp[3]) * mStrcmp[6]/radius;
    xpolg = mStrcmp[5] - mStrcmp[0] * xi0;
    ypolg = mStrcmp[4] - mStrcmp[0] * eta0;
    temp = std::sqrt( std::pow(xpolg, 2.f) + std::pow(ypolg, 2.f));
432
433
434
435
436
437
    std::pair<float,float> xy;
    if(temp <= 1e-3)
    {
        std::pair<float, float> ll = cxy2ll(x, y);
        xy = cg2cll(ll.first, ll.second, ug, vg);
    } else
438
    {
439
440
441
442
443
        // use vector alegbra instread of time consuming trig
        xpolg = xpolg / temp;
        ypolg = ypolg / temp;
        xy.first = ypolg * ug - xpolg * vg;
        xy.second = ypolg * vg + xpolg * ug;
444
    }
445
    return xy;
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
}

void GFSFile::stlmbr(float tnglat, float xlong)
{
    float radius = EARTH_RADIUS_MEAN / 1000.f;
    mStrcmp[0] = std::sin(PI_ON_180*tnglat);
    mStrcmp[1] = cspanf(xlong, -180., 180.);
    mStrcmp[2] = 0.;
    mStrcmp[3] = 0.;
    mStrcmp[4] = 1.;
    mStrcmp[5] = 0.;
    mStrcmp[6] = radius;
    std::pair<float,float> xi_eta = cnllxy(89., xlong);
    mStrcmp[7] = 2. * xi_eta.second - mStrcmp[0]
            * xi_eta.second * xi_eta.second;
    xi_eta = cnllxy(-89., xlong);
    mStrcmp[8] = 2. * xi_eta.second - mStrcmp[0]
            * xi_eta.second * xi_eta.second;
}

void GFSFile::stcm1p(float x1, float y1, float xlat1, float xlong1
                     , float xlatg, float xlongg, float gridsz, float orient)
{
    radix_tagged_line("stcm1p(" << x1 << "," << y1
                      << "," << xlat1 << "," << xlong1
                      << "," << xlatg << "," << xlongg
                      << "," << gridsz << "," << orient << ")");
    for(size_t i = 2; i < 4; ++i)
    {
        mStrcmp[i] = 0.f;
    }
    float turn = PI_ON_180 * (orient - mStrcmp[0]
            * cspanf(xlongg - mStrcmp[1], -180., 180.));
    radix_line("turn=" << turn);
    mStrcmp[4] = std::cos(turn);
    mStrcmp[5] = -std::sin(turn);
    mStrcmp[6] = 1.f;
    float cgszllResult = cgszll(xlatg, mStrcmp[1]);
    radix_line("cgszll=" << cgszllResult);
    mStrcmp[6] = gridsz * mStrcmp[6] / cgszllResult;
    radix_line("mStrcmp[7]=" << mStrcmp[6]);
    std::pair<float, float> a1 = cll2xy(xlat1, xlong1);
    radix_line("x1a=" << a1.first << " y1a=" << a1.second);
    mStrcmp[2] = mStrcmp[2] + x1 - a1.first;
    mStrcmp[3] = mStrcmp[3] + y1 - a1.second;
    radix_line("1=" << mStrcmp[0]
            << ", 2=" << mStrcmp[1]
            << ", 3=" << mStrcmp[2]
            << ", 4=" << mStrcmp[3]
            << ", 5=" << mStrcmp[4]
            << ", 6=" << mStrcmp[5]
            << ", 7=" << mStrcmp[6]
            << ", 8=" << mStrcmp[7]);
}

float GFSFile::cgszll(float xlat, float xlong) const
{
    radix_tagged_line("cgszll(" << xlat << "," << xlong);
    float slat = 0.f, ymerc = 0.f, efact = 0.f;
    if(xlat > 89.995f)
    {
        // close to north pole
        if(mStrcmp[0] > 0.9999f)
        {// and to gamma == 1
            return 2.f*mStrcmp[6];
        }
        efact = std::cos(PI_ON_180*xlat);
        if(efact <= 0.f)
        {
            return 0.f;
        } else
        {
            ymerc = -std::log(efact / (1.f + std::sin(PI_ON_180*xlat)));
        }
    } else if(xlat < -89.995f)
    {
        // close to south pole
        if(mStrcmp[0] < -0.9999f)
        {// and to gamma == -1.0
            return 2.f*mStrcmp[6];
        }
        efact = std::cos(PI_ON_180*xlat);
        if(efact <= 0.f)
        {
            return 0.f;
        } else
        {
            ymerc = std::log(efact / (1.f - std::sin(PI_ON_180*xlat)));
        }
    } else
    {
        slat = std::sin(PI_ON_180*xlat);
        ymerc = std::log((1.f+slat)/(1.f-slat))/2.f;
    }
    return mStrcmp[6] * std::cos(PI_ON_180*xlat)*std::exp(mStrcmp[0]*ymerc);
}
542
543
std::pair<int,int> GFSFile::nearestPoint(float lat, float lon) const
{
544
    std::pair<float,float> point;
545
546
547
    radix_tagged_line("nearstPoint("<<lat<<","<<lon<<")");
    radix_tagged_line("\tlatlon=" << std::boolalpha << mHeader.latlon);
    if(mHeader.latlon)
548
549
550
551
552
553
554
555
    {
        point = gbl2xy(lat, lon
                       , mHeader.sync_lat, mHeader.ref_lat
                       , mHeader.sync_lon, mHeader.ref_lon);
    } else
    {
        point = cll2xy(lat, lon);
    }
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    std::pair<int,int> ipoint;
    ipoint.first =  (int)std::round(point.first);
    ipoint.second = (int)std::round(point.second);
    return ipoint;
}
std::string GFSFile::startTime() const
{
    return mStartTime;
}
std::string GFSFile::endTime() const
{
    return mEndTime;
}
std::string GFSFile::profileTime() const
{
    return mProfileTime;
}
573
574
575
576
const std::vector<std::string>& GFSFile::profileTimes() const
{
    return mProfiles;
}
577
578
579
580
581
582
583
584
585
586
587
std::vector<std::vector<float>> GFSFile::query(float lat
                                               , float lon
                                               , int month
                                               , int day
                                               , int year
                                               , int hour
                                               , std::vector<std::string> columns)
{
    float searchTime = total_seconds(year, month, day, hour);
    // assume class was correctly initialized
    // get the grid points for the lon, lat in the met file
588
    std::pair<int,int> point = nearestPoint(lat, lon); //gbl2xy(lat, lon
589
590
    //, mHeader.sync_lat, mHeader.ref_lat
    //, mHeader.sync_lon, mHeader.ref_lon);
591
592
593
594
595
596
597
598
599

    int x = point.first;//(int)std::round(point.first);
    int y = point.second;//(int)std::round(point.second);
    if(x < 0 || x >= mHeader.nx
            || y < 0 || y >= mHeader.ny)
    {
        std::cerr << "Selected location is outside of file boundary." << std::endl;
        return std::vector<std::vector<float>>();
    }
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    float minDelta = 99999999.f;
    size_t minIndex = 999999999;
    for(size_t i = 0; i < mRecordTimes.size(); ++i)
    {
        float delta = mRecordTimes.at(i) - searchTime;
        if(delta > 0)
        {
            if(minDelta > delta)
            {
                minDelta = delta;
                minIndex = i;
            }
        } else
        {
            if(std::abs(minDelta) > std::abs(delta))
            {
                minDelta = delta;
                minIndex = i;
            }
        }
    }
    std::vector<size_t> matchingIndex;
    for(size_t i = minIndex; i < mRecordTimes.size(); ++i)
    {
        // if time has changed then lets break out of loop
        if(mRecordTimes.at(i) != mRecordTimes.at(minIndex))break;
        matchingIndex.push_back(i);
    }
    float sfcp = 1013.0f;
    float sfct = 0.0f;
    int lp = 0;
    std::vector<std::vector<float>> vdata(mvar);
    for(size_t i = 0; i < vdata.size(); ++i) vdata[i] = std::vector<float>(mlvl,0.0f);
    std::vector<float> utw(mlvl, 0.0f);
    std::vector<float> vtw(mlvl, 0.0f);

    std::string label, header;
    std::vector<std::vector<float>> rdata;
    // open the file for reading
639
    radix::eafstream * rstream = new radix::eafstream(mFile.c_str(), std::ifstream::in | std::ifstream::binary);
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    for(size_t i = 0; i < matchingIndex.size(); ++i)
    {
        // get the fortran record index
        size_t irec = matchingIndex.at(i) + 1;
        // calculate the file offset
        size_t foffset = mLrec*irec;
        // seek to the position in the file
        rstream->seekg(foffset, rstream->beg);
        std::string recl = rstream->readString(mLrec);
        label = recl.substr(0,256);
        mLabel.expand(label);
        if(i == 0)
        {
            std::stringstream ss;
            ss << mLabel.month << "/" << mLabel.day << "/" << mLabel.year << " " << mLabel.hour;
            mProfileTime = ss.str();
        }
        header = recl.substr(50);
        std::string varb = mLabel.kvar;
        if(varb.compare("INDX") == 0) continue;
        rdata = pakinp(header, mHeader.nx, mHeader.ny, 0, 0, mHeader.nx, mHeader.ny, mLabel.prec, mLabel.nexp, mLabel.var1);

        int ll = mLabel.il;
        // convert level number to array index because input data
        // level index starts at 0 for the surface
665
666
        if(ll != lp || irec == (matchingIndex.size()-1))
        {
667
668
669
670
671
672
            if(lp != 0 && !mHeader.latlon)
            {
                std::pair<float,float> xy = cg2cxy(x-1, y-1, utw[lp], vtw[lp]);
                utw[lp] = xy.first;
                vtw[lp] = xy.second;
            }
673
674
            lp = ll;
        }
675
676
677
678
679
680
681
682
683
684
685
686
687
688

        // find the variable array element number - match the input
        // variable with its position as indicated in the index record
        int nvar = mNumVarb.at(ll);
        int kvar = 0;
        for(int kk = 0; kk < nvar; ++kk)
        {
            if( varb.compare(mVarbId[ll][kk]) == 0) kvar = kk;
        }
        vdata[kvar][ll] = rdata[x-1][y-1];
        // convert unit of temperature to oC
        if( varb.compare("TEMP") == 0
                || varb.compare("T02M") == 0
                || varb.compare("TMPS") == 0
689
690
                || varb.compare("DP2M") == 0)
            vdata[kvar][ll] = vdata[kvar][ll]-273.16f;
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

        // save the surface pressure and terrain mHeight for scaling
        // of the vertical coordinate system (mHeight = signma*scaling)
        if(varb.compare("PRSS") == 0) sfcp = vdata[kvar][ll];
        if(varb.compare("SHGT") == 0) sfct = vdata[kvar][ll];

        // load the winds for subsequent rotation to true
        if(varb.compare("UWND") == 0 || varb.compare("U10M") == 0) utw[ll] = vdata[kvar][ll];
        if(varb.compare("VWND") == 0 || varb.compare("V10M") == 0) vtw[ll] = vdata[kvar][ll];
    } // for matching records
    // close the file
    rstream->close();
    delete rstream;

    // SOUND section of Fortran
    float tpot = 0.0f;
    float temp = 0.0f;
    bool sfcwnd = false;
    float offset = 0.0f;
    float plevel = 0.0f;

    std::vector<std::vector<float>> results(mHeader.nz);
    for(int ll = 0; ll < mHeader.nz; ++ll)
    {
        int nvar = mNumVarb[ll];
        // default vertical motion units in mb/s
        for(size_t nn = 0; nn < mUnits.size(); ++nn)
            if(0 == mVarb[ll].compare("WWND")) mUnits[nn] = "mb/h";

        if(mHeader.z_flag == 1)
        {
            // pressure sigma levels
            offset = mHeader.dummy;
            plevel = offset + (sfcp-offset)*mHeight[ll];
        } else if(mHeader.z_flag == 2)
        {
            plevel = mHeight[ll];
            if(ll == 0) plevel = sfcp;
        } else if(mHeader.z_flag == 3)
        {
            float ztop = 20000.0f;
            if(mHeight[mHeader.nz-1] > ztop) ztop = 34800.0f;
            float factor = 1.0f-sfct/ztop;
            plevel = factor*mHeight[ll];
            // terrain follow Z system units in m/s
            for(size_t nn = 0; nn < mUnits.size(); ++nn)
            {
                if(0 == mVarb[ll].compare("WWND")) mUnits[nn] = " m/h";
            }
        } else if(mHeader.z_flag == 4)
        {
            //ecmwf hubrid coordinate system
            offset = static_cast<int>(mHeight[ll]);
            float psigma = mHeight[ll] - offset;
            plevel = sfcp*psigma+offset;
            if(ll == 0) plevel=sfcp;
        }
        // by default assume level = pressure unless PRES variable appears
        // (i.e. terrain data (type=3) will have local pressure variable
        int level = static_cast<int>(plevel);

        // match variables defined in file's index record with those variables
        // that have been defined in this subroutine and create a variable number
        // for simple table lookup
        std::vector<int> nt(nvar, 0);
        for(int kk = 0; kk < nvar; ++kk)
        {
            for(size_t nn = 0; nn < mUnits.size(); ++nn)
            {
                if(mVarbId[ll][kk].compare(mVarb[nn]) == 0) nt[kk] = (int)(nn);
                // check for 10 meter winds
                if((ll == 0)
                        && (mVarbId[ll][kk].compare("U10M") == 0)
                        && (mVarb[nn].compare("U10M") == 0))
                {
                    sfcwnd = true;
                } else if( (ll == 0)
                           && (mVarbId[ll][kk].compare("V10M") == 0)
                           && (mVarb[nn].compare("V10M") == 0))
                {
                    sfcwnd = true;
                }
            }
        }
        //
        // convert each variable at that level to standard units as defined
        // from the table lookup. Variales not found are not converted and
        // have no specific units label
        for(int kk = 0; kk < nvar; ++kk)
        {
            vdata[kk][ll] = vdata[kk][ll]*mFact[nt[kk]];
        }
        // initialize space for results vector
        results[ll] = std::vector<float>(columns.size(), 0.0f);
        // check for time
        auto timeIt = std::find(columns.begin(), columns.end(), "TIME");
        if(timeIt != columns.end())
        {
LEFEBVREJP email's avatar
LEFEBVREJP email committed
789
790
            int hour = (int)((mRecordTimes[minIndex] - searchTime)/3600.0f);
            results[ll][timeIt-columns.begin()] = (float)hour;
791
792
793
794
795
        }
        // check for pressure
        auto presIt = std::find(columns.begin(), columns.end(), "PRSS");
        if(presIt != columns.end())
        {
LEFEBVREJP email's avatar
LEFEBVREJP email committed
796
            results[ll][presIt-columns.begin()] = (float)level;
797
798
799
800
801
802
803
804
805
806
807
808
809
        }

        for(int kk = 0; kk < nvar; ++kk)
        {
            if(mVarbId[ll][kk].compare("PRES") == 0) plevel = vdata[kk][ll];
            if(mVarbId[ll][kk].compare("THET") == 0)
            {
                tpot = vdata[kk][ll];
                // potential temperature defined; replace with ambient
                vdata[kk][ll] = (tpot*std::pow(plevel/1000.0f,0.286f))-273.16f;
            }
            if(mVarbId[ll][kk].compare("TEMP") == 0) temp = vdata[kk][ll]+273.16f;

810
811
812
813
814
815
            std::string varb = mVarbId[ll][kk];

            //map certain varb
            if(varb.compare("T02M") == 0) varb = "TEMP";
            if(varb.compare("RH2M") == 0) varb = "RELH";
            auto it = std::find(columns.begin(), columns.end(), varb);
816
817
818
819
820
821
            if(it != columns.end())
            {
                results[ll][it-columns.begin()] = vdata[kk][ll];
            }

        }
822
823
824
825
826
827
828
829
830
831
832
833
        // check surface data (2 meters)
        if( ll == 0)
        {
            // check for surface height
            {
                auto it = std::find(columns.begin(), columns.end(), "HGTS");
                if(it != columns.end())
                {
                    results[ll][it-columns.begin()] = 2.0f;
                }
            }
        }
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        bool hwind = false; // have wind?
        float wd = 0.f;
        float ws = 0.f;
        if(ll > 1)
        {
            // potential temperature not defined, then compute
            if(tpot == 0.0f) tpot = temp*std::pow(1000.0f/plevel, 0.286f);
            if(kwnd)
            {
                if(utw[ll] != 0.0f || vtw[ll] != 0.0f)
                {
                    wd = 57.29578f*std::atan2(utw[ll], vtw[ll])+360.0f;
                    wd = std::fmod(wd, 360.0f);
                    wd = std::fmod((wd+180.0f), 360.0f);
                    ws = std::sqrt(utw[ll]*utw[ll]+vtw[ll]*vtw[ll]);
                    hwind = true;
                }
            } else
            {
                wd = utw[ll];
                ws = vtw[ll];
                hwind = true;
            }
        } else
        {
            if(kwnd && sfcwnd)
            {
                if(utw[ll] != 0.0f || vtw[ll] != 0.0f)
                {
                    wd = 57.295778f*std::atan2(utw[ll],vtw[ll])+360.0f;
                    wd = std::fmod(wd, 360.0f);
                    wd = std::fmod((wd+180.0f), 360.0f);
                    ws = std::sqrt(utw[ll]*utw[ll]+vtw[ll]*vtw[ll]);
                    hwind = true;
                }
            }
        }
        if(hwind)
        {
            // check for WD
            {
                auto it = std::find(columns.begin(), columns.end(), "WD");
                if(it != columns.end())
                {
                    results[ll][it-columns.begin()] = wd;
                }
            }// check for WS
            {
                auto it = std::find(columns.begin(), columns.end(), "WS");
                if(it != columns.end())
                {
                    results[ll][it-columns.begin()] = ws;
                }
            }
        }
    } // for ll < nz

    return results;
}
} // namespace radix