radixsnd2arl.cc 24.4 KB
Newer Older
1
2
3
4
5
/*
 * Example utility to convert a vertical profile of meteorological
 * data to the ARL format
 */

6
#include <algorithm>
7
#include <ctime>
8
9
10
11
#include <iostream>
#include <string>
#include <vector>

12
13
#include "radixcommand/commandline.hh"
#include "radixcore/stringfunctions.hh"
14
#include "radixmath/constants.hh"
15
#include "radixmath/util.hh"
16

17
#include "radixio/arldatastream.hh"
18
19
20
#include "radixio/csvfile.hh"

using namespace radix;
21

22
23
24
25
26
27
28
29
30
void addHour(struct tm *time, int hours)
{
  int seconds = hours * 60 * 60;

  time_t date_seconds = mktime(time) + seconds;

  *time = *localtime(&date_seconds);
}

31
32
33
34
35
36
37
38
39
40
/**
 * @brief interpolateValues Interpolate/extrapolate missing values from a data
 * vector Basic capability for now - linear interpolation, extrapolation assumes
 * constant from ends.
 * @param pressureValues Pressure vector for meteorology - requires all values
 * to be present. Used for determining 'interpolation bounds' (there's
 * definitely a better phrase for this)
 * @param valuesToInterpolate
 */
bool interpolateValues(const std::vector<float> &pressureValues,
41
42
                       std::vector<float> &valuesToInterpolate,
                       bool circular = false)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
{
  float missingValue = -9999.f;

  // Ensure pressure and other vector are same length for interpolation
  if (pressureValues.size() != valuesToInterpolate.size())
  {
    std::cout << "Error! Pressure vector is not same size ("
              << pressureValues.size() << ") as vector to interpolate ("
              << valuesToInterpolate.size() << ") - can't use to interpolate"
              << std::endl;
    return false;
  }

  // Ensure we have no missing values in the pressure dataset
  for (float pressure : pressureValues)
  {
    if (pressure == -9999.f)
    {
      std::cout << "Error! Pressure vector contains " << missingValue
                << " values - can't use to interpolate" << std::endl;
      return false;
    }
  }

  // Write out initial values
  std::cout << "Interpolating " << valuesToInterpolate.size()
            << " values; initial:" << std::endl
            << "  ";
  for (float f : valuesToInterpolate)
  {
    std::cout << f << " ";
  }
  std::cout << std::endl;

  // Loop through vector first to find first/last non-missing indices
  size_t firstIndex = valuesToInterpolate.size(), lastIndex = 0;
  bool foundFirst = false;
  for (size_t i = 0; i < valuesToInterpolate.size(); ++i)
  {
    if (valuesToInterpolate[i] != missingValue)
    {
      if (!foundFirst)
      {
        firstIndex = i;
        foundFirst = true;
      }
      lastIndex = i;
    }
  }
  // Fill in values before first and after last indices
  std::cout << "  Found first (" << firstIndex << ") and last (" << lastIndex
            << ") non-missing indices; filling in values before & after..."
            << std::endl;
  for (size_t i = 0; i < firstIndex; ++i)
  {
    valuesToInterpolate[i] = valuesToInterpolate[firstIndex];
  }
  for (size_t i = lastIndex + 1; i < valuesToInterpolate.size(); ++i)
  {
    valuesToInterpolate[i] = valuesToInterpolate[lastIndex];
  }

  // Fill in missing values in central parts of vector
  std::cout << "  Filling in missing data in central part of vector..."
            << std::endl;
  for (size_t i = firstIndex + 1; i < lastIndex; ++i)
  {
    // Search for a missing value
    size_t lastGood = i - 1;
    if (valuesToInterpolate[i] == missingValue)
    {
      // Get the next good value
      while (valuesToInterpolate[i] == missingValue)
      {
        i++;
      }
      size_t nextGood = i;
      // Interpolate between the two good values
      for (size_t j = lastGood + 1; j < nextGood; ++j)
      {
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        float lastGoodValue = valuesToInterpolate[lastGood],
              nextGoodValue = valuesToInterpolate[nextGood];

        if (circular && fabs(lastGoodValue - nextGoodValue) > 180.0)
        {
          std::cout << "    Circular interpolation with distance > 180 "
                       "degrees: performing correction"
                    << std::endl;
          if (lastGoodValue < nextGoodValue)
          {
            lastGoodValue += 360.0;
          }
          else
          {
            nextGoodValue += 360.0;
          }
        }

141
        valuesToInterpolate[j] =
142
143
            lastGoodValue +
            ((nextGoodValue - lastGoodValue) *
144
145
             ((pressureValues[j] - pressureValues[lastGood]) /
              (pressureValues[nextGood] - pressureValues[lastGood])));
146
147
148
149
150

        if (circular)
        {
          valuesToInterpolate[j] = fmod(valuesToInterpolate[j], 360.0);
        }
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
      }
    }
  }

  // Write out final values
  std::cout << "Interpolation complete; final:" << std::endl << "  ";
  for (float f : valuesToInterpolate)
  {
    std::cout << f << " ";
  }
  std::cout << std::endl;

  return true;
}

166
167
int main(int argc, char **argv)
{
168
169
170
171
172
173
174
175
176
177
178
  std::cout << "************************" << std::endl;
  std::cout << "***** radixsnd2arl *****" << std::endl;
  std::cout << "************************" << std::endl;

  // Set up command line options
  CommandLine commandLine(argc, argv);
  commandLine.addOption("i", "Input csv file containing met data", true);
  commandLine.addOption("clat", "Centre latitude of output ARL file (degrees)",
                        true);
  commandLine.addOption("clon", "Centre longitude of output ARL file (degrees)",
                        true);
179
180
  commandLine.addOption("e", "Extent of output ARL file (km) [500]", false);
  commandLine.addOption("r", "Resolution of output ARL file (km) [10]", false);
181
182
  commandLine.addOption("t", "Time of data start (YYYYMMDDHH) [1951111917]",
                        false);
183
184
  commandLine.addOption("n", "Number of one hour timesteps to output [1]",
                        false);
185
186
  commandLine.addOption("g", "Add ground level elevation to height values",
                        false);
187
188
189
190
191
  commandLine.addOption("o", "Output ARL file", false);

  // Ensure required options present
  std::vector<std::string> commandErrors;
  if (!commandLine.validate(commandErrors))
192
  {
193
194
195
196
197
198
199
200
    std::cout << "Error in arguments..." << std::endl;
    for (std::string error : commandErrors)
    {
      std::cout << "\t" << error << std::endl;
    }
    std::cout << std::endl;
    commandLine.printParsedLine(std::cout);

201
202
    return -1;
  }
203
204
205
206
207

  // Get command line options
  std::string inputCsvPath = commandLine.get<std::string>("i");
  std::string outputArlPath =
      commandLine.get<std::string>("o", inputCsvPath + ".bin");
208
209
  float extent          = commandLine.get<float>("e", 500.0);
  float resolution      = commandLine.get<float>("r", 10.0);
210
211
212
  float centreLat       = commandLine.get<float>("clat");
  float centreLon       = commandLine.get<float>("clon");
  int numberTimesteps   = commandLine.get<int>("n", 1);
213
  float groundElevation = commandLine.get<float>("g", 0.f);
214
  std::string startTime = commandLine.get<std::string>("t", "1951111917");
215
216
217
218
219
220
221
222
223
224
225
226
  // Get the grid size
  int numberGridCells = (int)(extent / resolution);
  if (!numberGridCells % 2 == 1)
  {
    numberGridCells++;
  }
  // Parse the start time
  int year  = from_string(startTime.substr(0, 4), 1951);
  int month = from_string(startTime.substr(4, 2), 11);
  int day   = from_string(startTime.substr(6, 2), 19);
  int hour  = from_string(startTime.substr(8, 2), 17);

227
228
229
230
231
232
  struct tm metTime = {0, 0, 0};
  metTime.tm_year   = year - 1900;
  metTime.tm_mon    = month - 1;
  metTime.tm_mday   = day;
  metTime.tm_hour   = hour;

233
  std::cout << "Creating ARL-formatted met file with parameters:" << std::endl;
234
  std::cout << "  " << extent << " by " << extent << " km grid centred on ("
235
236
237
238
            << centreLat << "," << centreLon << ") with resolution "
            << resolution << " (" << numberGridCells
            << " cells in each direction)" << std::endl;
  std::cout << "  " << numberTimesteps
239
            << " timesteps (of 1 hour each) starting from " << metTime.tm_year
Purves, Murray's avatar
Purves, Murray committed
240
            << "-" << metTime.tm_mon + 1 << "-" << metTime.tm_mday << " at "
241
            << metTime.tm_hour << "00" << std::endl
242
243
244
245
246
247
            << std::endl;

  // If we have correct options, parse input file
  std::cout << "Reading input csv file: " << inputCsvPath << std::endl;

  // Header strings to denote fields
248
  std::string pressureString = "pres", tempString = "temp", relHumString = "rh",
249
250
              dewPtString = "tdew", wDirString = "wdir", wSpdString = "wspd",
              heightString = "zhgt";
251
252
253
  int pressureIndex = -1, tempIndex = -1, relHumIndex = -1, dewPtIndex = -1,
      wDirIndex = -1, wSpdIndex = -1, heightIndex = -1;
  bool usingRelHum = false, usingDewPt = false;
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

  // Open and read the csv
  CSVFile inputCsv(inputCsvPath);
  std::vector<std::vector<std::string>> inputData;
  bool inputReadSuccess = inputCsv.data(inputData);
  if (!inputReadSuccess)
  {
    std::cout << "Failed to read input csv!" << std::endl;
    std::cout
        << "Please ensure the file exists and has the appropriate permissions."
        << std::endl;
    return -2;
  }
  // Ensure there is data in here
  if (inputData.size() < 5)
  {
    std::cout << "Not enough data in input csv!" << std::endl;
    std::cout
        << "There are only " << inputData.size()
        << " lines in this file - at least 5 are required (4 headers + data)"
        << std::endl;
    return -3;
  }

  // Work out which fields are which data points - should be 2nd line (1)
  std::cout << "Finding data fields..." << std::endl;
  for (int entry = 0; entry < inputData[1].size(); ++entry)
  {
    if (inputData[1][entry] == pressureString)
    {
      std::cout << "  Found pressure at index " << entry << std::endl;
      pressureIndex = entry;
    }
    else if (inputData[1][entry] == tempString)
    {
      std::cout << "  Found temperature at index " << entry << std::endl;
      tempIndex = entry;
    }
    else if (inputData[1][entry] == relHumString)
    {
      std::cout << "  Found relative humidity at index " << entry << std::endl;
      relHumIndex = entry;
296
297
298
299
300
301
302
      usingRelHum = true;
    }
    else if (inputData[1][entry] == dewPtString)
    {
      std::cout << "  Found dew point at index " << entry << std::endl;
      dewPtIndex = entry;
      usingDewPt = true;
303
304
305
306
307
308
309
310
311
312
313
    }
    else if (inputData[1][entry] == wDirString)
    {
      std::cout << "  Found wind direction at index " << entry << std::endl;
      wDirIndex = entry;
    }
    else if (inputData[1][entry] == wSpdString)
    {
      std::cout << "  Found wind speed at index " << entry << std::endl;
      wSpdIndex = entry;
    }
314
315
316
317
318
    else if (inputData[1][entry] == heightString)
    {
      std::cout << "  Found height at index " << entry << std::endl;
      heightIndex = entry;
    }
319
320
  }
  // If we are missing one, we can't continue
321
322
323
  if ((pressureIndex == -1) || (tempIndex == -1) ||
      (relHumIndex == -1 && dewPtIndex == -1) || (wDirIndex == -1) ||
      (wSpdIndex == -1))
324
  {
Purves, Murray's avatar
Purves, Murray committed
325
    std::cout << "Missing data fields in input!" << std::endl;
326
327
328
329
330
331
332
333
334
335
    if (pressureIndex == -1)
    {
      std::cout << "  Missing pressure field (denoted by " << pressureString
                << ")";
    }
    if (tempIndex == -1)
    {
      std::cout << "  Missing temperature field (denoted by " << tempString
                << ")";
    }
336
    if (relHumIndex == -1 && dewPtIndex == -1)
337
    {
338
339
340
      std::cout << "  Missing both relative humidity field (denoted by "
                << relHumString << ") and dew point field (denoted by "
                << dewPtString << ") - need at least one of these";
341
342
343
344
345
346
347
348
349
350
351
    }
    if (wDirIndex == -1)
    {
      std::cout << "  Missing wind direction field (denoted by " << wDirString
                << ")";
    }
    if (wSpdIndex == -1)
    {
      std::cout << "  Missing wind speed field (denoted by " << wSpdString
                << ")";
    }
352
353
354
355
    if (heightIndex == -1)
    {
      std::cout << "  Missing height field (denoted by " << heightString << ")";
    }
356
357
358
359
    std::cout << "Please ensure these fields are present and rerun.";
    return -4;
  }

360
361
  // Ensure we aren't using both relative humidity and dew point (duplicate
  // data) Prefer use of relative humidity
362
363
364
365
366
  if (usingRelHum)
  {
    usingDewPt = false;
  }

367
  // Read the data
368
369
  std::vector<float> inputPressures, inputTemps, inputRelHums, inputDewPts,
      inputWDirs, inputWSpds, inputHeights;
370
371
372
373
374
375
376
377
378
379
380
  std::cout << "Data fields found - reading data..." << std::endl;
  float missingValue = -9999.f;
  for (int row = 4; row < inputData.size(); ++row)
  {
    if (inputData[row].size() < inputData[1].size())
    {
      std::cout << "  Warning: this row (" << row + 1
                << ") has less entries than the field names row" << std::endl;
      ;
    }

381
    bool foundPressure = false, foundTemp = false, foundRelHum = false,
382
383
         foundDewPt = false, foundWDir = false, foundWSpd = false,
         foundHeight = false;
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    for (int entry = 0; entry < inputData[row].size(); ++entry)
    {
      float thisValue = from_string(inputData[row][entry], missingValue);

      if (entry == pressureIndex)
      {
        foundPressure = true;
        inputPressures.push_back(thisValue);
      }
      else if (entry == tempIndex)
      {
        foundTemp = true;
        inputTemps.push_back(thisValue);
      }
398
      else if (usingRelHum && entry == relHumIndex)
399
400
401
402
      {
        foundRelHum = true;
        inputRelHums.push_back(thisValue);
      }
403
404
405
406
407
      else if (usingDewPt && entry == dewPtIndex)
      {
        foundDewPt = true;
        inputDewPts.push_back(thisValue);
      }
408
409
410
411
412
413
414
415
416
417
      else if (entry == wSpdIndex)
      {
        foundWSpd = true;
        inputWSpds.push_back(thisValue);
      }
      else if (entry == wDirIndex)
      {
        foundWDir = true;
        inputWDirs.push_back(thisValue);
      }
418
419
420
421
422
      else if (entry == heightIndex)
      {
        foundHeight = true;
        inputHeights.push_back(thisValue);
      }
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    }
    // Add missing data if any of the above weren't found
    if (!foundPressure)
    {
      std::cout << "  Warning: couldn't find pressure in row " << row
                << std::endl;
      inputPressures.push_back(missingValue);
    }
    if (!foundTemp)
    {
      std::cout << "  Warning: couldn't find temperature in row " << row
                << std::endl;
      inputTemps.push_back(missingValue);
    }
437
    if (usingRelHum && !foundRelHum)
438
439
440
441
442
    {
      std::cout << "  Warning: couldn't find relative humidity in row " << row
                << std::endl;
      inputRelHums.push_back(missingValue);
    }
443
444
445
446
447
448
    if (usingDewPt && !foundDewPt)
    {
      std::cout << "  Warning: couldn't find dew point in row " << row
                << std::endl;
      inputDewPts.push_back(missingValue);
    }
449
450
451
452
453
454
455
456
457
458
459
460
    if (!foundWSpd)
    {
      std::cout << "  Warning: couldn't find wind speed in row " << row
                << std::endl;
      inputWSpds.push_back(missingValue);
    }
    if (!foundWDir)
    {
      std::cout << "  Warning: couldn't find wind direction in row " << row
                << std::endl;
      inputWDirs.push_back(missingValue);
    }
461
462
463
464
465
466
    if (!foundHeight)
    {
      std::cout << "  Warning: couldn't find height in row " << row
                << std::endl;
      inputHeights.push_back(missingValue);
    }
467
468
469
470
  }
  std::cout << "Data read complete: " << inputPressures.size()
            << " entries read." << std::endl;

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
  // Check if the grid is of appropriate size - with too small grid/too many
  // vertical levels, the index header can become oversized leading to errors
  int indexBase = 108, levelBase = 48;
  int indexSize  = indexBase + (inputPressures.size() * levelBase);
  int recordSize = numberGridCells * numberGridCells;
  if (indexSize > recordSize)
  {
    // The index header will be too big - instruct user to either reduce number
    // of vertical levels or increase number of grid cells
    std::cout << "Error: index header will be too large!" << std::endl
              << "  The size of the index header in the ARL-formatted output ("
              << indexBase << " + number of vertical levels * " << levelBase
              << " = " << indexSize
              << ") will be larger than the size of each record (number of "
                 "grid cells ^ 2 = "
              << recordSize << ")." << std::endl;
    std::cout << "  Please either increase the number of horizontal grid cells "
                 "(increase extent/resolution) or reduce the number of input "
                 "vertical levels."
              << std::endl;
    throw std::exception();
  }

494
495
496
497
  // Interpolate the data to remove missing values
  std::cout << "Interpolating values to remove missing data..." << std::endl;
  std::cout << "Temperature:" << std::endl;
  interpolateValues(inputPressures, inputTemps);
498
499
500
501
502
503
504
505
506
507
  if (usingRelHum)
  {
    std::cout << "Relative humidity:" << std::endl;
    interpolateValues(inputPressures, inputRelHums);
  }
  if (usingDewPt)
  {
    std::cout << "Dew point:" << std::endl;
    interpolateValues(inputPressures, inputDewPts);
  }
508
509
510
  std::cout << "Wind speed:" << std::endl;
  interpolateValues(inputPressures, inputWSpds);
  std::cout << "Wind direction:" << std::endl;
511
  interpolateValues(inputPressures, inputWDirs, true);
512
513
  std::cout << "Height:" << std::endl;
  interpolateValues(inputPressures, inputHeights);
514
515
  std::cout << "Interpolation complete." << std::endl;

516
517
518
519
520
521
522
523
524
  // Convert the data into ARL format
  std::cout << "Converting data to ARL format..." << std::endl;
  ARLDataStream outputStream(outputArlPath, std::ios::out);
  for (int timestep = 0; timestep < numberTimesteps; ++timestep)
  {
    // Write index header section
    std::cout << "    Writing index headers for timestep " << timestep << "..."
              << std::endl;
    ARLRecordHeader thisRecordHeader;
525
526
527
528
    thisRecordHeader.year  = metTime.tm_year;
    thisRecordHeader.month = metTime.tm_mon + 1;
    thisRecordHeader.day   = metTime.tm_mday;
    thisRecordHeader.hour  = metTime.tm_hour;
529
530
531
532
533
534
535
536
    thisRecordHeader.ic    = 0;
    thisRecordHeader.il    = 0;
    thisRecordHeader.cgrid = "99";
    thisRecordHeader.kvar  = "INDX";
    thisRecordHeader.nexp  = 0;
    thisRecordHeader.prec  = 0.f;
    thisRecordHeader.var1  = 0.f;
    ARLIndexHeader thisIndexHeader;
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    thisIndexHeader.model_id = "NFDB";
    thisIndexHeader.icx      = 0;
    thisIndexHeader.mn       = 0;
    thisIndexHeader.pole_lat = centreLat;
    thisIndexHeader.pole_lon = centreLon;
    thisIndexHeader.ref_lat  = centreLat;
    thisIndexHeader.ref_lon  = centreLon;
    thisIndexHeader.size     = resolution;
    thisIndexHeader.orient   = 0.f;
    thisIndexHeader.tang_lat = centreLat;
    thisIndexHeader.sync_xp  = (numberGridCells + 1) / 2;
    thisIndexHeader.sync_yp  = (numberGridCells + 1) / 2;
    thisIndexHeader.sync_lat = centreLat;
    thisIndexHeader.sync_lon = centreLon;
    thisIndexHeader.dummy    = 0.f;
    thisIndexHeader.nx       = numberGridCells;
    thisIndexHeader.ny       = numberGridCells;
    thisIndexHeader.nz       = inputPressures.size();
    thisIndexHeader.z_flag   = 2;
    thisIndexHeader.lenh     = numberGridCells * numberGridCells;
    thisIndexHeader.levels   = inputPressures;
    thisIndexHeader.num_vars_at_levels =
        std::vector<int>(inputPressures.size(), 5);
560
561
562
563
    std::vector<std::string> surfaceVarNames = {"PRSS", "TEMP", "RELH", "UWND",
                                                "VWND"};
    std::vector<std::string> varNames        = {"HGTS", "TEMP", "RELH", "UWND",
                                         "VWND"};
564

565
    thisIndexHeader.var_names.push_back(surfaceVarNames);
566

567
568
    for (size_t level = 1; level < inputPressures.size(); ++level)
    {
569
      thisIndexHeader.var_names.push_back(varNames);
570
571
572
573
    }
    std::vector<int> checkSums = std::vector<int>(5, 0);
    for (size_t level = 0; level < inputPressures.size(); ++level)
    {
574
      thisIndexHeader.check_sums.push_back(checkSums);
575
    }
576

577
578
579
580
581
582
583
584
585
586
587
    // Write the headers
    outputStream.write_record_header(thisRecordHeader);
    outputStream.write_index_header(thisRecordHeader, thisIndexHeader);
    std::cout << "    Headers written" << std::endl;

    // Write meteorological variables for each level
    for (int level = 0; level < inputPressures.size(); ++level)
    {
      std::cout << "    Writing meteorological data for timestep " << timestep
                << ", level " << level << "..." << std::endl;

588
589
590
      thisRecordHeader.il = level;

      // Write pressure/height variables
591
      {
592
593
594
        if (level == 0)
        {
          thisRecordHeader.kvar = "PRSS";
595
596
597
          // Add ground elevation to height (default is 0)
          float thisHeight      = inputHeights[level] + groundElevation;
          thisRecordHeader.var1 = thisHeight;
598
          std::vector<std::vector<float>> thisData(
599
              numberGridCells, std::vector<float>(numberGridCells, thisHeight));
600
601
602
603
604
          std::cout << "      pressure...";
          outputStream.write_record_header(thisRecordHeader);
          outputStream.write_record(thisRecordHeader, thisIndexHeader,
                                    thisData);
          std::cout << "written" << std::endl;
605
606
607
        }
        else
        {
608
609
610
611
612
613
614
615
616
617
          thisRecordHeader.kvar = "HGTS";
          thisRecordHeader.var1 = inputHeights[level];
          std::vector<std::vector<float>> thisData(
              numberGridCells,
              std::vector<float>(numberGridCells, inputHeights[level]));
          std::cout << "      height...";
          outputStream.write_record_header(thisRecordHeader);
          outputStream.write_record(thisRecordHeader, thisIndexHeader,
                                    thisData);
          std::cout << "written" << std::endl;
618
        }
619
620
621
      }

      // Write temperature levels
622
623
      // First convert temperature from Celsius to Kelvin
      inputTemps[level] = inputTemps[level] - ABS_ZERO_CELSIUS;
624
625
626
627
628
629
630
631
632
633
634
635
      {
        thisRecordHeader.kvar = "TEMP";
        thisRecordHeader.var1 = inputTemps[level];
        std::vector<std::vector<float>> thisData(
            numberGridCells,
            std::vector<float>(numberGridCells, inputTemps[level]));
        std::cout << "      temperature...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }

636
      // Write relative humidity levels
637
      {
638
639
640
641
642
        double thisVar = 0.0;
        if (usingRelHum)
        {
          thisVar = inputRelHums[level];
        }
643
644
        else if (usingDewPt)
        {
645
646
          thisVar =
              dewPointToRelativeHumidity(inputDewPts[level], inputTemps[level]);
647
        }
648

649
650
        thisRecordHeader.kvar = "RELH";
        thisRecordHeader.var1 = thisVar;
651
        std::vector<std::vector<float>> thisData(
652
            numberGridCells, std::vector<float>(numberGridCells, thisVar));
653
654
655
        std::cout << "      relative humidity...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
656
657
658
659
660
661
        std::cout << "written" << std::endl;
      }

      // Write wind data
      // Need to calculate wind u and v components from direction/speed
      float thisWindU =
Purves, Murray's avatar
Purves, Murray committed
662
663
          (inputWSpds[level] * 0.5144444444) *
          sin(toRadians(fmod((inputWDirs[level] + 180.0), 360.0)));
664
      float thisWindV =
Purves, Murray's avatar
Purves, Murray committed
665
666
          (inputWSpds[level] * 0.5144444444) *
          cos(toRadians(fmod((inputWDirs[level] + 180.0), 360.0)));
667
      std::cout << "      Initial wspd = " << inputWSpds[level]
668
669
                << " knots, wdir: " << inputWDirs[level] << " degrees"
                << std::endl;
670
      std::cout << "      Converted wind components: u = " << thisWindU
671
                << " m/s, v = " << thisWindV << "m/s" << std::endl;
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
      {
        thisRecordHeader.kvar = "UWND";
        thisRecordHeader.var1 = thisWindU;
        std::vector<std::vector<float>> thisData(
            numberGridCells, std::vector<float>(numberGridCells, thisWindU));
        std::cout << "      wind (u component)...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }
      {
        thisRecordHeader.kvar = "VWND";
        thisRecordHeader.var1 = thisWindV;
        std::vector<std::vector<float>> thisData(
            numberGridCells, std::vector<float>(numberGridCells, thisWindV));
        std::cout << "      wind (v component)...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }
    }
    std::cout << " Written timestep " << timestep << std::endl;
694
695

    // Add an hour to time for next timestep
696
697
698
#ifdef _WIN32
    metTime.tm_year = metTime.tm_year + 400;
#endif  // _WIN32
699
    addHour(&metTime, 1);
700
701
702
#ifdef _WIN32
    metTime.tm_year = metTime.tm_year - 400;
#endif
703
704
705
706
  }

  std::cout << "File write complete!" << std::endl;

707
708
  return 0;
}