radixsnd2arl.cc 23.7 KB
Newer Older
1
2
3
4
5
/*
 * Example utility to convert a vertical profile of meteorological
 * data to the ARL format
 */

6
#include <algorithm>
7
#include <ctime>
8
9
10
11
#include <iostream>
#include <string>
#include <vector>

12
13
#include "radixcommand/commandline.hh"
#include "radixcore/stringfunctions.hh"
14
#include "radixmath/constants.hh"
15
#include "radixmath/util.hh"
16

17
#include "radixio/arldatastream.hh"
18
19
20
#include "radixio/csvfile.hh"

using namespace radix;
21

22
23
24
25
26
27
28
29
30
void addHour(struct tm *time, int hours)
{
  int seconds = hours * 60 * 60;

  time_t date_seconds = mktime(time) + seconds;

  *time = *localtime(&date_seconds);
}

31
32
33
34
35
36
37
38
39
40
/**
 * @brief interpolateValues Interpolate/extrapolate missing values from a data
 * vector Basic capability for now - linear interpolation, extrapolation assumes
 * constant from ends.
 * @param pressureValues Pressure vector for meteorology - requires all values
 * to be present. Used for determining 'interpolation bounds' (there's
 * definitely a better phrase for this)
 * @param valuesToInterpolate
 */
bool interpolateValues(const std::vector<float> &pressureValues,
41
42
                       std::vector<float> &valuesToInterpolate,
                       bool circular = false)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
{
  float missingValue = -9999.f;

  // Ensure pressure and other vector are same length for interpolation
  if (pressureValues.size() != valuesToInterpolate.size())
  {
    std::cout << "Error! Pressure vector is not same size ("
              << pressureValues.size() << ") as vector to interpolate ("
              << valuesToInterpolate.size() << ") - can't use to interpolate"
              << std::endl;
    return false;
  }

  // Ensure we have no missing values in the pressure dataset
  for (float pressure : pressureValues)
  {
    if (pressure == -9999.f)
    {
      std::cout << "Error! Pressure vector contains " << missingValue
                << " values - can't use to interpolate" << std::endl;
      return false;
    }
  }

  // Write out initial values
  std::cout << "Interpolating " << valuesToInterpolate.size()
            << " values; initial:" << std::endl
            << "  ";
  for (float f : valuesToInterpolate)
  {
    std::cout << f << " ";
  }
  std::cout << std::endl;

  // Loop through vector first to find first/last non-missing indices
  size_t firstIndex = valuesToInterpolate.size(), lastIndex = 0;
  bool foundFirst = false;
  for (size_t i = 0; i < valuesToInterpolate.size(); ++i)
  {
    if (valuesToInterpolate[i] != missingValue)
    {
      if (!foundFirst)
      {
        firstIndex = i;
        foundFirst = true;
      }
      lastIndex = i;
    }
  }
  // Fill in values before first and after last indices
  std::cout << "  Found first (" << firstIndex << ") and last (" << lastIndex
            << ") non-missing indices; filling in values before & after..."
            << std::endl;
  for (size_t i = 0; i < firstIndex; ++i)
  {
    valuesToInterpolate[i] = valuesToInterpolate[firstIndex];
  }
  for (size_t i = lastIndex + 1; i < valuesToInterpolate.size(); ++i)
  {
    valuesToInterpolate[i] = valuesToInterpolate[lastIndex];
  }

  // Fill in missing values in central parts of vector
  std::cout << "  Filling in missing data in central part of vector..."
            << std::endl;
  for (size_t i = firstIndex + 1; i < lastIndex; ++i)
  {
    // Search for a missing value
    size_t lastGood = i - 1;
    if (valuesToInterpolate[i] == missingValue)
    {
      // Get the next good value
      while (valuesToInterpolate[i] == missingValue)
      {
        i++;
      }
      size_t nextGood = i;
      // Interpolate between the two good values
      for (size_t j = lastGood + 1; j < nextGood; ++j)
      {
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        float lastGoodValue = valuesToInterpolate[lastGood],
              nextGoodValue = valuesToInterpolate[nextGood];

        if (circular && fabs(lastGoodValue - nextGoodValue) > 180.0)
        {
          std::cout << "    Circular interpolation with distance > 180 "
                       "degrees: performing correction"
                    << std::endl;
          if (lastGoodValue < nextGoodValue)
          {
            lastGoodValue += 360.0;
          }
          else
          {
            nextGoodValue += 360.0;
          }
        }

141
        valuesToInterpolate[j] =
142
143
            lastGoodValue +
            ((nextGoodValue - lastGoodValue) *
144
145
             ((pressureValues[j] - pressureValues[lastGood]) /
              (pressureValues[nextGood] - pressureValues[lastGood])));
146
147
148
149
150

        if (circular)
        {
          valuesToInterpolate[j] = fmod(valuesToInterpolate[j], 360.0);
        }
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
      }
    }
  }

  // Write out final values
  std::cout << "Interpolation complete; final:" << std::endl << "  ";
  for (float f : valuesToInterpolate)
  {
    std::cout << f << " ";
  }
  std::cout << std::endl;

  return true;
}

166
167
int main(int argc, char **argv)
{
168
169
170
171
172
173
174
175
176
177
178
  std::cout << "************************" << std::endl;
  std::cout << "***** radixsnd2arl *****" << std::endl;
  std::cout << "************************" << std::endl;

  // Set up command line options
  CommandLine commandLine(argc, argv);
  commandLine.addOption("i", "Input csv file containing met data", true);
  commandLine.addOption("clat", "Centre latitude of output ARL file (degrees)",
                        true);
  commandLine.addOption("clon", "Centre longitude of output ARL file (degrees)",
                        true);
179
180
  commandLine.addOption("e", "Extent of output ARL file (km) [500]", false);
  commandLine.addOption("r", "Resolution of output ARL file (km) [10]", false);
181
182
  commandLine.addOption("t", "Time of data start (YYYYMMDDHH) [1951111917]",
                        false);
183
184
  commandLine.addOption("n", "Number of one hour timesteps to output [1]",
                        false);
185
186
  commandLine.addOption("g", "Add ground level elevation to height values",
                        false);
187
188
189
190
191
  commandLine.addOption("o", "Output ARL file", false);

  // Ensure required options present
  std::vector<std::string> commandErrors;
  if (!commandLine.validate(commandErrors))
192
  {
193
194
195
196
197
198
199
200
    std::cout << "Error in arguments..." << std::endl;
    for (std::string error : commandErrors)
    {
      std::cout << "\t" << error << std::endl;
    }
    std::cout << std::endl;
    commandLine.printParsedLine(std::cout);

201
202
    return -1;
  }
203
204
205
206
207

  // Get command line options
  std::string inputCsvPath = commandLine.get<std::string>("i");
  std::string outputArlPath =
      commandLine.get<std::string>("o", inputCsvPath + ".bin");
208
209
  float extent          = commandLine.get<float>("e", 500.0);
  float resolution      = commandLine.get<float>("r", 10.0);
210
211
212
  float centreLat       = commandLine.get<float>("clat");
  float centreLon       = commandLine.get<float>("clon");
  int numberTimesteps   = commandLine.get<int>("n", 1);
213
  float groundElevation = commandLine.get<float>("g", 0.f);
214
  std::string startTime = commandLine.get<std::string>("t", "1951111917");
215
216
217
218
219
220
221
222
223
224
225
226
  // Get the grid size
  int numberGridCells = (int)(extent / resolution);
  if (!numberGridCells % 2 == 1)
  {
    numberGridCells++;
  }
  // Parse the start time
  int year  = from_string(startTime.substr(0, 4), 1951);
  int month = from_string(startTime.substr(4, 2), 11);
  int day   = from_string(startTime.substr(6, 2), 19);
  int hour  = from_string(startTime.substr(8, 2), 17);

227
228
229
230
231
232
  struct tm metTime = {0, 0, 0};
  metTime.tm_year   = year - 1900;
  metTime.tm_mon    = month - 1;
  metTime.tm_mday   = day;
  metTime.tm_hour   = hour;

233
  std::cout << "Creating ARL-formatted met file with parameters:" << std::endl;
234
  std::cout << "  " << extent << " by " << extent << " km grid centred on ("
235
236
237
238
            << centreLat << "," << centreLon << ") with resolution "
            << resolution << " (" << numberGridCells
            << " cells in each direction)" << std::endl;
  std::cout << "  " << numberTimesteps
239
            << " timesteps (of 1 hour each) starting from " << metTime.tm_year
Purves, Murray's avatar
Purves, Murray committed
240
            << "-" << metTime.tm_mon + 1 << "-" << metTime.tm_mday << " at "
241
            << metTime.tm_hour << "00" << std::endl
242
243
244
245
246
247
            << std::endl;

  // If we have correct options, parse input file
  std::cout << "Reading input csv file: " << inputCsvPath << std::endl;

  // Header strings to denote fields
248
  std::string pressureString = "pres", tempString = "temp", relHumString = "rh",
249
250
              dewPtString = "tdew", wDirString = "wdir", wSpdString = "wspd",
              heightString = "zhgt";
251
252
253
  int pressureIndex = -1, tempIndex = -1, relHumIndex = -1, dewPtIndex = -1,
      wDirIndex = -1, wSpdIndex = -1, heightIndex = -1;
  bool usingRelHum = false, usingDewPt = false;
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

  // Open and read the csv
  CSVFile inputCsv(inputCsvPath);
  std::vector<std::vector<std::string>> inputData;
  bool inputReadSuccess = inputCsv.data(inputData);
  if (!inputReadSuccess)
  {
    std::cout << "Failed to read input csv!" << std::endl;
    std::cout
        << "Please ensure the file exists and has the appropriate permissions."
        << std::endl;
    return -2;
  }
  // Ensure there is data in here
  if (inputData.size() < 5)
  {
    std::cout << "Not enough data in input csv!" << std::endl;
    std::cout
        << "There are only " << inputData.size()
        << " lines in this file - at least 5 are required (4 headers + data)"
        << std::endl;
    return -3;
  }

  // Work out which fields are which data points - should be 2nd line (1)
  std::cout << "Finding data fields..." << std::endl;
  for (int entry = 0; entry < inputData[1].size(); ++entry)
  {
    if (inputData[1][entry] == pressureString)
    {
      std::cout << "  Found pressure at index " << entry << std::endl;
      pressureIndex = entry;
    }
    else if (inputData[1][entry] == tempString)
    {
      std::cout << "  Found temperature at index " << entry << std::endl;
      tempIndex = entry;
    }
    else if (inputData[1][entry] == relHumString)
    {
      std::cout << "  Found relative humidity at index " << entry << std::endl;
      relHumIndex = entry;
296
297
298
299
300
301
302
      usingRelHum = true;
    }
    else if (inputData[1][entry] == dewPtString)
    {
      std::cout << "  Found dew point at index " << entry << std::endl;
      dewPtIndex = entry;
      usingDewPt = true;
303
304
305
306
307
308
309
310
311
312
313
    }
    else if (inputData[1][entry] == wDirString)
    {
      std::cout << "  Found wind direction at index " << entry << std::endl;
      wDirIndex = entry;
    }
    else if (inputData[1][entry] == wSpdString)
    {
      std::cout << "  Found wind speed at index " << entry << std::endl;
      wSpdIndex = entry;
    }
314
315
316
317
318
    else if (inputData[1][entry] == heightString)
    {
      std::cout << "  Found height at index " << entry << std::endl;
      heightIndex = entry;
    }
319
320
  }
  // If we are missing one, we can't continue
321
322
323
  if ((pressureIndex == -1) || (tempIndex == -1) ||
      (relHumIndex == -1 && dewPtIndex == -1) || (wDirIndex == -1) ||
      (wSpdIndex == -1))
324
  {
Purves, Murray's avatar
Purves, Murray committed
325
    std::cout << "Missing data fields in input!" << std::endl;
326
327
328
329
330
331
332
333
334
335
    if (pressureIndex == -1)
    {
      std::cout << "  Missing pressure field (denoted by " << pressureString
                << ")";
    }
    if (tempIndex == -1)
    {
      std::cout << "  Missing temperature field (denoted by " << tempString
                << ")";
    }
336
    if (relHumIndex == -1 && dewPtIndex == -1)
337
    {
338
339
340
      std::cout << "  Missing both relative humidity field (denoted by "
                << relHumString << ") and dew point field (denoted by "
                << dewPtString << ") - need at least one of these";
341
342
343
344
345
346
347
348
349
350
351
    }
    if (wDirIndex == -1)
    {
      std::cout << "  Missing wind direction field (denoted by " << wDirString
                << ")";
    }
    if (wSpdIndex == -1)
    {
      std::cout << "  Missing wind speed field (denoted by " << wSpdString
                << ")";
    }
352
353
354
355
    if (heightIndex == -1)
    {
      std::cout << "  Missing height field (denoted by " << heightString << ")";
    }
356
357
358
359
360
    std::cout << "Please ensure these fields are present and rerun.";
    return -4;
  }

  // Read the data
361
362
  std::vector<float> inputPressures, inputTemps, inputRelHums, inputDewPts,
      inputWDirs, inputWSpds, inputHeights;
363
364
365
366
367
368
369
370
371
372
373
  std::cout << "Data fields found - reading data..." << std::endl;
  float missingValue = -9999.f;
  for (int row = 4; row < inputData.size(); ++row)
  {
    if (inputData[row].size() < inputData[1].size())
    {
      std::cout << "  Warning: this row (" << row + 1
                << ") has less entries than the field names row" << std::endl;
      ;
    }

374
    bool foundPressure = false, foundTemp = false, foundRelHum = false,
375
376
         foundDewPt = false, foundWDir = false, foundWSpd = false,
         foundHeight = false;
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    for (int entry = 0; entry < inputData[row].size(); ++entry)
    {
      float thisValue = from_string(inputData[row][entry], missingValue);

      if (entry == pressureIndex)
      {
        foundPressure = true;
        inputPressures.push_back(thisValue);
      }
      else if (entry == tempIndex)
      {
        foundTemp = true;
        inputTemps.push_back(thisValue);
      }
391
      else if (usingRelHum && entry == relHumIndex)
392
393
394
395
      {
        foundRelHum = true;
        inputRelHums.push_back(thisValue);
      }
396
397
398
399
400
      else if (usingDewPt && entry == dewPtIndex)
      {
        foundDewPt = true;
        inputDewPts.push_back(thisValue);
      }
401
402
403
404
405
406
407
408
409
410
      else if (entry == wSpdIndex)
      {
        foundWSpd = true;
        inputWSpds.push_back(thisValue);
      }
      else if (entry == wDirIndex)
      {
        foundWDir = true;
        inputWDirs.push_back(thisValue);
      }
411
412
413
414
415
      else if (entry == heightIndex)
      {
        foundHeight = true;
        inputHeights.push_back(thisValue);
      }
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    }
    // Add missing data if any of the above weren't found
    if (!foundPressure)
    {
      std::cout << "  Warning: couldn't find pressure in row " << row
                << std::endl;
      inputPressures.push_back(missingValue);
    }
    if (!foundTemp)
    {
      std::cout << "  Warning: couldn't find temperature in row " << row
                << std::endl;
      inputTemps.push_back(missingValue);
    }
430
    if (usingRelHum && !foundRelHum)
431
432
433
434
435
    {
      std::cout << "  Warning: couldn't find relative humidity in row " << row
                << std::endl;
      inputRelHums.push_back(missingValue);
    }
436
437
438
439
440
441
    if (usingDewPt && !foundDewPt)
    {
      std::cout << "  Warning: couldn't find dew point in row " << row
                << std::endl;
      inputDewPts.push_back(missingValue);
    }
442
443
444
445
446
447
448
449
450
451
452
453
    if (!foundWSpd)
    {
      std::cout << "  Warning: couldn't find wind speed in row " << row
                << std::endl;
      inputWSpds.push_back(missingValue);
    }
    if (!foundWDir)
    {
      std::cout << "  Warning: couldn't find wind direction in row " << row
                << std::endl;
      inputWDirs.push_back(missingValue);
    }
454
455
456
457
458
459
    if (!foundHeight)
    {
      std::cout << "  Warning: couldn't find height in row " << row
                << std::endl;
      inputHeights.push_back(missingValue);
    }
460
461
462
463
  }
  std::cout << "Data read complete: " << inputPressures.size()
            << " entries read." << std::endl;

464
465
466
467
  // Interpolate the data to remove missing values
  std::cout << "Interpolating values to remove missing data..." << std::endl;
  std::cout << "Temperature:" << std::endl;
  interpolateValues(inputPressures, inputTemps);
468
469
470
471
472
473
474
475
476
477
  if (usingRelHum)
  {
    std::cout << "Relative humidity:" << std::endl;
    interpolateValues(inputPressures, inputRelHums);
  }
  if (usingDewPt)
  {
    std::cout << "Dew point:" << std::endl;
    interpolateValues(inputPressures, inputDewPts);
  }
478
479
480
  std::cout << "Wind speed:" << std::endl;
  interpolateValues(inputPressures, inputWSpds);
  std::cout << "Wind direction:" << std::endl;
481
  interpolateValues(inputPressures, inputWDirs, true);
482
483
  std::cout << "Height:" << std::endl;
  interpolateValues(inputPressures, inputHeights);
484
485
  std::cout << "Interpolation complete." << std::endl;

486
487
488
489
490
491
492
493
494
  // Convert the data into ARL format
  std::cout << "Converting data to ARL format..." << std::endl;
  ARLDataStream outputStream(outputArlPath, std::ios::out);
  for (int timestep = 0; timestep < numberTimesteps; ++timestep)
  {
    // Write index header section
    std::cout << "    Writing index headers for timestep " << timestep << "..."
              << std::endl;
    ARLRecordHeader thisRecordHeader;
495
496
497
498
    thisRecordHeader.year  = metTime.tm_year;
    thisRecordHeader.month = metTime.tm_mon + 1;
    thisRecordHeader.day   = metTime.tm_mday;
    thisRecordHeader.hour  = metTime.tm_hour;
499
500
501
502
503
504
505
506
    thisRecordHeader.ic    = 0;
    thisRecordHeader.il    = 0;
    thisRecordHeader.cgrid = "99";
    thisRecordHeader.kvar  = "INDX";
    thisRecordHeader.nexp  = 0;
    thisRecordHeader.prec  = 0.f;
    thisRecordHeader.var1  = 0.f;
    ARLIndexHeader thisIndexHeader;
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    thisIndexHeader.model_id = "NFDB";
    thisIndexHeader.icx      = 0;
    thisIndexHeader.mn       = 0;
    thisIndexHeader.pole_lat = centreLat;
    thisIndexHeader.pole_lon = centreLon;
    thisIndexHeader.ref_lat  = centreLat;
    thisIndexHeader.ref_lon  = centreLon;
    thisIndexHeader.size     = resolution;
    thisIndexHeader.orient   = 0.f;
    thisIndexHeader.tang_lat = centreLat;
    thisIndexHeader.sync_xp  = (numberGridCells + 1) / 2;
    thisIndexHeader.sync_yp  = (numberGridCells + 1) / 2;
    thisIndexHeader.sync_lat = centreLat;
    thisIndexHeader.sync_lon = centreLon;
    thisIndexHeader.dummy    = 0.f;
    thisIndexHeader.nx       = numberGridCells;
    thisIndexHeader.ny       = numberGridCells;
    thisIndexHeader.nz       = inputPressures.size();
    thisIndexHeader.z_flag   = 2;
    thisIndexHeader.lenh     = numberGridCells * numberGridCells;
    thisIndexHeader.levels   = inputPressures;
    thisIndexHeader.num_vars_at_levels =
        std::vector<int>(inputPressures.size(), 5);
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    std::vector<std::string> surfaceVarNames = {"PRSS", "TEMP"};
    if (usingRelHum)
    {
      surfaceVarNames.push_back("RELH");
    }
    if (usingDewPt)
    {
      surfaceVarNames.push_back("TDEW");
    }
    surfaceVarNames.push_back("UWND");
    surfaceVarNames.push_back("VWND");

    std::vector<std::string> varNames = {"HGTS", "TEMP"};
    if (usingRelHum)
    {
      varNames.push_back("RELH");
    }
    if (usingDewPt)
    {
      varNames.push_back("TDEW");
    }
    varNames.push_back("UWND");
    varNames.push_back("VWND");

554
    thisIndexHeader.var_names.push_back(surfaceVarNames);
555
556
    for (size_t level = 1; level < inputPressures.size(); ++level)
    {
557
      thisIndexHeader.var_names.push_back(varNames);
558
559
560
561
    }
    std::vector<int> checkSums = std::vector<int>(5, 0);
    for (size_t level = 0; level < inputPressures.size(); ++level)
    {
562
      thisIndexHeader.check_sums.push_back(checkSums);
563
    }
564

565
566
567
568
569
570
571
572
573
574
575
    // Write the headers
    outputStream.write_record_header(thisRecordHeader);
    outputStream.write_index_header(thisRecordHeader, thisIndexHeader);
    std::cout << "    Headers written" << std::endl;

    // Write meteorological variables for each level
    for (int level = 0; level < inputPressures.size(); ++level)
    {
      std::cout << "    Writing meteorological data for timestep " << timestep
                << ", level " << level << "..." << std::endl;

576
577
578
      thisRecordHeader.il = level;

      // Write pressure/height variables
579
      {
580
581
582
        if (level == 0)
        {
          thisRecordHeader.kvar = "PRSS";
583
584
585
          // Add ground elevation to height (default is 0)
          float thisHeight      = inputHeights[level] + groundElevation;
          thisRecordHeader.var1 = thisHeight;
586
          std::vector<std::vector<float>> thisData(
587
              numberGridCells, std::vector<float>(numberGridCells, thisHeight));
588
589
590
591
592
          std::cout << "      pressure...";
          outputStream.write_record_header(thisRecordHeader);
          outputStream.write_record(thisRecordHeader, thisIndexHeader,
                                    thisData);
          std::cout << "written" << std::endl;
593
594
595
        }
        else
        {
596
597
598
599
600
601
602
603
604
605
          thisRecordHeader.kvar = "HGTS";
          thisRecordHeader.var1 = inputHeights[level];
          std::vector<std::vector<float>> thisData(
              numberGridCells,
              std::vector<float>(numberGridCells, inputHeights[level]));
          std::cout << "      height...";
          outputStream.write_record_header(thisRecordHeader);
          outputStream.write_record(thisRecordHeader, thisIndexHeader,
                                    thisData);
          std::cout << "written" << std::endl;
606
        }
607
608
609
      }

      // Write temperature levels
610
611
      // First convert temperature from Celsius to Kelvin
      inputTemps[level] = inputTemps[level] - ABS_ZERO_CELSIUS;
612
613
614
615
616
617
618
619
620
621
622
623
      {
        thisRecordHeader.kvar = "TEMP";
        thisRecordHeader.var1 = inputTemps[level];
        std::vector<std::vector<float>> thisData(
            numberGridCells,
            std::vector<float>(numberGridCells, inputTemps[level]));
        std::cout << "      temperature...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }

624
625
      // Write relative humidity levels (if required)
      if (usingRelHum)
626
627
628
629
630
631
632
633
634
      {
        thisRecordHeader.kvar = "RELH";
        thisRecordHeader.var1 = inputRelHums[level];
        std::vector<std::vector<float>> thisData(
            numberGridCells,
            std::vector<float>(numberGridCells, inputRelHums[level]));
        std::cout << "      relative humidity...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        std::cout << "written" << std::endl;
      }

	  // Write dew point levels (if required)
      if (usingDewPt)
      {
        thisRecordHeader.kvar = "TDEW";
        thisRecordHeader.var1 = inputDewPts[level];
        std::vector<std::vector<float>> thisData(
            numberGridCells,
            std::vector<float>(numberGridCells, inputDewPts[level]));
        std::cout << "      relative humidity...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
649
650
651
652
653
654
        std::cout << "written" << std::endl;
      }

      // Write wind data
      // Need to calculate wind u and v components from direction/speed
      float thisWindU =
Purves, Murray's avatar
Purves, Murray committed
655
656
          (inputWSpds[level] * 0.5144444444) *
          sin(toRadians(fmod((inputWDirs[level] + 180.0), 360.0)));
657
      float thisWindV =
Purves, Murray's avatar
Purves, Murray committed
658
659
          (inputWSpds[level] * 0.5144444444) *
          cos(toRadians(fmod((inputWDirs[level] + 180.0), 360.0)));
660
      std::cout << "      Initial wspd = " << inputWSpds[level]
661
662
                << " knots, wdir: " << inputWDirs[level] << " degrees"
                << std::endl;
663
      std::cout << "      Converted wind components: u = " << thisWindU
664
                << " m/s, v = " << thisWindV << "m/s" << std::endl;
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
      {
        thisRecordHeader.kvar = "UWND";
        thisRecordHeader.var1 = thisWindU;
        std::vector<std::vector<float>> thisData(
            numberGridCells, std::vector<float>(numberGridCells, thisWindU));
        std::cout << "      wind (u component)...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }
      {
        thisRecordHeader.kvar = "VWND";
        thisRecordHeader.var1 = thisWindV;
        std::vector<std::vector<float>> thisData(
            numberGridCells, std::vector<float>(numberGridCells, thisWindV));
        std::cout << "      wind (v component)...";
        outputStream.write_record_header(thisRecordHeader);
        outputStream.write_record(thisRecordHeader, thisIndexHeader, thisData);
        std::cout << "written" << std::endl;
      }
    }
    std::cout << " Written timestep " << timestep << std::endl;
687
688

    // Add an hour to time for next timestep
689
690
691
#ifdef _WIN32
    metTime.tm_year = metTime.tm_year + 400;
#endif  // _WIN32
692
    addHour(&metTime, 1);
693
694
695
#ifdef _WIN32
    metTime.tm_year = metTime.tm_year - 400;
#endif
696
697
698
699
  }

  std::cout << "File write complete!" << std::endl;

700
701
  return 0;
}