Commit aa9d21a0 authored by Batson Iii, John's avatar Batson Iii, John
Browse files

Conversion of Chapter 2.

parent 75bc664d
No preview for this file type
.. _CSAS5App: .. _CSAS5App:
CSAS5 Appendix A: Additional Example Applications of CSAS5 Additional Example Applications of CSAS5
========================================================== ========================================
Several example uses of CSAS5 are shown in this section for a variety of Several example uses of CSAS5 are shown in this section for a variety of
applications. Note that many of these examples have been provided since applications. Note that many of these examples have been provided since
......
.. _CSAS6App:
Additional Example Applications of CSAS6
========================================
Several example uses of CSAS6 are shown in this section for a variety of applications.
.. _run-KENO-CSAS6:
Run KENO-VI using CSAS6
-----------------------
CSAS6 creates a microscopic working format library and a mixing table
that is passed to KENO-VI. The library is created using
CENTRM/PMC/WORKER to process the cross section data in the resolved
resonance regions of the isotopes contained in the library. CSAS6 then
executes KENO-VI, which calculates *k*\ :sub:`eff` for the problem. The
following examples are for using the multigroup mode of calculation for
KENO-VI. Using the continuous energy mode can be accomplished by simply
changing the library name to one of the continuous energy libraries.
EXAMPLE 1. CSAS6 – Determine the *k*\ :sub:`eff` of a system.
Consider a problem consisting of eight uranium metal cylinders that are
93.2% wt enriched, having a density of 18.76 g/cm\ :sup:`3`. The
cylinders are arranged in a 2 × 2 × 2 array. Each has a radius of
5.748 cm and a height of 10.765 cm. The center-to-center spacing in the
horizontal (X-Y) plane is 13.74 cm and the vertical center-to-center
spacing is 13.01 cm. Because the cross section processing will be done
assuming an infinite homogeneous medium and no cell mixtures are used,
there is no unit cell data. The input data for this problem follow.
.. highlight:: scale
::
=CSAS6
SET UP 2C8 IN CSAS6
V7-238
READ COMP
URANIUM 1 DEN=18.76 1 293 92235 93.2 92238 5.6 92234 1.0 92236 0.2 END
END COMP
READ PARAMETERS FLX=YES FDN=YES FAR=YES END PARAMETERS
READ GEOMETRY
UNIT 1
CYLINDER 10 5.748 5.3825 -5.3825
CUBOID 20 6.87 -6.87 6.87 -6.87 6.505 -6.505
MEDIA 1 1 10
MEDIA 0 1 20 -10
BOUNDARY 20
GLOBAL UNIT 2
CUBOID 10 4P13.74 2P13.010
ARRAY 1 10 PLACE 1 1 1 -6.87 -6.87 -6.505
BOUNDARY 10
END GEOMETRY
READ ARRAY
GBL=1 ARA=1 NUX=2 NUY=2 NUZ=2 FILL F1 END FILL
END ARRAY
END DATA
END
EXAMPLE 2. CSAS6 – Determine the *k*\ :sub:`eff` of an array of fuel pellets in
a UO\ :sub:`2`\ F\ :sub:`2` solution.
Consider a 60 cm inside diameter cylindrical tank filled with
5.0%-enriched UO\ :sub:`2` fuel rods and 5.0%‑enriched
UO\ :sub:`2`\ F\ :sub:`2` solution at 295 gm/liter. A 51 × 51 × 1 array
of fuel rods is centered on the bottom of the tank. The fuel rods are
366 cm long, 0.45 cm in radius, clad with 0.01-cm-thick Al, and at a
pitch of 1.5 cm. The fuel rods sit on the bottom of the container and
the container and solution rise 5.0 cm above the top of the rods. The
container is 10 cm thick in the side and bottom and open at the top.
Determine the *k*\ :sub:`eff` of the system. Input data for this problem
follow.
::
=CSAS6
UO2 pins in a UO2F2 solution
V7-238
READ COMP
UO2 1 0.95 300 92235 5.0 92238 95.0 END
AL 2 1.0 300 END
SOLNUO2F2 3 295 0.0 1.0 300 92235 5.0 92238 95.0 END
AL 4 1.0 300 END
SOLNUO2F2 5 295 0.0 1.0 300 92235 5.0 92238 95.0 END
END COMP
READ CELLDATA
LATTICECELL SQUAREPITCH PITCH=1.50 3 FUELD=0.9 1 CLADD=0.94 2 END
END CELLDATA
READ GEOM
UNIT 1
COM='FUEL PIN'
CYLINDER 10 0.45 2P183.0
CYLINDER 20 0.47 2P183.1
CUBOID 30 4P0.75 2P183.1
MEDIA 1 1 10
MEDIA 2 1 20 -10
MEDIA 3 1 30 -20 -10
BOUNDARY 30
GLOBAL UNIT 2
COM='FUEL PINS AND SOLUTION IN TANK'
CUBOID 10 4p38.25 2P183.1
CYLINDER 20 60.0 188.1 -183.1
CYLINDER 30 70.0 188.1 -193.1
ARRAY 1 10 PLACE 26 26 1 3*0.0
MEDIA 5 1 20 -10
MEDIA 4 1 30 -20
BOUNDARY 30
END GEOM
READ ARRAY
ARA=1 NUX=51 NUY=51 NUZ=1 FILL F1 END FILL
END ARRAY
END DATA
END
Run KENO-VI containing cell-weighted mixtures
---------------------------------------------
CSAS6 creates a microscopic working format library and a mixing table
that is passed to KENO-VI. The microscopic cross sections of the
nuclides used in the unit cell geometry description are cell‑weighted by
specifying CELLMIX= followed by a unique mixture number. This mixture
number utilizes the cell-weighted cross sections that represent the
heterogeneous system. CSAS6 executes KENO-VI and calculates *k*\ :sub:`eff` for
the problem.
EXAMPLE 1. CSAS6 – Calculate the *k*\ :sub:`eff` of an array of fuel assemblies
using cell-weighted cross sections.
Consider the 4 × 4 × 1 array of fuel assemblies in a square aluminum
cask described in Sect. 2.2.A.1.1, Example 2. Calculate the *k*\ :sub:`eff` of
the system by using the cell-weighted mixture 200 to represent the fuel
pins in the fuel assembly. Note that mixtures 1, 2, and 3, representing
UO\ :sub:`2`, zirconium, and water, respectively, are used in the unit
cell description. Cell-weighting is applied to the microscopic
cross sections that are used in the cell, making them incorrect for use
elsewhere. Because water is used both inside the cell and between the
fuel assemblies, an additional mixture, mixture 6, has been added to
represent the water between the fuel assemblies. The input data for this
problem follow.
::
=CSAS6
SQUARE FUEL CASK EXAMPLE USING HOMOGENEOUS MOCKUP
V7-238
READ COMP
UO2 1 DEN=9.21 1.0 293. 92235 2.35 92238 97.65 END
ZR 2 1 END
H2O 3 1 END
B4C 4 0.367 END
AL 4 0.636 END
AL 5 1 END
H2O 6 1 END
END COMP
READ CELLDATA
LATTICECELL SQUAREPITCH PITCH=1.3 3 FUELD=0.8 1 CLADD=0.94 2 CELLMIX=200 END
END CELLDATA
READ PARAM FAR=YES GEN=253 END PARAM
READ GEOM
UNIT 2
COM='FUEL ASSEMBLY'
CUBOID 10 4P11.05 2P183.07
CUBOID 20 4P11.70 2P183.72
CUBOID 30 4P12.20 2P184.22
MEDIA 200 1 10
MEDIA 4 1 20 -10
MEDIA 6 1 30 -20 -10
BOUNDARY 30
GLOBAL UNIT 3
COM='FUEL CASK CONTAINING 4X4 ARRAY OF ASSEMBLIES'
CUBOID 10 4P48.8 2P184.22
CUBOID 20 4P58.8 2P194.22
ARRAY 1 10 PLACE 1 1 1 -36.6 -36.6 0.0
MEDIA 5 1 20 -10
BOUNDARY 20
END GEOM
READ ARRAY
ARA=1 NUX=4 NUY=4 NUZ=1 FILL F2 END FILL
END ARRAY
END DATA
END
EXAMPLE 2. CSAS6 – Determine the *k*\ :sub:`eff` of an array of fuel pellets in
a UO\ :sub:`2`\ F\ :sub:`2` solution using cell‑weighted cross sections.
This is the same problem as described in :ref:`run-KENO-CSAS6` Example 2.
However, the rods and solutions have been replaced with a cell-weighted
mixture 50. Determine the *k*\ :sub:`eff` of the container. Input data for this
problem follow.
::
=CSAS6
UO2 pins in a UO2F2 solution, cell-weighted mixture
V7-238
READ COMP
UO2 1 0.95 300 92235 5.0 92238 95.0 END
AL 2 1.0 300 END
SOLNUO2F2 3 295 0.0 1.0 300 92235 5.0 92238 95.0 END
AL 4 1.0 300 END
SOLNUO2F2 5 295 0.0 1.0 300 92235 5.0 92238 95.0 END
END COMP
READ CELLDATA
LATTICECELL SQUAREPITCH PITCH=1.50 3 FUELD=0.9 1 CLADD=0.94 2 CELLMIX=50 END
END CELLDATA
READ GEOM
GLOBAL UNIT 2
COM='FUEL PINS AND SOLUTION IN TANK'
CUBOID 10 4p38.25 2P183.1
CYLINDER 20 60.0 188.1 -183.1
CYLINDER 30 70.0 188.1 -193.1
MEDIA 50 1 10
MEDIA 5 1 20 -10
MEDIA 4 1 30 -20
BOUNDARY 30
END GEOM
END DATA
END
Run KENO-VI containing multiple unit cells
------------------------------------------
CSAS6 can create a microscopic working format library and a mixing table
that contains more than one unit cell. Each unit cell is explicitly
defined in the CELLDATA section of the standard composition data.
Materials may appear in only one unit cell. All materials in the
standard composition that are not contained in a unit cell are processed
assuming infinite homogeneous media. CSAS6 passes the created working
library to KENO-VI which calculates *k*\ :sub:`eff` for the problem.
EXAMPLE 1. CSAS6 – Calculate the *k*\ :sub:`eff` of a system using two unit
cell descriptions.
Consider an infinite XY-array composed of two types of fuel assemblies
in a checkerboard pattern moderated by water. Each assembly consists of
a 17 × 17 × 1 array of zirconium-clad, enriched UO\ :sub:`2` fuel pins
in a square pitched array. In one array the uranium is 3.5%-enriched and
in the other array the uranium is 2.9%-enriched. The UO\ :sub:`2` has a
density of 9.21 g/cm\ :sup:`3`. The pin diameter is 0.8 cm and is 366 cm
long. The clad is 0.07 cm thick, and the pitch is 1.3 cm. Each fuel
bundle is contained in a 0.65-cm-thick Boral sheath. The bundles are
separated by an edge-to-edge spacing of 1.0 cm. The water and zirconium
is input in the standard composition data once for every unit cell in
which it appears because a material may appear in only one unit cell.
Determine the *k*\ :sub:`eff` of the infinite array. Note that periodic
boundary conditions are required to obtain an infinite checkerboard
array. Input data for this problem follow.
::
=CSAS6
2 SQUARE FUEL ASSEMBLIES EXAMPLE IN AN INFINITE LATTICE OF ASSEMBLIES
V7-238
READ COMP
UO2 1 DEN=9.21 1.0 293. 92235 3.5 92238 96.5 END
ZR 2 1 END
H2O 3 1 END
UO2 4 DEN=9.21 1.0 293. 92235 2.9 92238 97.1 END
ZR 5 1 END
H2O 6 1 END
B4C 7 0.367 END
AL 7 0.636 END
END COMP
READ CELLDATA
LATTICECELL SQUAREPITCH PITCH=1.3 3 FUELD=0.8 1 CLADD=0.94 2 END
LATTICECELL SQUAREPITCH PITCH=1.3 6 FUELD=0.8 4 CLADD=0.94 5 END
END CELLDATA
READ PARAM FAR=YES GEN=253 END PARAM
READ GEOM
UNIT 1
COM='3.5 W% FUEL PIN'
CYLINDER 10 0.4 2P183.0
CYLINDER 20 0.47 2P183.07
CUBOID 30 4P0.65 2P183.07
MEDIA 1 1 10
MEDIA 2 1 20 -10
MEDIA 3 1 30 -20 -10
BOUNDARY 30
UNIT 2
COM='3.5 W% FUEL ASSEMBLY'
CUBOID 10 4P11.05 2P183.07
CUBOID 20 4P11.7 2P183.72
CUBOID 30 4P12.2 2P184.22
ARRAY 1 10 PLACE 9 9 1 3*0.0
MEDIA 7 1 20 -10
MEDIA 3 1 20 -20 -20
BOUNDARY 30
UNIT 3
COM='2.9 W% FUEL PIN'
CYLINDER 10 0.4 2P183.0
CYLINDER 20 0.47 2P183.07
CUBOID 30 4P0.65 2P183.07
MEDIA 4 1 10
MEDIA 5 1 20 -10
MEDIA 6 1 30 -20 -10
BOUNDARY 30
UNIT 4
COM='2.9 W% FUEL ASSEMBLY'
CUBOID 10 4P11.05 2P183.07
CUBOID 20 4P11.7 2P183.72
CUBOID 30 4P12.2 2P184.22
ARRAY 2 10 PLACE 9 9 1 3*0.0
MEDIA 7 1 20 -10
MEDIA 6 1 20 -20 -20
BOUNDARY 30
GLOBAL UNIT 5
COM='FUEL CASK CONTAINING 4X4 ARRAY OF ASSEMBLIES'
CUBOID 10 4P24.4 2P184.22
ARRAY 3 10 PLACE 1 1 1 -12.2 -12.2 0.0
BOUNDARY 10
END GEOM
READ ARRAY
ARA=1 NUX=17 NUY=17 NUZ=1 FILL F1 END FILL
ARA=2 NUX=17 NUY=17 NUZ=1 FILL F3 END FILL
GBL=3 ARA=3 NUX=2 NUY=2 NUZ=1 FILL 2 4 4 2 END FILL
END ARRAY
READ BOUNDS XYF=PERIODIC END BOUNDS
END DATA
END
EXAMPLE 2. CSAS6 – Calculate the *k*\ :sub:`eff` of a system using two unit
cell descriptions and cell-weighted mixtures.
Consider a problem in which a stainless steel cylinder with an inner
diameter of 56 cm and an inside height of 91 cm is filled with pellets
of UO\ :sub:`2` in borated water. The steel is 0.125 cm thick. The
spherical 2.57%-enriched UO\ :sub:`2` pellets have a diameter of 1.07 cm
and are arranged in a triangular pitch array with a pitch of 1.13 cm.
The spherical 2.96%-enriched UO\ :sub:`2` pellets have a diameter of
1.07 cm and are arranged in a triangular pitch array with a pitch of
1.12 cm. The cylindrical tank is filled half full of the 2.96% pellets
in borated water, and the remainder is filled with the 2.57%-enriched
pellets in borated water.
Mixture 100 is the cell-weighted mixture containing the 2.57%-enriched
uranium pellets and mixture 200 is the cell-weighted mixture containing
the 2.96%-enriched uranium pellets. Determine the *k*\ :sub:`eff` of this
system. Input data for this problem follow.
::
=CSAS6
2.57% AND 2.96% ENR UO2 PELLETS IN 3500 PPM BORATED WATER
V7-238
READ COMP
UO2 1 0.925 283 92235 2.57 92238 97.43 END
H2O 2 1.0 283 END
ATOMBACID 2 2.0017-2 3 5000 1 1001 3 8016 3 1.0 283 END
UO2 3 0.925 283 92235 2.96 92238 97.04 END
H2O 4 1.0 283 END
ATOMBACID 4 2.0017-2 3 5000 1 1001 3 8016 3 1.0 283 END
SS304 5 1.0 283 END
END COMP
READ CELLDATA
LATTICECELL CELLMIX=100 SPHTRIANGP PITCH=1.13 2 FUELD=1.07 1 END
LATTICECELL CELLMIX=200 SPHTRIANGP PITCH=1.13 4 FUELD=1.07 3 END
END CELLDATA
READ PARAM FLX=YES END PARAM
READ GEOM
GLOBAL UNIT 1
CYLINDER 10 38.0 45.5 0.0
CYLINDER 20 38.0 91.0 0.0
CYLINDER 30 38.125 91.0 -0.125
MEDIA 100 1 10
MEDIA 200 1 20 -10
MEDIA 5 1 30 -20
BOUNDARY 30
END GEOM
END DATA
END
This diff is collapsed.
.. _K5C5:
K5toK6 and C5toC6: Input File Conversion Programs for KENO and CSAS
===================================================================
Introduction
------------
Program K5TOK6 can be used to automatically convert a KENO V.a input
file to a KENO-VI input file. Program C5TOC6 can be used to
automatically convert a CSAS5 input file to a CSAS6 input file. This
functionality can be useful when converting a KENO V.a validation
sequence to a KENO-VI validation sequence. It removes the problem of
introducing a mistake or inadvertently changing the data when remodeling
a geometry to the KENO-VI format. For some cases, however, the converted
model may be a very inefficient KENO-VI model.
Description and Input Guide
---------------------------
Program K5TOK6 is a utility program that can be used to automatically
convert a KENO V.a input file to a KENO-VI input file. Program C5TOC6 is
a utility program that can be used to automatically convert a CSAS5
input file to a CSAS6 input file. For program K5TOK6, the =KENOVA
record in the input stream is replaced by =K5TOK6. The output file is
then named \_geom\ *nnnnnnn* where *nnnnnnn* is a unique 7-digit number.
This allows a string of KENO V.a problems to be converted in one job.
For program C5TOC6 the =CSAS\ *BB*\ record in the input stream (where
the *BB* is 5, 25, or 2x) is replaced by =C5TOC6 PARM=CSAS5. The
output file is named \_geom\ *nnnnnnn* where *nnnnnnn* is a unique
7digit number.
For large problems, the output file may need to be edited to specify an
increased value for parameter *NB8* in KENO-VI and also an increased
value for parameter *DAB* in CSAS6. **The conversion makes no attempt to
optimize the output file, so it almost surely will be inefficient in its
use of storage, and in its use of bodies. This can lead to models that
are very inefficient in their running time also.**
The input/output (I/O) units for K6TOK6 and C5TOC6 are given below. Note
that K5TOK6 requires the cross-section library designated by the LIB=
parameter in the KENO V.a input file.
+-------------+---------------------------------------------+
| Unit Number | Function |
+-------------+---------------------------------------------+
| 5 | KENO V.a (or CSAS5) input file |
| | |
| 6 | Output |
| | |
| 7 | Input file generated for KENO-VI (or CSAS6) |
+-------------+---------------------------------------------+
Sample K5TOK6 input file is shown in :numref:`list2-6-1` and the
corresponding converted KENO-VI input file is shown in :numref:`list2-6-2`.
Likewise, a C5TOC6 sample input file and corresponding converted CSAS6
input file are shown in :numref:`list2-6-3` and :numref:`list2-6-4`, respectively.
.. code-block:: scale
:name: list2-6-1
:caption: Sample K5TOK6 problem.
=k5tok6
93.2% uo2f2 h/u-235=337
read param npg=600 fdn=yes nub=yes lib=4 end param
read geom
cuboid 1 1 2p3.81 2p60.325 25.50 0
reflector 2 1 4r.318 0 .318 1
cuboid 0 1 2p4.128 2p65. 150. -1.
core 0 1 -12.384 -65. -29.
cylinder 0 1 142.8 212. -60.
cylinder 3 1 144.8 212. -62.
cuboid 0 1 275.5 -638.9 475. -744.2 588. -62.
reflector 4 1 5r0 .32 1
reflector 5 1 5r0 1.27 1
reflector 3 1 5r0 .64 1
reflector 0 1 5r0 365 1
reflector 6 2 6r5 6
reflector 6 8 0 5 4r0 6
end geom
read bias id=301 2 13 end bias
read array nux=3 nuy=1 nuz=1 end array
end data
end
.. code-block:: scale
:name: list2-6-2
:caption: Sample converted KENO-VI input file.
=kenovi
93.2% uo2f2 h/u-235=337
read param npg=600 fdn=yes nub=yes lib=4 end param
read geometry
unit 1
cuboid 1
3.810000E+00 -3.810000E+00 6.032500E+01
-6.032500E+01 2.550000E+01 0.000000E+00
media 1 1 1
vol= 7.033051E+04
cuboid 2
4.128000E+00 -4.128000E+00 6.064300E+01
-6.064300E+01 2.550000E+01 -3.180000E-01
media 2 1 2 -1
vol= 7.227070E+03
cuboid 3
4.128000E+00 -4.128000E+00 6.500000E+01
-6.500000E+01 1.500000E+02 -1.000000E+00
media 0 1 3 -2 -1
vol= 4.086382E+05
boundary 3
global
unit 2
cuboid 1
1.238400E+01 -1.238400E+01 6.500000E+01
-6.500000E+01 1.220000E+02 -2.900000E+01
array 1 1
place 1 1 1 -1.23840E+01 -6.50000E+01 -2.90000E+01
cylinder 2
1.428000E+02 2.120000E+02 -6.000000E+01
origin x= 0.000000E+00 y= 0.000000E+00
media 0 1 2 -1
vol= 1.693890E+07
cylinder 3
1.448000E+02 2.120000E+02 -6.200000E+01
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 3 -2 -1
vol= 6.232560E+05
cuboid 4
2.755000E+02 -6.389000E+02 4.750000E+02
-7.442000E+02 5.880000E+02 -6.200000E+01
media 0 1 4 -3 -2 -1
vol= 7.065953E+08
cuboid 5
2.755000E+02 -6.389000E+02 4.750000E+02
-7.442000E+02 5.880000E+02 -6.232000E+01
media 4 1 5 -4 -3 -2 -1
vol= 3.568000E+05
cuboid 6
2.755000E+02 -6.389000E+02 4.750000E+02
-7.442000E+02 5.880000E+02 -6.359000E+01
media 5 1 6 -5 -4 -3 -2 -1
vol= 1.415808E+06
cuboid 7
2.755000E+02 -6.389000E+02 4.750000E+02
-7.442000E+02 5.880000E+02 -6.423000E+01
media 3 1 7 -6 -5 -4 -3 -2 -1
vol= 7.134720E+05
cuboid 8
2.755000E+02 -6.389000E+02 4.750000E+02
-7.442000E+02 5.880000E+02 -4.292300E+02
media 0 1 8 -7 -6 -5 -4 -3 -2 -1
vol= 4.069153E+08
cuboid 9
2.805000E+02 -6.439000E+02 4.800000E+02
-7.492000E+02 5.930000E+02 -4.342300E+02
media 6 2 9 -8 -7 -6 -5 -4 -3 -2 -1
vol= 3.316813E+07
cuboid 10
2.855000E+02 -6.489000E+02 4.850000E+02
-7.542000E+02 5.980000E+02 -4.392300E+02
media 6 3 10 -9 -8 -7 -6 -5 -4 -3 -2 -1
vol= 3.380429E+07
cuboid 11
2.905000E+02 -6.539000E+02 4.900000E+02
-7.592000E+02 6.030000E+02 -4.442300E+02
media 6 4 11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
vol= 3.444634E+07
cuboid 12
2.955000E+02 -6.589000E+02 4.950000E+02
-7.642000E+02 6.080000E+02 -4.492300E+02
media 6 5 12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
vol= 3.509453E+07
cuboid 13 3.005000E+02 -6.639000E+02 5.000000E+02
-7.692000E+02 6.130000E+02 -4.542300E+02
media 6 6 13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
vol= 3.574874E+07
cuboid 14
3.055000E+02 -6.689000E+02 5.050000E+02
-7.742000E+02 6.180000E+02 -4.592300E+02
media 6 7 14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2
-1
vol= 3.640896E+07
cuboid 15
3.055000E+02 -6.739000E+02 5.050000E+02
-7.742000E+02 6.180000E+02 -4.592300E+02
media 6 8 15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3
-2 -1
vol= 6.889984E+06
cuboid 16
3.055000E+02 -6.789000E+02 5.050000E+02
-7.742000E+02 6.180000E+02 -4.592300E+02
media 6 9 16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4
-3 -2 -1
vol= 6.889856E+06
cuboid 17
3.055000E+02 -6.839000E+02 5.050000E+02
-7.742000E+02 6.180000E+02 -4.592300E+02
media 6 10 17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5
-4 -3 -2 -1
vol= 6.889984E+06
cuboid 18
3.055000E+02 -6.889000E+02 5.050000E+02
-7.742000E+02 6.180000E+02 -4.592300E+02
media 6 11 18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6
-5 -4 -3 -2 -1
vol= 6.889984E+06
cuboid 19
3.055000E+02 -6.939000E+02 5.050000E+02
-7.742000E+02 6.180000E+02 -4.592300E+02
media 6 12 19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7
-6 -5 -4 -3 -2 -1
vol= 6.889984E+06
cuboid 20
3.055000E+02 -6.989000E+02 5.050000E+02
-7.742000E+02 6.180000E+02 -4.592300E+02
media 6 13 20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8
-7 -6 -5 -4 -3 -2 -1
vol= 6.889984E+06
boundary 20
end geometry
read bias id=301 2 13 end bias
read array nux=3 nuy=1 nuz=1 end array
end data
end
.. code-block:: scale
:name: list2-6-3
:caption: Sample C5TOC6 problem.
=c5toc6 parm=csas5
sample problem 1 case 2c8 bare
v7-238
read composition
uranium 1 den=18.76 1 293 92235 93.2 92238 5.6 92234 1.0 92236 0.2 end
end composition
read parameters
flx=yes fdn=yes far=yes htm=no
end parameters
read geometry
unit 1
cylinder 1 1 5.748 5.3825 -5.3825
cuboid 0 1 6.87 -6.87 6.87 -6.87 6.505 -6.505
end geometry
read array
nux=2 nuy=2 nuz=2 fill f1 end fill
end array