BONAMI.rst 59.4 KB
Newer Older
Batson Iii's avatar
Batson Iii committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
.. _7-3:

BONAMI: Resonance Self-Shielding by the Bondarenko Method
=========================================================

*U. Mertyurek and M. L. Williams*

ABSTRACT

BONAMI is a module of the SCALE code system that is used to perform
Bondarenko calculations for resonance self-shielding. BONAMI obtains
problem-independent cross sections and Bondarenko shielding factors from
a multigroup (MG) AMPX master library, and it creates a MG AMPX working
library of self-shielded, problem-dependent cross sections. Several
options may be used to compute the background cross section values using
the narrow resonance or intermediate resonance approximations, with and
without Bondarenko iterations. A novel interpolation scheme is used that
avoids many of the problems exhibited by other interpolation methods for
the Bondarenko factors. BONAMI is most commonly used in automated SCALE
sequences and is fully integrated within the SCALE cross section
processing module, XSProc.

Acknowledgments

The authors express gratitude to B. T. Rearden and M. A. Jessee for
their supervision of the SCALE project and review of the manuscript. The
authors acknowledge N. M. Greene, formerly of ORNL, for his original
development of and contributions to the BONAMI module and methodology.
Finally, the authors wish to thank Sheila Walker for the completion and
publication of this document.


.. _7-3-1:

Introduction
------------

BONAMI (**BON**\ darenko **AM**\ PX **I**\ nterpolator) is a SCALE
module that performs resonance self-shielding calculations based on the
Bondarenko method :cite:`ilich_bondarenko_group_1964`. It reads Bondarenko shielding factors
(“f-factors”) and infinitely dilute microscopic cross sections from a
problem-\ *independent* nuclear data library processed by the AMPX
system :cite:`wiarda_ampx_2015`, interpolates the tabulated shielding factors to appropriate
temperatures and background cross sections for each nuclide in the
system, and produces a self-shielded, problem-dependent data set.

The code performs self-shielding for an arbitrary number of mixtures
using either the narrow resonance (NR) or intermediate resonance (IR)
approximation :cite:`goldstein_theory_1962`. The latter capability was introduced in SCALE 6.2.
BONAMI has several options for computing background cross sections,
which may include Bondarenko iterations to approximately account for the
impact of resonance interference for multiple resonance absorbers.
Heterogeneous effects are treated using equivalence theory based on an
“escape cross section” for arrays of slabs, cylinders, or spheres.
During the execution of a typical SCALE computational sequence using
XSProc, Dancoff factors for uniform lattices of square- or
triangular-pitched units are calculated automatically for BONAMI by
numerical integration over the chord length distribution. However, for
non-uniform lattices—such as those containing water holes, control rods,
and so on—the SCALE module MCDancoff can be run to compute Dancoff
factors using Monte Carlo for an arbitrary 3D configuration, and these
values are then provided in the sequence input.

The major advantages of the Bondarenko approach are its simplicity and
speed compared with SCALE’s more rigorous CENTRM/PMC self-shielding
method, which performs a pointwise (PW) deterministic transport
calculation “on the fly” to compute multigroup (MG) self-shielded cross
sections. With the availability of IR theory in BONAMI, accurate results
can be obtained for a variety of system types without the computation
expense of CENTRM/PMC.

.. _7-3-2:

Bondarenko Self-Shielding Theory
--------------------------------

In MG resonance self-shielding calculations, one is interested in
calculating effective cross sections of the form

.. math::
  :label: eq7-3-1

  \sigma^{(r)}_{X,g} = \frac{\int_{g}\sigma^{(r)}_{X}(E)\Phi(E)\text{dE}}{\int_{g}\Phi(E)\text{dE}} ,

where :math:`\sigma^{(r)}_{X,g}` is the shielded MG cross section for reaction type *X* of
resonance nuclide *r* in group *g*; :math:`\sigma^{(r)}_{X}(E)` is a PW cross section; and :math:`\Phi(E)` is the PW
weighting function, which approximates the flux spectrum per unit of
energy for the system of interest. PW cross section values are known
from processing evaluated data in ENDF/B files; therefore, resonance
self‑shielding depends mainly on determining the problem-dependent flux
spectrum :math:`\Phi(E)`, which may exhibit significant fine structure variations as a
result of resonance reactions.

The essence of the Bondarenko method is to parameterize the flux
spectrum corresponding to varying degrees of self-shielding, represented
by the background cross section parameter :math:`\sigma_0` (called “sigma-zero”) and the
Doppler broadening temperature *T*. Hence,

.. math::
  :label: eq7-3-2

  \Phi \text{(E)}\to \Phi \text{(E;}\,\sigma _{\text{0,g}}^{\text{(r)}}\text{,T)}\ \ \,,\,\ \text{E}\in \text{g}\ ; \text{and} \
  \sigma^{(r)}_{X,g} \rightarrow \sigma^{(r)}_{X,g}(\sigma^{(r)}_{0,g},\text{T})

With this approach, it is possible to preprocess MG data for different
background cross sections representing varying degrees of resonance
self-shielding. This allows the MG averaging to be performed during the
original MG library processing, so that BONAMI can do a simple
interpolation on the background cross section and temperature to obtain
self-shielded cross sections. This procedure is much faster than the
CENTRM/PMC method in SCALE, which computes a PW flux spectrum by solving
the neutron transport equation on a PW energy mesh in CENTRM and then
evaluates :eq:`eq7-3-1`. in PMC “on the fly” during a sequence execution.

BONAMI performs two main tasks: (a) computation of background cross
sections for all nuclides in each mixture in the system and (b)
interpolation of shielded cross sections from the library values
tabulated vs. background cross sections and temperature. The BONAMI
calculation is essentially isolated from the computation of the
tabulated shielded cross sections, which is performed by the AMPX
processing code system—the only connection is through the definition of
the background cross section used in processing the library values.
Various approximations can be used to parameterize the flux spectrum in
terms of a background XS, as required by the Bondarenko method. We will
first consider several approaches to representing the flux in an
infinite medium, which lead to different definitions of the background
cross section. BONAMI’s use of equivalence theory to extend the
homogeneous methods to address heterogeneous systems, such as reactor
lattices, is discussed in the following section.

.. _7-3-2-1:

Parameterized Flux Spectra
~~~~~~~~~~~~~~~~~~~~~~~~~~

Several approximations can be applied to the infinite medium transport
equation to parameterize the flux spectrum in terms of a background XS,
as required by the Bondarenko method. The resulting homogeneous spectra
are used in AMPX to process MG cross sections which can also can be
applied to heterogeneous systems (i.e., lattices) by using equivalence
theory; thus the key step is determining approximations that provide
parameterized solutions for homogeneous media. The neutron transport
equation for a homogeneous medium at temperature *T*, containing a
resonance nuclide *r* mixed with other nuclides can be expressed as

.. math::
  :label: eq7-3-3

  \left( \Sigma _{\text{t}}^{\text{(r)}}\text{(E,T)}\ +\sum\limits_{j\ne r}
  {\Sigma _{\text{t}}^{\text{(j)}}\text{(E,T)}} \right)\ \Phi \text{(E,T)}\ \,\,\,=\ \ \,{{\text{S}}^{\text{(r)}}}(\text{E,T})\ \,+\,\sum\limits_{j\ne r}{{{\text{S}}^{\text{(j)}}}(\text{E,T})} ,

where :math:`\Sigma _{\text{t}}^{\text{(r)}}\text{(E,T)}`
, :math:`\text{S}_{{}}^{\text{(r)}}\text{(E,T)}` are the macroscopic total XS and
elastic scattering source for *r*, respectively; and :math:`\Sigma _{\text{t}}^{\text{(j)}}\text{(E,T)}`,
:math:`\text{S}_{{}}^{\text{(j)}}\text{(E,T)}` are the macroscopic total cross
section and elastic source, respectively, for a nuclide *j*. The cross sections in
all these expressions are Doppler-broadened to the temperature of the
medium. The nuclides in the summations (i.e., all nuclides except *r*)
are called background nuclides for the resonance absorber *r*.

The NR approximation can be used to approximate scattering sources of
nuclides for which the neutron energy loss is large compared with the
practical widths of resonances for the absorber materials of interest.
Applying the NR approximation for the scattering source of background
material *j* gives

.. math::
  :label: eq7-3-4

  \text{S}^{(j)}(\text{E,T}) \rightarrow \Sigma^{(j)}_{p}C(E) \text{for j = a NR-scatterer nuclide}

where C(E) is a slowly varying function representative of the asymptotic
(i.e., no absorption) flux in a homogeneous medium, which approximates
the flux between resonances. In the resolved resonance range of most
important resonance absorbers, the asymptotic flux per unit energy is
represented as,

.. math::
  :label: eq7-3-5

  C(\text{E})\ =\ \ \,\frac{{{\Phi }_{\infty }}}{E}\ \ \ ,

where :math:`{{\Phi }_{\infty }}` is an arbitrary normalization constant that cancels from the MG
cross section expression. In the thermal range a Maxwellian spectrum is
used for C(E), and in the fast range a fission spectrum is used. The
SCALE Cross Section Libraries section of the SCALE documentation gives
analytical expressions for C(E) used in AMPX to process MG data with the
NR approximation. AMPX also has an option to input numerical values for
C(E), obtained for example from a PW slowing-down calculation with
CENTRM. This method has been used to process MG data for some nuclides
on the SCALE libraries.

Conversely, the wide resonance (WR) approximation has been used to
represent elastic scattering sources of nuclides for which the neutron
energy loss is small compared with the practical width of the resonance.
This approximation tends to be more accurate for heavy nuclides and for
lower energies. The limit of infinite mass is usually assumed, so the WR
approximation is sometimes called the infinite mass (IM) approximation.
Because of the assumption of IM, there is no energy loss due to
collisions with WR scatterers. Applying the WR approximation for the
slowing-down source of background nuclide *j* gives

.. math::
  :label: eq7-3-6

  \text{S}^{(j)}(\text{E,T}) \rightarrow \Sigma^{(j)}_{s}(\text{E,T})\Phi(\text{E,T}) ;
  \text{for} j  =  \text{a WR-scatterer nuclide}

The IR approximation was proposed in the 1960s for scatterers with
slowing-down properties intermediate between those of NR and WR
scatterers :cite:`goldstein_theory_1962`. The IR method represents the scattering source for
arbitrary nuclide *j* by a linear combination of NR and WR expressions.
This is done by introducing an IR parameter usually called lambda, such
that

.. math::
  :label: eq7-3-7

  \text{S}_{{}}^{\text{(j)}}(\text{E,T)}\,\ \to \ \,\underbrace{\lambda _{\text{g}}^{\text{(j)}}\Sigma _{\text{p}}^{\text{(j)}}\,C(E)}_{\mathbf{NR scatterer}}\ +\ \ (1-\lambda _{\text{g}}^{\text{(j)}})\,\,\underbrace{\Sigma _{\text{s}}^{\text{(j)}}(\text{E,T})\Phi (\text{E,T})}_{\mathbf{WR scatterer}}\ \,\ \,\ ;\,\,\ \ \text{E}\in \text{g}\,\text{.}

A value of λ=1 reduces :eq:`eq7-3-7` to the NR expression, whereas λ=0 reduces the
equation to the WR expression. Fractional λ’s are for IR scatterers.
Since the type of scatterer can change with the energy, the IR lambdas
are functions of the energy group as well as the nuclide. The λ values
represent the moderation “effectiveness” of a given nuclide, compared to
hydrogen. The AMPX module LAMBDA was used to compute the IR parameters
on the SCALE libraries. (See AMPX documentation distributed with SCALE)
Substituting :eq:`eq7-3-7` into :eq:`eq7-3-3` and then dividing by the absorber number
density *N\ (r)* gives the following IR approximation for the infinite
medium transport equation in energy group g

.. math::
  :label: eq7-3-8

  \left( \sigma _{\text{t}}^{\text{(r)}}\text{(E,T)}\ \text{+}\ \sigma _{0}^{\text{(r)}}\text{(E,T) } \right)\,{{\Phi }^{\text{(r)}}}\text{(E,T)}\ \ =\,\ \frac{\text{1}}{{{\text{N}}^{\text{(r)}}}}{{\text{S}}^{\text{(r)}}}\text{(E,T)}\ +\ \frac{\text{1}}{{{\text{N}}^{\text{(r)}}}}\sum\limits_{j\ne r}{\lambda _{\text{g}}^{\text{(j)}}\,\Sigma _{\text{p}}^{\text{(j)}}C(E)\,}

where the background cross section of *r* in the homogeneous medium is
defined as

.. math::
  :label: eq7-3-9

  \sigma _{0}^{\text{(r)}}\text{(E,T)}\ \ =\ \ \frac{1}{{{\text{N}}^{\text{(r)}}}}\,\,\sum\limits_{j\ne r}{\left( \Sigma _{\text{a}}^{\text{(j)}}(\text{E,T})+\lambda _{\text{g}}^{\text{(j)}}\,\Sigma _{\text{s}}^{\text{(j)}}(\text{E,T})\,\, \right)}

Although :eq:`eq7-3-8` provides the flux spectrum as a function of the background
cross section :math:`\sigma \,_{0}^{(r)}(u,T)` it is not in a form that can be
preprocessed when the MG library is generated, because the energy variation of
:math:`\sigma \,_{0}^{(r)}(E,T)` must be known. If the total cross sections
of the background nuclides in :eq:`eq7-3-9` have different energy variations, the shape of
:math:`\sigma \,_{0}^{(r)}(E,T)` depends on their relative concentrations—which
are not known when the MG library is processed.
However, if the cross sections in :eq:`eq7-3-9` are independent of energy,
so that the background cross section is *constant*,
:eq:`eq7-3-8` can be solved for any arbitrary value of :math:`\sigma \,_{0}^{(r)}`
as a parameter. This obviously occurs for the special case in which nuclide
*r* is the only resonance nuclide in the mixture; i.e., the background materials
are nonabsorbing moderators for which the total cross section is equal to the potential
cross section. In this case, :math:`\sigma \,_{0}^{(r)}(E,T)\quad \to \ \ \ \sigma \,_{0,g}^{(r)}`,
where

.. math::
  :label: eq7-3-10

  \sigma \,_{0,g}^{(r)}\,\,=\quad \frac{1}{N_{{}}^{(r)}}\sum\limits_{j\,\ne \,i}{\ N_{{}}^{(j)}\,\lambda _{g}^{(j)}\sigma \,_{p}^{(j)}}

If the mixture contains multiple resonance absorbers, as is usually the
case, other approximations must be made to obtain a constant background
cross section.

The approximation of “no resonance interference” assumes that resonances
of background nuclides do not overlap with those of nuclide *r*, so
their total cross sections can be approximated by the potential values
within resonances of *r* where self-shielding occurs. In this
approximation, the expression in :eq:`eq7-3-10` is also used for the background
cross section.

Another approximation is to represent the energy-dependent cross
sections of the background nuclides by their group-averaged (i.e.,
self-shielded cross) values; thus

.. math::
  :label: eq7-3-11

  \sigma \,_{a}^{(j)}(E,T)\quad \to \ \ \ \sigma \,_{a,g}^{(j)}\ \quad ;\quad \ \ \quad \sigma \,_{s}^{(j)}(E,T)\quad \to \ \ \ \sigma \,_{s,g}^{(j)}\text{ for }E\in g

In this case, the background cross section in :eq:`eq7-3-9` for nuclide *r* is the
group-dependent expression,

.. math::
  :label: eq7-3-12

  \sigma _{0,g}^{\text{(r)}}\ \ =\ \ \frac{1}{{{\text{N}}^{\text{(r)}}}}\,\,\sum\limits_{j\ne r}{\left( \Sigma _{\text{a,g}}^{\text{(j)}}+\lambda _{\text{g}}^{\text{(j)}}\,\Sigma _{\text{s,g}}^{\text{(j)}}\, \right)}


An equation similar to :eq:`eq7-3-12` is used for the background cross sections of
all resonance nuclides; thus the self-shielded cross sections of each
resonance absorber depend on the shielded cross sections of all other
resonance absorbers in the mixture. When self-shielding operations are
performed with BONAMI for this approximation, "Bondarenko" iterations
are performed to account for the inter-dependence of the shielded cross
sections.

Assuming that :math:`\sigma \,_{0}^{(r)}` is represented as a groupwise-constant
based on one of the previous approximations, several methods can be used to
obtain a parameterized flux spectrum for preprocessing Bondarenko data in the MG
libraries. In the simpliest approach, the scattering source of the resonance
nuclide *r* in :eq:`eq7-3-8` is represented by the NR approximation,
:math:`{{\text{S}}^{\text{(r)}}}(\text{E,T})` to :math:`\Sigma _{\text{p}}^{\text{(r)}}C(E)`.
In this case, :eq:`eq7-3-8` can be solved analytically to obtain the following
expression for the flux spectrum used to process MG data as a function of :math:`\sigma \,_{0}^{(r)}`:

.. math::
  :label: eq7-3-13

  {{\Phi }^{\text{(r)}}}\text{(E;}\,\sigma _{0}^{\text{(r)}}\text{,T)}\ \ =\,\ \frac{\sigma _{\text{p}}^{\text{(r)}}\ +\ \,\frac{\text{1}}{{{\text{N}}^{\text{(r)}}}}\sum\limits_{j\ne r}{\,\Sigma _{\text{p}}^{\text{(j)}}\,}\ }{\sigma _{\text{t}}^{\text{(r)}}\text{(E,T)}\ \text{+}\ \sigma _{0}^{\text{(r)}}}C(E)\ \ \,\ \to \ \ \,\frac{C(E)\ }{\sigma _{\text{t}}^{\text{(r)}}\text{(E,T)}\ \text{+}\ \sigma _{0}^{\text{(r)}}}

where C(E) includes is an arbitrary constant multiplier that cancels
from :eq:`eq7-3-1`.

A more accurate approach that does not require using the NR
approximation is to directly solve the IR form of the neutron transport
equation using PW cross sections, with the assumption of no interference
between mixed absorber resonances. The IRFfactor module of AMPX uses
XSProc to calculate the self-shielded flux spectrum for MG data
processing using one of two options:

(a) A homogeneous model corresponding to an infinite medium of the
    resonance nuclide mixed with hydrogen, in which the ratio of the
    absorber to hydrogen number densities is varied in CENTRM to obtain
    the desired background cross section values;

(b) A heterogeneous model corresponding to a 2D unit cell from an
    infinite lattice, in which the cell geometry (e.g., pitch) as well
    as the absorber number density is varied in CENTRM to obtain the
    desired background cross section values.

Both of these models provide a numerical solution for the flux spectrum.
Details on these approaches are given in reference 2.

.. _7-3-2-2:

Self-Shielded Cross Section Data in SCALE Libraries
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The AMPX code system processes self-shielded cross sections using the
flux expressions described in the preceding section. For MG libraries in
SCALE-6.2 and later versions, the NR approximation in :eq:`eq7-3-13` is used to
represent the flux spectrum for nuclides with masses below A=40, since
the NR approximation is generally accurate for low-mass nuclides and/or
high energies. The standard AMPX weight functions are used to represent
C(E) over the entire energy range for all nuclides with A<40, except for
hydrogen and oxygen which use a calculated C(E) from CENTRM. The NR
approximation with a calculated C(E) function is also used to represent
the spectrum above the resolved resonance range for nuclides with A>40;
but in the resolved resonance range of these nuclides, AMPX processes
shielded cross sections with flux spectra obtained from CENTRM
calculations using either a homogeneous or heterogeneous model.
Regardless of the method used to obtain the flux spectrum, the
parameterized shielded cross sections for absorber nuclide “r” are
computed from the expression,

.. math::
  :label: eq7-3-14

  \sigma _{\text{X,g}}^{\text{(r)}}(\sigma \,_{0}^{(r)}\,,T)\quad =\quad \,\frac{\int_{g}{\ \ \,\sigma _{X}^{(r)}(E,T)\ \,\Phi (E;\,\,\sigma \,_{0}^{(r)}\,,T)\ dE}}{\int_{g}{\ \,\Phi (E;\,\,\sigma \,_{0}^{(r)}\,,T)\ \,dE}}\quad ,

where :math:`\Phi (E;\,\,\sigma \,_{0}^{(r)}\,,T)` is the flux for a given value
of :math:`\sigma \,_{0}^{(r)}` and *T*.

Rather than storing self-shielded cross sections in the master library,
AMPX converts them to Bondarenko shielding factors, also called
f-factors, defined as the ratio of the shielded cross section to the
infinitely dilute cross section. Thus the MG libraries in SCALE contain
Bondarenko data consisting of f‑factors defined as

.. math::
  :label: eq7-3-15

  f_{\text{X,g}}^{\text{(r)}}(\sigma \,_{0}^{{}}\,,T)\quad =\quad \,\frac{\sigma _{\text{X,g}}^{\text{(r)}}(\sigma \,_{0}^{{}},T)}{\sigma _{\text{X,g}}^{\text{(r)}}(\infty )}\quad ,

and infinitely dilute cross sections defined as,

.. math::
  :label: eq7-3-16

  \sigma _{\text{X,g}}^{\text{(r)}}(\infty )\quad =\quad \,\sigma _{\text{X,g}}^{\text{(r)}}(\sigma \,_{0}^{{}}=\infty ,T={{T}_{ref}}) \to \ \ \,\frac{\int_{g}{\ \sigma _{X}^{(r)}(E,{{T}_{ref}})\ C(E)\ \,dE}}{\int_{g}{\ \,C(E)\ \,dE}}\quad .

In AMPX, the reference temperature for the infinitely dilute cross
section is normally taken to be 293 K. Bondarenko data on SCALE
libraries are provided for all energy groups and for five reaction
types: total, radiative capture, fission, within-group scattering, and
elastic scatter. Recent SCALE libraries include f-factors at ~10–30
background cross section values (depending on nuclide) ranging from
~10\ :sup:`−3` to ~10\ :sup:`10` barns, which span the range of
self-shielding conditions. Typically the f-factor data are tabulated at
five temperature values. Background cross sections and temperatures
available for each nuclide in the SCALE MG libraries are given in the
SCALE Cross Section Libraries chapter.

.. _7-3-2-3:

Background Cross Section Options in BONAMI
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To compute self-shielded cross sections for nuclide *r*, BONAMI first
computes the appropriate background cross section for the system of
interest and then interpolates the library Bondarenko data to obtain the
f-factor corresponding to this σ\ :sub:`0` and nuclide temperature.
Several options are available in BONAMI to compute the background cross
section, based on :eq:`eq7-3-10` and :eq:`eq7-3-12` in the preceding section. The options are
specified by input parameter “\ **iropt**\ ” and have the following
definitions:

(a) iropt = 0 => NR approximation with Bondarenko iterations:

Background cross sections for all nuclides are computed using :eq:`eq7-3-12` with
λ=1; therefore,

.. math::
  :label: eq7-3-17

  \sigma _{0}^{\text{(r)}}\ =\ \frac{1}{{{\text{N}}^{\text{(r)}}}}\,\,\sum\limits_{j\ne r}{\Sigma _{\text{t,g}}^{\text{(j)}}} .

Since the background cross section for each nuclide depends on the shielded
total cross sections of all other nuclides in the mixture,
“Bondarenko iterations” are performed in BONAMI to obtain a consistent set of
shielded cross sections. Bondarenko iterations provide a crude method of
accounting for resonance interference effects that are ignored by the
approximation for :math:`\sigma \,_{0}^{(r)}` in :eq:`eq7-3-10`. The BONAMI
iterative algorithm generally converges in a few iterations.  Prior to
SCALE-6.2, this option was the only one available in BONAMI, and it is still the default for XSProc.

(b) iropt = 1 => IR approximation with no resonance interference
    (potential cross sections):

Background cross sections for all nuclides are computed using :eq:`eq7-3-10`. No
Bondarenko iterations are needed.

(c) iropt t = 2 => IR approximation with Bondarenko iterations, but no
    resonance scattering:

Background cross sections for all nuclides are computed using :eq:`eq7-3-12` with
the scattering cross section approximated by the potential value;
therefore,

.. math::
  :label: eq7-3-18

  \sigma _{0}^{\text{(r)}}\ \ =\ \ \frac{1}{{{\text{N}}^{\text{(r)}}}}\,\,\sum\limits_{j\ne r}{\left( \Sigma _{\text{a,g}}^{\text{(j)}}+\lambda _{\text{g}}^{\text{(j)}}\,\Sigma _{\text{p}}^{\text{(j)}}\, \right)}


Since the background cross section for each resonance nuclide includes the
shielded absorption cross sections of all other nuclides, Bondarenko
interactions are performed.

(d) iropt = 3 => IR approximation with Bondarenko iterations:

Background cross sections for all nuclides are computed using the full
IR expression in :eq:`eq7-3-12`. Bondarenko interactions are performed.

Computation of the background cross sections in BONAMI generally
requires group-dependent values for the IR parameter λ. These are
calculated by a module in AMPX during the library process and are stored
in the MG libraries under the reaction identifier (MT number), MT=2000.

.. _7-3-2-4:

Self-Shielded Cross Sections for Heterogeneous Media
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Equivalence theory can be used to obtain shielded cross sections for
heterogeneous systems containing one or more “lumps” of resonance
absorber mixtures separated by moderators, such as reactor lattices. It
can be shown that if the fuel escape probability is represented by the
Wigner rational approximation, the collision probability formulation of
the neutron transport equation for an absorber body in a heterogeneous
medium can be reduced to a form identical to :eq:`eq7-3-3`. This can be done for
an “equivalent” infinite homogeneous medium consisting of the same
absorber body mixture plus an additional NR scatterer with a constant
cross section called the “escape cross section” :cite:`lamarsh_introduction_1966`.
Equivalence
theory states that the self-shielded cross section for resonance
absorber *r* in the heterogeneous medium is equal to the self-shielded
cross section of *r* in the equivalent infinite homogeneous medium;
therefore the f-factors that were calculated for homogenous mixtures can
also be used to compute self-shielded cross sections for heterogeneous
media by simply interpolating the tabulated f-factors in the library to
the modified sigma-zero value of

.. math::
  :label: eq7-3-19

  \hat{\sigma }_{0}^{(r)}\quad =\quad \sigma _{0}^{(r)}\ +\ \ \,\sigma _{esc}^{(r)}

where,

  :math:`\hat{\sigma }_{0}^{(r)}`	= background cross section of r in the absorber lump of the heterogeneous system;

  :math:`\sigma \,_{0}^{(r)}`	= background cross section defined in :ref:`7-3-2-1` for an infinite homogeneous medium of the
  absorber body mixture;

  :math:`\sigma _{esc}^{(r)}`	 = microscopic escape cross section for nuclide *r*, defined as

.. math::
  :label: eq7-3-20

  \sigma _{esc}^{(r)}\quad =\quad \frac{{{\Sigma }_{esc}}}{{{N}^{(r)}}}

..

  :math:`{{\Sigma }_{esc}}`	 = macroscopic escape cross section for the absorber lump defined in BONAMI as

.. math::
  :label: eq7-3-21

  {{\Sigma }_{esc}}\quad =\quad \,\frac{(1\quad -\quad c)A}{\bar{\ell }\ \,\ \left[ 1\quad +\quad \left( A\quad -\quad 1 \right)c \right]}

where

  :math:`\bar{\ell }` = average chord length of the absorber body = :math:`4\ \ \,\times \ \frac{volume}{surface\ \ area}`;

  A	= Bell factor, used to improve the accuracy of the Wigner rational approximation;

  c	= lattice Dancoff factor, which is equal to the probability that a neutron escaping from one
  absorber body will reach another absorber body before colliding in the intervening moderator.

Values for the mean chord length :math:`\bar{\ell }` are computed in BONAMI for slab,
sphere, and cylinder absorber bodies. In the most common mode of operation where
BONAMI is executed through the XSProc module in SCALE, Dancoff factors for
uniform lattices are computed automatically and provided as input to BONAMI.
For nonuniform lattices—such as those containing water holes, control rods,
etc.—it may be desirable for the user to run the SCALE module MCDancoff to
compute Dancoff factors using Monte Carlo for an arbitrary 3D configuration.
In this case the values are provided in the MORE DATA input block of XSProc.
The Bell factor “A” is a correction factor to account for errors caused by use
of the Wigner rational approximation to represent the escape probability from a
lump. Two optional Bell factor corrections are included in BONAMI. The first uses
expressions developed by Otter  that essentially force the Wigner escape
probability for an isolated absorber lump to agree with the exact escape
probability for the particular geometry by determining a value of A as a function of
:math:`{{\Sigma }_{T}}\bar{\ell }` for slab, cylindrical, or spherical
geometries. Since the Otter expression was developed for isolated bodies,
it does not account for errors in the Wigner rational approximation due to
lattice effects. BONAMI also includes a Bell factor correction based on a
modified formulation developed by Leslie :cite:`leslie_improvements_1965` that is a function of the Dancoff factor.

.. _7-3-3:

Interpolation Scheme
--------------------

After the background cross section for a system has been computed,
BONAMI interpolates f-factors at the appropriate σ\ :sub:`0` and
temperature from the tabulated values in the library. :numref:`fig7-3-1` shows
a typical variation of the f-factor vs. background cross sections for
the capture cross section of :sup:`238`\ U in the SCALE 252 group
library.

.. _fig7-3-1:
.. figure:: figs/BONAMI/fig1.png
  :align: center
  :width: 500

  Plot of f-factor variation for :sup:`238`\ U capture reaction.

Interpolation of the f-factors can be problematic, and several different
schemes have been developed for this purpose. Some of the interpolation
methods that have been used in other codes are constrained
Lagrangian, :cite:`davis_sphinx_1977` arc-tangent fitting, :cite:`kidman_improved_1974` and an approach developed by
Segev :cite:`segev_interpolation_1981`. All of these were tested and found to be inadequate for use
with the SCALE libraries, which may have multiple energy groups within a
single resonance. BONAMI uses a unique interpolation method developed by
Greene, which is described in :cite:`greene_method_1982`. Greene’s interpolation method
is essentially a polynomial approach in which the powers of the
polynomial terms can vary within a panel, as shown in :eq:`eq7-3-25`:

.. math::
  :label: eq7-3-22

  f\left( \sigma  \right)\quad =\quad f\left( \sigma {{\,}_{1}} \right)\quad +\quad \frac{\sigma {{\,}^{q(\sigma )}}\quad -\quad \sigma \,_{1}^{q(\sigma )}}{\sigma \,_{2}^{q(\sigma )}\quad -\quad \sigma \,_{1}^{q(\sigma )}}\quad \left( f\left( {{\sigma }_{2}} \right)\quad -\quad f\left( {{\sigma }_{1}} \right) \right)\quad ,

where

.. math::
  :label: eq7-3-23

  q\left( \sigma  \right)\quad =\quad q\left( \sigma {{\,}_{1}} \right)\quad +\quad \frac{\sigma \quad -\quad \sigma \,_{1}^{{}}}{\sigma \,_{2}^{{}}\quad -\quad \sigma \,_{1}^{{}}}\quad \left( q\left( {{\sigma }_{2}} \right)\quad -\quad q\left( {{\sigma }_{1}} \right) \right)\quad .

:numref:`fig7-3-2` illustrates the expected behavior of :eq:`eq7-3-22` caused by varying
the powers in a panel.

By allowing the power *q* to vary as a function of independent
variable σ, we can move between the various monotonic curves on the
graph in a monotonic fashion. Note that when *p* crosses the
*p* = 1 curve, the shape changes from concave to convex, or vice versa.
This shape change means that we can use the scheme to introduce an
inflection point, which is exactly the situation needed for
interpolating f-factors.

.. _fig7-3-2:
.. figure:: figs/BONAMI/fig2.png
  :align: center
  :width: 500

  Illustration of the effects of varying “powers” in the Greene interpolation method.

:numref:`fig7-3-3` and :numref:`fig7-3-3` show typical “fits” of the f-factors using
the Greene interpolation scheme for two example cases. Note, in
particular, that since this scheme has guaranteed monotonicity, it
easily accommodates the end panels that have the smooth asymptotic
variation. Even considering the extra task of having to determine the
powers for temperature and σ\ :sub:`0` interpolations, the method is not
significantly more time-consuming than the alternative schemes for most
applications.

.. _fig7-3-3:
.. figure:: figs/BONAMI/fig3.png
  :align: center
  :width: 500

  Use of Greene’s method to fit the σ\ :sub:`0` variation of Bondarenko factors for case 1.

.. _fig7-3-4:
.. figure:: figs/BONAMI/fig4.png
  :align: center
  :width: 500

  Use of Greene’s method to fit the σ\ :sub:`0` variation of Bondarenko factors for case 2.

.. _7-3-4:

Input Instructions
------------------

BONAMI is most commonly used as an integral component of XSProc through
SCALE automated analysis sequences. XSProc automatically prepares all
the input data for BONAMI and links it with the other self-shielding
modules. During a SCALE sequence execution, the data are provided
directly to BONAMI in memory through XSProc. Some of the input
parameters can be modified in the MOREDATA block in XSProc.

However, the legacy interface to execute stand-alone BONAMI calculations
has been preserved for expert users. The legacy input to BONAMI uses the
FIDO schemes described in the FIDO chapter of the SCALE manual. The
BONAMI input for standalone execution is given below, where the MOREDATA
input keywords are marked in bold.

.. centered:: Data Block 1

0$ Logical Unit Assignments [4]

  1. masterlib— input master library (Default = 23)

  2. mwt—not used

  3. msc—not used

  4. newlib—output master library (Default = 22)

1$ Case Description [6]

  1. cellgeometry—geometry description

      0 homogeneous

      1 slab

      2 cylinder

      3 sphere

  2. numzones—number of zones or material regions

  3. mixlength—mixing table length. This is the total number of entries
  needed to describe the concentrations of all constituents in all
  mixtures in the problem.

  4. ib—not used

  5. **crossedt**—output edit option

      0 no output (Default)

      1 input echo

      2 iteration list, timing

      3 background cross section calculation details

      4 shielded cross sections, Bondarenko factors

  6. issopt—not used

  7. **iropt—**\ resonance approximation option

      0 NR (Default) (Bondarenko iterations)

      1 IR with potential scattering

      2 IR with absorption and potential scattering (Bondarenko iterations)

      3 IR with absorption and elastic scattering (Bondarenko iterations)

  8. **bellopt—**\ Bell factor calculation option

      0 Otter
      1 Leslie (Default)

  9. **escxsopt—**\ escape cross section calculation option

      0 consistent

      1 inconsistent (Default)

2\* Floating-Point Constants [2]

  1. **bonamieps**—convergence criteria for the Bondarenko iteration
  (Default = 0.001)

  2. **bellfact**—geometrical escape probability adjustment factor. See
  notes below on this parameter (Default = 0.0).

T Terminate Data Block 1.

.. centered:: Data Block 2

3$	 Mixture numbers in the mixing table [mixlength]
4$	 Component (nuclide) identifiers in the mixing table [mixlength]
5*	 Concentrations (atoms/b-cm) in the mixing table [mixlength]
6$	 Mixtures by zone [numzones]
7*	 Outer radii (cm) by zone [numzones]
8*	 Temperature (k) by zone [numzones]
9*	 Escape cross section (cm\ :sup:`-1`) by zone [numzones]
10$	  Not used
11$	  Not used
12*	  Temperature (K) of the nuclide in a one-to-one correspondence with the mixing table arrays.
13*	  Dancoff factors by zone [numzones]
14*	  Lbar (:math:`\bar{\ell }`) factors by zone [numzones]

T	Terminate Data Block 2.

This concludes the input data required by BONAMI.

.. _7-3-4-1:

Notes on input
~~~~~~~~~~~~~~

In the 1$ array, *cellgeometry* specifies the geometry. The geometry
information is used in conjunction with the 7* array to calculate mean
chord length *Lbar* if it is not provided by the user in the 14\* array.

*numzones*, the number of zones, may or may not model a real situation.
It may, for example, be used to specify *numzones* independent media to
perform a cell calculation in parallel with one or more infinite medium
calculations. The geometry description in 1$ array applies only to mean
chord length calculations unless it is provided in 14*.

In the 2* array, *bonamieps* is used to specify the convergence expected
on all macroscopic total values by zone, that is, each :math:`{{\Sigma }_{t}}(g,j)` in group g and
zone j is converged so that

.. math::
  :label: eq7-3-24

  \frac{\left| \,\Sigma \,_{t}^{i}(g,j)\quad -\quad \Sigma \,_{t}^{i-1}(g,j)\, \right|}{\Sigma \,_{t}^{i}(g,j)}\quad \le \quad bonamieps\quad .

The “Bell” factor in the 2* array is the parameter used to adjust the
Wigner rational approximation for the escape probability to a more
correct value. It has been suggested that if one wishes to use one
constant value, the Bell factor should be 1.0 for slabs and 1.35
otherwise. In the ordinary case, BONAMI defaults the Bell factor to zero
and uses a prescription by Otter :cite:`otter_escape_1964` to determine a cross-section
geometry-dependent value of the Bell factor for isolated absorber
bodies. It uses a prescription by Leslie\ :sup:`6` to determine the
Dancoff factor–dependent values of the Bell factor for lattices, which
are much more accurate than the single value. The user who wishes to
determine the constant value can, however, use it by inputting a value
other than zero.

The 3$, 4$, and 5* arrays are used to specify the concentrations of the
constituents of all mixtures in the problem as follows:

Entry 3$  (Mixture Number)  4$ (Nuclide ID)   5\* (Concentrations)

1

2

.

.

.

.

mixlength

.

Because of the manner in which BONAMI references the nuclides in a
calculation, each nuclide in the problem must have a unique entry in the
mixing table. Thus one cannot specify a mixture and subsequently load it
into more than one zone, as can be the case with many modules requiring
this type of data.

The 12* array is used to allow varying the temperatures by nuclide
within a zone. In the event this array is omitted, the 12* array will
default by nuclide to the temperature of the zone containing the
nuclide.

The mixture numbers in each zone are specified in the 6$ array. Mixture
numbers are arbitrary and need only match up with those used in the
3$ array.

The radii in the 7* array are referenced to a zero value at the left
boundary of the system.

In the event the temperatures in the 8* array are not bounded by
temperature values in the Bondarenko tables, BONAMI will extrapolate
using the three temperature points closest to the value. For example, a
request for 273 K for a nuclide with Bondarenko sets at 300, 900, and
2,100 K would use the polynomial fit from those three temperature points
to extrapolate the 273 K value.

The escape cross sections in the 9* array allow a macro escape cross
section (:math:`\Sigma _{e}^{input}`) to be specified by zone. (This array can be ignored if
Dancoff factors are provided.) If the Dancoff factor for a zone is
specified as −1 in the input, then the user-specified escape cross
section is used in calculating the background cross sections σ\ :sub:`0`
as follows:

.. math::
  :label: eq7-3-25

  {{\sigma }_{0}}\quad =\quad \frac{\sum\limits_{n\ne i}{{{N}_{n}}\ \sigma \,_{t}^{n}\quad +\quad \Sigma _{e}^{input}}}{{{N}_{i}}}\quad

.. _7-3-5:

Sample Problem
--------------

In most cases, the input data to BONAMI are simple and obvious because
the complicated parameters are determined internally based on the
options selected. The user describes his geometry, the materials
contained therein, the temperatures, and a few options.

This problem is for a system of iron-clad uranium (U\ :sup:`238` –
U\ :sup:`235` ) fuel pins arranged in a square lattice in a water pool.

.. image:: figs/BONAMI/ex1.png
  :align: center
  :width: 300

Our number densities are

Fuel:

  :math:`{{N}_{{}^{235}U}}`  = 1.4987 × 10\ :sup:`−4`

  :math:`{{N}_{{}^{238}U}}`  = 2.0664× 10\ :sup:`−-2`

Clad:

  :math:`{{N}_{{}^{56}Fe}}`  = 9.5642× 10\ :sup:`−5`

Water:

    N\ :sub:`H` = 6.6662 × 10\ :sup:`−2`

    N\ :sub:`O` = 3.3331 × 10\ :sup:`−2`

For the problem, we choose *iropt* = 1 (IR approximation with scattering
approximated by λΣ\ :sub:`p`) and *crossedt* = 4 for the most detailed
output edits. An 8-group test library is used for fast execution and a
short output file.

The XSProc/CSAS1X SCALE sequence input file, the corresponding i_bonami
FIDO input file created by the sequence under the temporary working
directory, and an abbreviated copy of the output from this case follows.

.. highlight:: scale

::

  =csas1x
  Assembly pin
  test-8grp
  read comp
  ' fuel
  u-235  1 0 1.4987e-4 297.15 end
  u-238  1 0 2.0664e-2 297.15 end
  ' clad
  fe-56  2  0 9.5642e-5 297.15 end
  ' coolant
  h      3 0 6.6662e-2 297.15 end
  o      3 0 3.3331e-2 297.15 end
  end comp
  ' ====================================================================
  read celldata
  latticecell squarepitch  pitch=1.26 3  fuelr=0.405765 1
                                         cladr=0.47498  2 end

  moredata iropt=1 crossedt=4 end moredata
  end celldata
  ' ====================================================================
  end

FIDO input i_bonami

::

  -1$$  a0001
      500000
  e
   0$$  a0001
          11           0          18           1
  e
   1$$  a0001
           1           3           5           0           4        1010
           1          -1          -1
  e
  2**  a0001
   1.00000E-03   0.00000E+00
   e
  t
   3$$  a0001
           1           1           2           3           3
  e
   4$$  a0001
       92235       92238       26056        1001        8016
  e
  5**  a0001
   1.49870E-04   2.06640E-02   9.56420E-05   6.66620E-02   3.33310E-02
   e
   6$$  a0001
           1           2           3
  e
  7**  a0001
   4.05765E-01   4.74980E-01   7.10879E-01
   e
  8**  a0001
   2.97150E+02   2.97150E+02   2.97150E+02
   e
  9**  a0001
   1.11870E+00   4.15813E+00   1.78119E-01
   e
  10$$  a0001
       92235       92238       26056        1001        8016
  e
  11$$  a0001
           0           0           0
  e
  13**  a0001
   2.71260E-01   5.20852E-01   9.24912E-01
   e
  14**  a0001
   8.11530E-01   1.38430E-01   4.71798E-01
   e
  15**  a0001
   0.00000E+00   0.00000E+00   0.00000E+00   0.00000E+00
   e
  16$$  a0001
           2           2           2
  e
  17$$  a0001
           0           0           0           0
  e
  t

::





                                       program verification information

                                   code system:  SCALE    version:  6.2




              program:  bonami

        creation date:   unknown

              library:  /home02/u2m/Workfolder/sampletmp


            test code:  bonami

              version:  6.2.0

              jobname:  u2m

         machine name:  node22.ornl.gov

    date of execution:  04_dec_2013

    time of execution:  21:43:54.38

::

  1
                  BONAMI CELL PARAMETERS
  ---------------------------------------------
  Bonami Print Option          : 4
  BellFactor                   : 0
  Bondarenko Iteration eps     : 0.001
  Resonance Option             : 1
  Bell Factor  Option          : LESLIE
  Escape CrossSection  Option  : INCONSISTENT
  CellGeometry                 : 2
  MasterLibrary                :
  Number oF Neutron Groups     : 8
  First Thermal Neutron Group  : 5
  __________________________________________
  Processing Zone               : 1
  Mixture Number                : 1
  Number Of Nuclides            : 2
  Dancoff Factor                : 0.27126
  Lbar                          : 0.81153
  Escape Cross Section Input    : 1.1187
  Material Temeprature          : 297.15

  Processing Nuclide :  92235  Number Density : 0.00014987
  Processing Nuclide :  92238  Number Density : 0.020664

  Bondarenko Iterations
  iteration    Nuclide Group   MaxChange   Selfsig0     Effsig0
       1        92235     0             0          0   0
       1        92238     0             0          0   0

  Total number of Bondarenko Iterations  : 1
  Max Change in Group                    : 0

  Group  Eff Macro Sig0      Escape Xsec
     1      0.2351032         0.9075513
     2      0.2351032         0.9075513
     3      0.2351032         0.9075513
     4      0.2351032         0.9075513
     5      0.2351032         0.9075513
     6      0.2351032         0.9075513
     7      0.2351032         0.9075513
     8      0.2351032         0.9075513

  ---------------------------------------------------

::

  Shielding Nuclide 92235

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
     1     1    7612.71875         7.19131      0.999998   7.19129
     1     2    7612.71875         10.2521      0.999616   10.2481
     1     3    7612.71875         24.9361       1.00241   24.9963
     1     4    7612.71875         75.1109       1.05902   79.5436
     1     5    7612.71875         56.0286       1.00205   56.1434
     1     6    7612.71875         198.645        1.0008   198.805
     1     7    7612.71875         347.945       1.00024   348.028
     1     8    7612.71875         761.257        1.0066   766.282

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
     2     1    7612.71875         3.71448      0.999999   3.71448
     2     2    7612.71875         7.63235       0.99935   7.62739
     2     3    7612.71875          11.841      0.999444   11.8345
     2     4    7612.71875         11.5408       1.00561   11.6055
     2     5    7612.71875         12.5449       1.00001   12.545
     2     6    7612.71875         14.2501       1.00007   14.2511
     2     7    7612.71875         14.8125       1.00003   14.8128
     2     8    7612.71875         15.1274       1.00015   15.1297

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
    18     1    7612.71875         1.21846      0.999996   1.21846
    18     2    7612.71875         1.40834        1.0002   1.40862
    18     3    7612.71875         8.92885       1.00132   8.94062
    18     4    7612.71875         39.2086       1.06274   41.6686
    18     5    7612.71875         32.7026       1.00105   32.737
    18     6    7612.71875         153.511       1.00089   153.647
    18     7    7612.71875         285.775       1.00026   285.848
    18     8    7612.71875         636.445       1.00655   640.611

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
   102     1    7612.71875        0.060296             1   0.0602962
   102     2    7612.71875        0.317627       1.00352   0.318746
   102     3    7612.71875         4.16593       1.01325   4.22113
   102     4    7612.71875         24.3615       1.07832   26.2695
   102     5    7612.71875          10.781       1.00749   10.8618
   102     6    7612.71875         30.8844       1.00074   30.9073
   102     7    7612.71875         47.3579        1.0002   47.3671
   102     8    7612.71875         109.685       1.00781   110.542

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
  1007     1    7612.71875               0             0   0
  1007     2    7612.71875               0             0   0
  1007     3    7612.71875               0             0   0
  1007     4    7612.71875               0             0   0
  1007     5    7612.71875         12.5448       1.00001   12.5449
  1007     6    7612.71875         14.2501       1.00007   14.2511
  1007     7    7612.71875         14.8125       1.00003   14.8129
  1007     8    7612.71875         15.1278       1.00015   15.13

  ---------------------------------------------------

::

  Shielding Nuclide 92238

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
     1     1    44.0034676         7.33815      0.999983   7.33803
     1     2    44.0034676         10.3566       1.00418   10.3999
     1     3    44.0034676         15.0517      0.976844   14.7032
     1     4    44.0034676          15.951      0.983793   15.6925
     1     5    44.0034676         9.43867       1.00002   9.43887
     1     6    44.0034676         10.1008       1.00008   10.1015
     1     7    44.0034676         10.7744       1.00004   10.7748
     1     8    44.0034676         12.2124       1.00145   12.2301

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
     2     1    44.0034676          4.0228      0.999974   4.0227
     2     2    44.0034676         9.05886       1.00575   9.11093
     2     3    44.0034676         14.0213      0.979923   13.7398
     2     4    44.0034676         11.9032       0.98795   11.7598
     2     5    44.0034676         8.86555      0.999984   8.86541
     2     6    44.0034676         9.24452       1.00002   9.24471
     2     7    44.0034676          9.2797       1.00002   9.27987
     2     8    44.0034676          9.3077       1.00009   9.30853

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
    18     1    44.0034676        0.376356       1.00001   0.376361
    18     2    44.0034676     0.000528746       1.00019   0.000528845
    18     3    44.0034676     0.000308061      0.966052   0.000297603
    18     4    44.0034676     4.75014e-06      0.967842   4.59738e-06
    18     5    44.0034676     2.60878e-06       1.00006   2.60893e-06
    18     6    44.0034676     5.27139e-06       1.00071   5.27512e-06
    18     7    44.0034676      9.3235e-06       1.00018   9.32514e-06
    18     8    44.0034676     1.81868e-05       1.00588   1.82937e-05

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
   102     1    44.0034676       0.0554327       1.00006   0.0554359
   102     2    44.0034676         0.17972      0.978628   0.175879
   102     3    44.0034676         1.03011      0.934934   0.963087
   102     4    44.0034676         4.04777      0.971568   3.93268
   102     5    44.0034676        0.573119        1.0006   0.573462
   102     6    44.0034676        0.856257       1.00068   0.856839
   102     7    44.0034676         1.49471       1.00017   1.49497
   102     8    44.0034676         2.90465       1.00586   2.92168

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
  1007     1    44.0034676               0             0   0
  1007     2    44.0034676               0             0   0
  1007     3    44.0034676               0             0   0
  1007     4    44.0034676               0             0   0
  1007     5    44.0034676         8.86549      0.999984   8.86535
  1007     6    44.0034676         9.24445       1.00002   9.24463
  1007     7    44.0034676         9.27974       1.00002   9.27992
  1007     8    44.0034676         9.30769       1.00009   9.30852
  Zone Calculation is completed in 0 seconds
                  BONAMI CELL PARAMETERS
  ---------------------------------------------
  Bonami Print Option          : 4
  BellFactor                   : 0
  Bondarenko Iteration eps     : 0.001
  Resonance Option             : 1
  Bell Factor  Option          : LESLIE
  Escape CrossSection  Option  : INCONSISTENT
  CellGeometry                 : 2
  MasterLibrary                :
  Number oF Neutron Groups     : 8
  First Thermal Neutron Group  : 5
  __________________________________________
  Processing Zone               : 2
  Mixture Number                : 2
  Number Of Nuclides            : 1
  Dancoff Factor                : 0.520852
  Lbar                          : 0.13843
  Escape Cross Section Input    : 4.15813
  Material Temeprature          : 297.15

  Processing Nuclide :  26056  Number Density : 9.5642e-05

  Bondarenko Iterations
  iteration    Nuclide Group   MaxChange   Selfsig0     Effsig0
       1        26056     0             0          0   0

  Total number of Bondarenko Iterations  : 1
  Max Change in Group                    : 0

  Group  Eff Macro Sig0      Escape Xsec
     1     0.0003553244          3.487286
     2     0.0003553244          3.487286
     3     0.0003553244          3.487286
     4     0.0003553244          3.487286
     5     0.0003553244          3.487286
     6     0.0003553244          3.487286
     7     0.0003553244          3.487286
     8     0.0003553244          3.487286

  ---------------------------------------------------

::

  Shielding Nuclide 26056

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
     1     1    36461.8672         3.07957       1.00005   3.07972
     1     2    36461.8672         4.68958       1.00091   4.69382
     1     3    36461.8672         7.85712      0.999843   7.85589
     1     4    36461.8672         12.0029             1   12.0029
     1     5    36461.8672         12.3689       1.00001   12.369
     1     6    36461.8672         12.8598       1.00003   12.8602
     1     7    36461.8672         13.5237      0.999906   13.5224
     1     8    36461.8672         15.0714       0.99949   15.0637

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
     2     1    36461.8672         2.26476       1.00047   2.26583
     2     2    36461.8672          4.6817        1.0009   4.68592
     2     3    36461.8672         7.81457      0.999813   7.81311
     2     4    36461.8672         11.9143             1   11.9143
     2     5    36461.8672         12.0468       1.00001   12.0469
     2     6    36461.8672          12.065       1.00002   12.0653
     2     7    36461.8672         12.0887       1.00005   12.0893
     2     8    36461.8672         12.2042       1.00013   12.2057

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
   102     1    36461.8672      0.00206393        1.0015   0.00206702
   102     2    36461.8672      0.00787763        1.0035   0.00790524
   102     3    36461.8672       0.0425504       1.00623   0.0428155
   102     4    36461.8672       0.0885525             1   0.0885529
   102     5    36461.8672        0.322101       1.00002   0.322109
   102     6    36461.8672        0.794804        1.0002   0.79496
   102     7    36461.8672         1.43496      0.998734   1.43314
   102     8    36461.8672         2.86723      0.996792   2.85803

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
  1007     1    36461.8672               0             0   0
  1007     2    36461.8672               0             0   0
  1007     3    36461.8672               0             0   0
  1007     4    36461.8672               0             0   0
  1007     5    36461.8672         12.0468       1.00001   12.0469
  1007     6    36461.8672          12.065       1.00002   12.0653
  1007     7    36461.8672         12.0887       1.00005   12.0893
  1007     8    36461.8672         12.2042       1.00013   12.2057
  Zone Calculation is completed in 0 seconds

::

  BONAMI CELL PARAMETERS
  ---------------------------------------------
  Bonami Print Option          : 4
  BellFactor                   : 0
  Bondarenko Iteration eps     : 0.001
  Resonance Option             : 1
  Bell Factor  Option          : LESLIE
  Escape CrossSection  Option  : INCONSISTENT
  CellGeometry                 : 2
  MasterLibrary                :
  Number oF Neutron Groups     : 8
  First Thermal Neutron Group  : 5
  __________________________________________
  Processing Zone               : 3
  Mixture Number                : 3
  Number Of Nuclides            : 2
  Dancoff Factor                : 0.924912
  Lbar                          : 0.471798
  Escape Cross Section Input    : 0.178119
  Material Temeprature          : 297.15

  Processing Nuclide :   1001  Number Density : 0.066662
  Processing Nuclide :   8016  Number Density : 0.033331

  Bondarenko Iterations
  iteration    Nuclide Group   MaxChange   Selfsig0     Effsig0
       1         1001     0             0          0   0
       1         8016     0             0          0   0

  Total number of Bondarenko Iterations  : 1
  Max Change in Group                    : 0

  Group  Eff Macro Sig0      Escape Xsec
     1       1.494705         0.1593803
     2       1.494705         0.1593803
     3       1.494705         0.1593803
     4       1.494705         0.1593803
     5       1.494705         0.1593803
     6       1.494705         0.1593803
     7       1.494705         0.1593803
     8       1.494705         0.1593803

  ---------------------------------------------------

::

  Shielding Nuclide 1001

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
     1     1    4.33502197         2.98905      0.999485   2.98751
     1     2    4.33502197         9.87269      0.999169   9.86448
     1     3    4.33502197         19.9332      0.999972   19.9326
     1     4    4.33502197         20.4672      0.998926   20.4453
     1     5    4.33502197         21.1735       1.00001   21.1736
     1     6    4.33502197         26.1886       0.99995   26.1873
     1     7    4.33502197         35.0621      0.999821   35.0558
     1     8    4.33502197         54.9507      0.997361   54.8057

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
     2     1    4.33502197         2.98901      0.999485   2.98747
     2     2    4.33502197          9.8726      0.999168   9.86439
     2     3    4.33502197         19.9315      0.999972   19.9309
     2     4    4.33502197         20.4556      0.998926   20.4336
     2     5    4.33502197         21.1321       1.00001   21.1322
     2     6    4.33502197         26.0865       0.99995   26.0852
     2     7    4.33502197         34.8778      0.999829   34.8718
     2     8    4.33502197         54.5786      0.997396   54.4365

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
   102     1    4.33502197     3.56422e-05       1.00003   3.56433e-05
   102     2    4.33502197     8.96827e-05      0.998165   8.9518e-05
   102     3    4.33502197      0.00171679      0.999794   0.00171643
   102     4    4.33502197       0.0116042       1.00002   0.0116044
   102     5    4.33502197       0.0413709       1.00001   0.0413714
   102     6    4.33502197        0.102043       1.00007   0.10205
   102     7    4.33502197        0.184322      0.998389   0.184025
   102     8    4.33502197        0.372079      0.992163   0.369163

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
  1007     1    4.33502197               0             0   0
  1007     2    4.33502197               0             0   0
  1007     3    4.33502197               0             0   0
  1007     4    4.33502197               0             0   0
  1007     5    4.33502197         21.1312       1.00005   21.1322
  1007     6    4.33502197         26.0871      0.999927   26.0852
  1007     7    4.33502197         34.8779      0.999826   34.8718
  1007     8    4.33502197         54.5802      0.997367   54.4365

  ---------------------------------------------------

::

  Shielding Nuclide 8016

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
     1     1    45.7377472         2.36081      0.980071   2.31376
     1     2    45.7377472         3.95917      0.995755   3.94236
     1     3    45.7377472         3.84394             1   3.84394
     1     4    45.7377472         3.85289             1   3.85291
     1     5    45.7377472         3.85531       1.00002   3.85537
     1     6    45.7377472          3.8648       1.00006   3.86502
     1     7    45.7377472         3.89139       1.00014   3.89194
     1     8    45.7377472         4.01909       1.00036   4.02056

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
     2     1    45.7377472         2.34636      0.979939   2.29929
     2     2    45.7377472         3.95907      0.995756   3.94226
     2     3    45.7377472         3.84393             1   3.84393
     2     4    45.7377472         3.85288             1   3.8529
     2     5    45.7377472         3.85529       1.00002   3.85535
     2     6    45.7377472         3.86474       1.00006   3.86496
     2     7    45.7377472         3.89128       1.00014   3.89183
     2     8    45.7377472         4.01888       1.00037   4.02035

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
   102     1    45.7377472      0.00010111        1.0002   0.00010113
   102     2    45.7377472     0.000101635      0.991292   0.00010075
   102     3    45.7377472     7.10826e-06       1.00036   7.11084e-06
   102     4    45.7377472      7.2788e-06       1.00001   7.27885e-06
   102     5    45.7377472     2.38519e-05       1.00003   2.38526e-05
   102     6    45.7377472     5.83622e-05       1.00019   5.83734e-05
   102     7    45.7377472     0.000105195      0.998729   0.000105061
   102     8    45.7377472     0.000209981      0.996663   0.00020928

  mt   Group      sig0      infDiluted Xsec    f-factor  shielded Xsec
  1007     1    45.7377472               0             0   0
  1007     2    45.7377472               0             0   0
  1007     3    45.7377472               0             0   0
  1007     4    45.7377472               0             0   0
  1007     5    45.7377472         3.85523       1.00003   3.85535
  1007     6    45.7377472         3.86483       1.00003   3.86496
  1007     7    45.7377472         3.89119       1.00016   3.89183
  1007     8    45.7377472         4.01794        1.0006   4.02035
  Zone Calculation is completed in 0 seconds
   module: BonamiM  has terminated after a cpu usage of  0.0100  seconds








.. bibliography:: bibs/BONAMI.bib