XSDRNPM.html 29.7 KB
Newer Older
Batson Iii's avatar
Batson Iii committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537


<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>XSDRNPM: A ONE-DIMENSIONAL DISCRETE-ORDINATES CODE FOR TRANSPORT ANALYSIS &mdash; SCALE Manual 0.0.1 documentation</title>
  

  
  <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
  <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
  <link rel="stylesheet" href="_static/custom.css" type="text/css" />

  
  
  
  

  
  <!--[if lt IE 9]>
    <script src="_static/js/html5shiv.min.js"></script>
  <![endif]-->
  
    
      <script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
        <script src="_static/jquery.js"></script>
        <script src="_static/underscore.js"></script>
        <script src="_static/doctools.js"></script>
        <script src="_static/language_data.js"></script>
        <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
    
    <script type="text/javascript" src="_static/js/theme.js"></script>

    
    <link rel="index" title="Index" href="genindex.html" />
    <link rel="search" title="Search" href="search.html" /> 
</head>

<body class="wy-body-for-nav">

   
  <div class="wy-grid-for-nav">
    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search" >
          

          
            <a href="index.html" class="icon icon-home" alt="Documentation Home"> SCALE Manual
          

          
          </a>

          
            
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        
        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <p class="caption"><span class="caption-text">Reactor Physics</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="TRITON.html">TRITON: A Multipurpose Transport, Depletion, And Sensitivity and Uncertainty Analysis Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="TRITONAppABC.html">TRITON Appendices</a></li>
<li class="toctree-l1"><a class="reference internal" href="Polaris.html">POLARIS - 2D Light Water Reactor Lattice Physics Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="PolarisA.html">SCALE 6.2 Polaris Input Format</a></li>
</ul>
<p class="caption"><span class="caption-text">Depletion, Activation, and Spent Fuel Source Terms</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Depletion%2C%20Activation%2C%20and%20Spent%20Fuel%20Source%20Terms%20Overview.html">Depletion, Activation, and Spent Fuel Source Terms Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="ORIGEN.html">Origen: Neutron Activation, Actinide Transmutation, Fission Product Generation, and Radiation Source Term Calculation</a></li>
<li class="toctree-l1"><a class="reference internal" href="ORIGEN-Data.html">Origen Data Resources</a></li>
<li class="toctree-l1"><a class="reference internal" href="ORIGEN-Data.html#energy-resource">Energy Resource</a></li>
<li class="toctree-l1"><a class="reference internal" href="ORIGEN-Data.html#decay-resource-format">Decay Resource Format</a></li>
<li class="toctree-l1"><a class="reference internal" href="ORIGEN-Data.html#fission-yield-resource-format">Fission Yield Resource Format</a></li>
<li class="toctree-l1"><a class="reference internal" href="ORIGEN-Data.html#gamma-resource-format">Gamma Resource Format</a></li>
<li class="toctree-l1"><a class="reference internal" href="ORIGEN-Data.html#origen-end7dec-nuclide-set">ORIGEN “end7dec” Nuclide Set</a></li>
<li class="toctree-l1"><a class="reference internal" href="ORIGAMI.html">ORIGAMI: A Code for Computing Assembly Isotopics with ORIGEN</a></li>
<li class="toctree-l1"><a class="reference internal" href="SLIG.html">SCALE/Origen Library Generator (SLIG)</a></li>
<li class="toctree-l1"><a class="reference internal" href="Origenutil.html">ORIGEN Utility Programs</a></li>
</ul>
<p class="caption"><span class="caption-text">Sensitivity and Uncertainty Analysis</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Sensitivity%20and%20Uncertainty%20Analysis%20Overview.html">Snesitivity and Uncertainty Analysis Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="tsunami-1d.html">TSUNAMI-1D:  Control Module for One-Dimensional Cross-Section Sensitivity and Uncertainty</a></li>
<li class="toctree-l1"><a class="reference internal" href="tsunami-1d-appA.html">XSDRNPM Data File Formats</a></li>
<li class="toctree-l1"><a class="reference internal" href="tsunami-3d.html">TSUNAMI-3D: Control Module for Three-Dimensional Cross Section Sensitivity and Uncertainty Analysis for Criticality</a></li>
<li class="toctree-l1"><a class="reference internal" href="sams.html">SAMS: Sensitivity Analysis Module for Scale</a></li>
<li class="toctree-l1"><a class="reference internal" href="sams-appA.html">Sensitivity Data File Formats</a></li>
<li class="toctree-l1"><a class="reference internal" href="tsar.html">TSAR: Tool for Sensitivity Analysis of Reactivity Responses</a></li>
<li class="toctree-l1"><a class="reference internal" href="tsunami-ip.html">TSUNAMI Utility Modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="tsunami-ip-appAB.html">Data File Formats</a></li>
<li class="toctree-l1"><a class="reference internal" href="tsurfer.html">TSURFER: An Adjustment Code to Determine Biases and Uncertainties in Nuclear System Responses by Consolidating Differential Data and Benchmark Integral Experiments</a></li>
<li class="toctree-l1"><a class="reference internal" href="tsurfer-appA.html">TSURFER Appendix A: Sensitivity/Uncertainty Notation</a></li>
<li class="toctree-l1"><a class="reference internal" href="sampler.html">Sampler: A Module for Statistical Uncertainty Analysis with Scale Sequences</a></li>
</ul>
<p class="caption"><span class="caption-text">Criticality Safety</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Criticality%20Safety%20Overview.html">Criticality Safety Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS5.html">CSAS5:  Control Module For Enhanced Criticality Safety Analysis Sequences With KENO V.a</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS5App.html">Additional Example Applications of CSAS5</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS6.html">CSAS6:  Control Module for Enhanced Criticality Safety Analysis with KENO-VI</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS6App.html">Additional Example Applications of CSAS6</a></li>
<li class="toctree-l1"><a class="reference internal" href="STARBUCS.html">STARBUCS: A Scale Control Module for Automated Criticality Safety Analyses Using Burnup Credit</a></li>
<li class="toctree-l1"><a class="reference internal" href="Sourcerer.html">Sourcerer: Deterministic Starting Source for Criticality Calculations</a></li>
<li class="toctree-l1"><a class="reference internal" href="DEVC.html">DEVC: Denovo EigenValue Calculation</a></li>
<li class="toctree-l1"><a class="reference internal" href="KMART.html">KMART5 and KMART6: Postprocessors for KENO V.A and KENO-VI</a></li>
<li class="toctree-l1"><a class="reference internal" href="K5C5.html">K5toK6 and C5toC6: Input File Conversion Programs for KENO and CSAS</a></li>
</ul>
<p class="caption"><span class="caption-text">Material Specification and Cross Section Processing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Material%20Specification%20and%20Cross%20Section%20Processing%20Overview.html">Material Specification and Cross Section Processing Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProc.html">XSPROC: The Material and Cross Section Processing Module for SCALE</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProcAppA.html">XSProc: Standard Composition Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProcAppB.html">XSProc Standard Composition Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProcAppC.html">Examples of Complete XSProc Input Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="stdcmp.html">Standard Composition Library</a></li>
<li class="toctree-l1"><a class="reference internal" href="BONAMI.html">BONAMI: Resonance Self-Shielding by the Bondarenko Method</a></li>
<li class="toctree-l1"><a class="reference internal" href="CENTRM.html">CENTRM: A Neutron Transport Code for Computing Continuous-Energy Spectra in General One-Dimensional Geometries and Two-Dimensional Lattice Cells</a></li>
<li class="toctree-l1"><a class="reference internal" href="PMC.html">PMC: A Program to Produce Multigroup Cross Sections Using Pointwise Energy Spectra from CENTRM</a></li>
<li class="toctree-l1"><a class="reference internal" href="PMCAppAB.html">PMC Appendices A and B</a></li>
<li class="toctree-l1"><a class="reference internal" href="CHOPS.html">CHOPS: Module to Compute Pointwise Disadvantage Factors and Produce a Cell-Homogenized CENTRM Library</a></li>
<li class="toctree-l1"><a class="reference internal" href="CRAWDAD.html">CRAWDAD: Module to Produce CENTRM-Formatted Continuous-Energy Nuclear Data Libraries</a></li>
<li class="toctree-l1"><a class="reference internal" href="MCDancoff.html">MCDancoff Data Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="CAJUN.html">CAJUN: Module for Combining and Manipulating CENTRM Continuous-Energy Libraries</a></li>
</ul>
<p class="caption"><span class="caption-text">Monte Carlo Transport</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Monte%20Carlo%20Transport%20Overview.html">Monte Carlo Transport Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="KenoA.html">Keno Appendix A: KENO V.a Shape Descriptions</a></li>
<li class="toctree-l1"><a class="reference internal" href="KenoB.html">Keno Appendix B: KENO VI Shape Descriptions</a></li>
<li class="toctree-l1"><a class="reference internal" href="KenoC.html">Keno Appendix C: Sample problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Monaco.html">Monaco: A Fixed-Source Monte Carlo Transport Code for Shielding Applications</a></li>
</ul>
<p class="caption"><span class="caption-text">Radiation Shielding</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="MAVRIC.html">MAVRIC: Monaco with Automated Variance Reduction using Importance Calculations</a></li>
<li class="toctree-l1"><a class="reference internal" href="CAAScapability.html">MAVRIC Appendix A: CAAS Capability</a></li>
<li class="toctree-l1"><a class="reference internal" href="appendixb.html">MAVRIC Appendix B: MAVRIC Utilities</a></li>
<li class="toctree-l1"><a class="reference internal" href="appendixc.html">MAVRIC Appendix C: Advanced Features</a></li>
</ul>
<p class="caption"><span class="caption-text">Deterministic Transport</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Deterministic%20Transport%20Intro.html"><em>k</em>:sub:`eff`Deterministic Transport Overview</a></li>
</ul>

            
          
        </div>
        
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="index.html">SCALE Manual</a>
        
      </nav>


      <div class="wy-nav-content">
        
        <div class="rst-content">
        
          















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="index.html" class="icon icon-home"></a> &raquo;</li>
        
      <li>XSDRNPM: A ONE-DIMENSIONAL DISCRETE-ORDINATES CODE FOR TRANSPORT ANALYSIS</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
            
            <a href="_sources/XSDRNPM.rst.txt" rel="nofollow"> View page source</a>
          
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="xsdrnpm-a-one-dimensional-discrete-ordinates-code-for-transport-analysis">
<span id="id1"></span><h1>XSDRNPM: A ONE-DIMENSIONAL DISCRETE-ORDINATES CODE FOR TRANSPORT ANALYSIS<a class="headerlink" href="#xsdrnpm-a-one-dimensional-discrete-ordinates-code-for-transport-analysis" title="Permalink to this headline"></a></h1>
<ol class="upperalpha simple" start="12">
<li><ol class="upperalpha simple" start="13">
<li><p>Petrie, N. M. Greene, <a href="#id19"><span class="problematic" id="id2">[1]_</span></a> M. L. Williams</p></li>
</ol>
</li>
</ol>
<p>ABSTRACT</p>
<p>XSDRNPM is a discrete-ordinates code that solves the one-dimensional
Boltzmann equation in slab, cylindrical, or spherical coordinates.
Alternatively, the user can select <em>P</em><sub>1</sub> diffusion theory, infinite
medium theory, or <em>B</em><sub>n</sub> theory. A variety of calculational types is
available, including fixed source, eigenvalue, or “search” calculations.
In SCALE, XSDRNPM is used for several purposes: eigenvalue (k‑effective)
determination, cross-section collapsing, shielding analysis, computation
of fundamental-mode or generalized adjoint functions for sensitivity
analysis, and for producing bias factors for use in Monte Carlo
shielding calculations.</p>
<p>ACKNOWLEDGMENTS</p>
<p>W. W. Engle has been very generous with the use of his notes on Sn theory and on
discussing details of various procedures in XSDRNPM which were lifted directly
from his ANISN program.</p>
<p>The authors also wish to thank R. H. Odegaarden (the former technical monitor at
the U.S. Nuclear Regulatory Commission) who supplied the necessary incentives
for completing this report.</p>
<div class="section" id="introduction">
<span id="id3"></span><h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
<p>XSDRNPM is a one-dimensional (1-D) discrete-ordinates transport code and
is the latest in a series of codes in the XSDRN <a href="#id20"><span class="problematic" id="id4">[2]_</span></a> family. As such, it
contains several unique characteristics, as will be detailed in this
report, though a large portion of the theoretical bases and intended
uses of the program are the same for all versions.</p>
<div class="section" id="functions-performed">
<span id="id5"></span><h3>Functions performed<a class="headerlink" href="#functions-performed" title="Permalink to this headline"></a></h3>
<p>The function of XSDRNPM is twofold: (1) perform a 1-D discrete-ordinates
calculation in slab, cylindrical, or spherical geometry (optionally, a
1-D diffusion theory or infinite medium <span class="math notranslate nohighlight">\(B_n\)</span> calculation can be made),
and (2) use the fluxes determined from its spectral calculation to
collapse input cross sections and write these into one of several
formats.</p>
<p>A great deal of flexibility is allowed in describing a problem for
XSDRNPM. The number of spatial intervals, the number of energy groups,
the number of nuclides, the quadrature order, the order of fits to the
angular variation in basic cross sections are all arbitrary and are
limited only by computer and monetary resources.</p>
<p>The flux calculation can be performed according to several options,
including fixed source calculations, k-calculations, and dimension
search calculations.</p>
<p>A variety of weighting options are allowed, including zone, cell, or a
special “vein” weighting option which is described herein.</p>
<div class="section" id="background-on-xsdrnpm">
<span id="id6"></span><h4>Background on XSDRNPM<a class="headerlink" href="#background-on-xsdrnpm" title="Permalink to this headline"></a></h4>
<p>Development of the XSDRN1 program started in the mid-1960s. The goal was
to develop a program that would combine features from the GAM-II, <a href="#id21"><span class="problematic" id="id7">[3]_</span></a>
ANISN, <a href="#id22"><span class="problematic" id="id8">[4]_</span></a> and THERMOS <a href="#id23"><span class="problematic" id="id9">[5]_</span></a> programs in a more unified and general way
than would be possible if one simply elected to use these codes
individually.</p>
<p>The salient features to be retained from the programs were as follows:</p>
<dl class="describe">
<dt>
<code class="sig-name descname">GAM-II</code></dt>
<dt>
<code class="sig-name descname">The Nordheim Integral Treatment was desired for resonance</code></dt>
<dt>
<code class="sig-name descname">self-shielding; the generality of including cross sections for an</code></dt>
<dt>
<code class="sig-name descname">arbitrary number of processes, along with the provisions for</code></dt>
<dt>
<code class="sig-name descname">truncating zero or impossible transfers in the scattering matrices,</code></dt>
<dt>
<code class="sig-name descname">was also a requirement.</code></dt>
<dd></dd></dl>

<dl class="describe">
<dt>
<code class="sig-name descname">ANISN One-dimensional discrete-ordinates or diffusion theory or</code></dt>
<dt>
<code class="sig-name descname">infinite-medium theory was to be available to generate a spectrum for</code></dt>
<dt>
<code class="sig-name descname">cross-section collapsing.</code></dt>
<dd></dd></dl>

<dl class="simple">
<dt>..describe::</dt><dd><p>THERMOS The ability to perform detailed 1-D spectral calculations,
including upscatter effects, was required for the thermal region.</p>
</dd>
</dl>
<p>The whole code was required to be dynamically dimensioned to allow
calculations for arbitrary group structures, spatial structures, angular
quadratures, etc.</p>
<p>The XSDRN program that embodied these features was released in 1969.</p>
<p>In the early 1970s, the Defense Nuclear Agency (DNA) initiated support
for the AMPX system, which was to be a total cross-section generation
system capable of performing all tasks necessary to take basic neutron
and gamma-ray cross-section data and process these data into the proper
form needed for weapons effects calculations. Since XSDRN already
encompassed many of the features needed, it was selected as a basis for
modules in the new system. In this case, experience gained in the
original construction of XSDRN served to suggest that a more modular
approach would have been better with independent tasks being done in
separate, smaller, easier-to-manage programs. Therefore, the code was
split into NITAWL-II (for resonance self-shielding and some basic
cross-section data manipulation) and XSDRNPM (for spectral calculations
and cross-section collapsing). In retrospect, if the AMPX development
were initiated today, XSDRN would have been split even further, into
perhaps as many as six or seven programs.</p>
<p>The XSDRNPM module differs from XSDRN in several respects:</p>
<ul class="simple">
<li><p>It will perform coupled neutron-gamma calculations.</p></li>
<li><p>It allows any mixture to be represented to an arbitrary order of
anisotropic representation, whereas XSDRN only allowed through order
3.</p></li>
<li><p>It will perform an adjoint calculation, whereas the option was never
provided in XSDRN. In 2010, a generalized adjoint solution was also
added.</p></li>
<li><p>It is considerably more efficient in the manner in which data storage
is used and, hence, will run much larger problems in less core
storage.</p></li>
<li><p>It employs improved thermal flux scaling techniques for better
problem convergence.</p></li>
<li><p>Input specifications have been reordered, and more defaults have been
provided to make the use of this module easier.</p></li>
<li><p>It will calculate <span class="math notranslate nohighlight">\(S_n\)</span> constants for any order for any of the three
1-D geometries available.</p></li>
<li><p>Mixture-dependent fission spectra are calculated and used in XSDRNPM,
which takes into account all fissionable nuclides in a problem.</p></li>
</ul>
<p>AMPX was released in 1976, about the same time as the U.S. Nuclear
Regulatory Commission (NRC) support for the SCALE system was initiated.
Although separate versions of XSDRNPM were initially maintained for AMPX
and SCALE, in recent years the same version is used for the two systems.</p>
</div>
</div>
<div class="section" id="applications-in-scale">
<span id="id10"></span><h3>Applications in SCALE<a class="headerlink" href="#applications-in-scale" title="Permalink to this headline"></a></h3>
<p>XSDRNPM is used in several places in SCALE. In SAS1, XSDOSE uses fluxes
from a 1-D shielding calculation to determine a dose rate. Within the
CSAS5 and CSAS6 control modules, XSDRNPM is used in the sequences to
perform eigenvalue calculations and cell weighting of cross sections.
TSUNAMI-1D uses XSDRN to compute forward and adjoint fluxes
(fundamental-mode and generalized adjoint) for sensitivity and
uncertainty analysis.</p>
<div class="section" id="notes-on-the-use-of-various-spectral-calculational-options">
<span id="id11"></span><h4>Notes on the use of various spectral calculational options<a class="headerlink" href="#notes-on-the-use-of-various-spectral-calculational-options" title="Permalink to this headline"></a></h4>
<p>As noted earlier, four options are available in XSDRNPM for calculating
fluxes, k-effectives, etc.:</p>
<ol class="arabic simple">
<li><p><span class="math notranslate nohighlight">\(S_n\)</span> theory,</p></li>
<li><p>diffusion theory,</p></li>
<li><p>infinite medium theory, and</p></li>
<li><p><span class="math notranslate nohighlight">\(B_n\)</span> theory.</p></li>
</ol>
<p>However, XSDRNPM is primarily an <span class="math notranslate nohighlight">\(S_n\)</span> code. The latter three options
are provided for reasons of completeness and are not nearly as optimized
as they would be in other codes for which these are the primary spectral
calculation options.</p>
<p>Without a very detailed calculational study, it is perhaps impossible to
be able to quantify the degree of adequacy or inadequacy of any of these
methods for performing a particular problem. However, some general
comments can be made which may provide some guidance with their
selection.</p>
<p>First, <span class="math notranslate nohighlight">\(S_n\)</span> theory is the most correct of the options and will solve a
larger class of problems. It is the most complicated and time-consuming
of the four, but it still runs very fast for most cases. There are
problems for which it (or some alternative method based on a solution of
the Boltzmann equation) is the only one of the four methods which is
adequate. Many shielding applications fall in this class. In
deep-penetration problems, anisotropic effects can dominate, thus
requiring an accurate treatment of the anisotropy of both flux and
cross section. It is well known that diffusion theory is not very
accurate when used to calculate systems involving regions of very
dissimilar cross-section values, such as is the case when control rods
are interspersed in a reactor core. Because of the anisotropy involved
in gamma-ray problems, <span class="math notranslate nohighlight">\(S_n\)</span> theory should be used.</p>
<p>Diffusion theory, on the other hand, is certainly the most successful of
the four methods in terms of the amount of use it has for designing
reactors, etc. In cases involving reasonably large, homogeneous regions,
it is generally adequate, such as is the case for a large class of
“reactor” applications. For most problems, the diffusion theory option
should run appreciably faster than <span class="math notranslate nohighlight">\(S_n\)</span> theory, since it has
essentially one equation to solve, versus number-of-angles equations for
<span class="math notranslate nohighlight">\(S_n\)</span> theory. This equation also can be explicitly solved using a
matrix inversion procedure, whereas the <span class="math notranslate nohighlight">\(S_n\)</span> theory requires a more
time-consuming iterative procedure. However, in many cases with large
numbers of groups (200 to 300), the greater fraction of the
calculational time can be spent calculating the scattering source terms,
which tends to lessen the impact of time spent on a more correct theory.
(This same observation can also be made of the infinite medium and
<span class="math notranslate nohighlight">\(B_n\)</span> method.)</p>
<p>The infinite medium option is the fastest of the four methods and can be
used safely to perform calculations for large homogeneous regions,
wherein the spectrum may be needed to collapse cross sections. This
option only determines the first moment of the flux, and is, therefore,
quite suspect for many applications, such as calculating diffusion
coefficients.</p>
<p>The <span class="math notranslate nohighlight">\(B_n\)</span> option shares many of the same restrictions as the
infinite-medium method; however, this treatment does (as its name
implies) use a buckling approximation to account for leakage from the
large homogeneous region, thereby giving higher order flux moments that
can be used, for example, to determine diffusion coefficients.</p>
</div>
</div>
<div class="section" id="selection-of-output-cross-section-library-formats">
<span id="id12"></span><h3>Selection of output cross-section library formats<a class="headerlink" href="#selection-of-output-cross-section-library-formats" title="Permalink to this headline"></a></h3>
<p>XSDRNPM will, on option, collapse cross sections and write the collapsed
sets into four different formats:</p>
<ol class="arabic simple">
<li><p>ANISN3 BCD Library,</p></li>
<li><p>ANISN3 Binary Library,</p></li>
<li><p>CCCC <a href="#id24"><span class="problematic" id="id13">[6]_</span></a> ISOTXS Library, or</p></li>
<li><p>AMPX <a href="#id25"><span class="problematic" id="id14">[7]_</span></a> Working Library.</p></li>
</ol>
<p>The choice of the output cross-section format is determined by the
computer code that will use the data. XSDRNPM always produces an AMPX
working library when cross sections are collapsed, and all other formats
are produced by reformatting data from this library. Therefore, for
archival purposes, if a collapsed library is to be saved, the working
format is the best choice, because it is the most general of those
provided. AMPX working libraries are used by all multi-group transport
codes currently in SCALE, including DENOVO (3D orthogonal mesh discrete
ordinates code), NEWT (2D arbitrary mesh discrete ordinates code), and
KENO and MONOCO (multigroup Monte Carlo codes. Stand-alone modules exist
for converting AMPX working libraries to the other formats.</p>
<p>ANISN formats are used by older ORNL transport codes such as ANISN (a
1-D discrete-ordinates code), by DORT/TORT <a href="#id26"><span class="problematic" id="id15">[8]_</span></a> [two-dimensional (2-D)
and three dimensional (3D) discrete-ordinates codes], and by MORSE <a href="#id27"><span class="problematic" id="id16">[9]_</span></a>
(a multigroup Monte Carlo code). The formats are quite comprehensive and
can handle coupled neutron-gamma calculations, arbitrary orders of
anisotropy, upscattering, etc. The major shortcoming of the format is
its lack of internal documentation as to its structure
(e.g., no provisions exist for specifying where a particular kind of
cross section is located in the library or even if it is included).
ANISN libraries can be produced in a free-form card-image BCD format or
in a binary form.</p>
<p>The CCCC (Committee on Computer Code Coordination) ISOTXS file is a
format for neutron cross sections that is one of several “standard
interfaces” developed to facilitate the exchange of data between
different computer codes. It is a self-defined format, which has
provisions for identifying cross sections in the library. Scattering
matrices can be supplied for elastic, inelastic, and (n,2n) scattering.</p>
</div>
</div>
<div class="section" id="theory-and-procedures">
<span id="id17"></span><h2>Theory and Procedures<a class="headerlink" href="#theory-and-procedures" title="Permalink to this headline"></a></h2>
<p>This section describes the models and procedures which are employed in
XSDRNPM.</p>
<div class="section" id="one-dimensional-discrete-ordinates-theory">
<span id="id18"></span><h3>One-dimensional discrete-ordinates theory<a class="headerlink" href="#one-dimensional-discrete-ordinates-theory" title="Permalink to this headline"></a></h3>
<p>The time-independent Boltzmann transport equation can be written:</p>
<div class="math notranslate nohighlight" id="equation-eq9-1-1">
<span class="eqno">()<a class="headerlink" href="#equation-eq9-1-1" title="Permalink to this equation"></a></span>\[\rightharpoon{\Omega} \bullet \nabla \psi(\vec{r}, E, \bar{\Omega})+\sum_{i}(\vec{r}, E) \psi(E, \vec{r}, \bar{\Omega})=S(\vec{r}, E, \bar{\Omega})\]</div>
</div>
</div>
</div>


           </div>
           
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        
        &copy; Copyright 2020, SCALE developers

    </p>
  </div>
    
    
    
    Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a
    
    <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a>
    
    provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  

  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.Navigation.enable(true);
      });
  </script>

  
  
    
   

</body>
</html>