MAVRIC.html 76 KB
Newer Older
Batson Iii, John's avatar
Batson Iii, John committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268


<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>MAVRIC: Monaco with Automated Variance Reduction using Importance Calculations &mdash; SCALE test documentation 0.0.1 documentation</title>
  

  
  <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
  <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
  <link rel="stylesheet" href="_static/custom.css" type="text/css" />

  
  
  
  

  
  <!--[if lt IE 9]>
    <script src="_static/js/html5shiv.min.js"></script>
  <![endif]-->
  
    
      <script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
        <script src="_static/jquery.js"></script>
        <script src="_static/underscore.js"></script>
        <script src="_static/doctools.js"></script>
        <script src="_static/language_data.js"></script>
        <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
    
    <script type="text/javascript" src="_static/js/theme.js"></script>

    
    <link rel="index" title="Index" href="genindex.html" />
    <link rel="search" title="Search" href="search.html" />
    <link rel="prev" title="Welcome to SCALE test documentation!" href="index.html" /> 
</head>

<body class="wy-body-for-nav">

   
  <div class="wy-grid-for-nav">
    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search" >
          

          
            <a href="index.html" class="icon icon-home" alt="Documentation Home"> SCALE test documentation
          

          
          </a>

          
            
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        
        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <p class="caption"><span class="caption-text">Radiation Shielding</span></p>
<ul class="current">
<li class="toctree-l1 current"><a class="current reference internal" href="#">MAVRIC: Monaco with Automated Variance Reduction using Importance Calculations</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#introduction">Introduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="#cadis-methodology">CADIS Methodology</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#overview-of-cadis">Overview of CADIS</a></li>
<li class="toctree-l3"><a class="reference internal" href="#multiple-sources-with-cadis">Multiple sources with CADIS</a></li>
<li class="toctree-l3"><a class="reference internal" href="#multiple-tallies-with-cadis">Multiple tallies with CADIS</a></li>
<li class="toctree-l3"><a class="reference internal" href="#forward-weighted-cadis">Forward-weighted CADIS</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#mavric-implementation-of-cadis">MAVRIC Implementation of CADIS</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#denovo">Denovo</a></li>
<li class="toctree-l3"><a class="reference internal" href="#monaco">Monaco</a></li>
<li class="toctree-l3"><a class="reference internal" href="#running-mavric">Running MAVRIC</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#mavric-input">MAVRIC input</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#composition-block">Composition block</a></li>
<li class="toctree-l3"><a class="reference internal" href="#sggp-geometry-blocks">SGGP geometry blocks</a></li>
<li class="toctree-l3"><a class="reference internal" href="#other-blocks-shared-with-monaco">Other blocks shared with Monaco</a></li>
<li class="toctree-l3"><a class="reference internal" href="#importance-map-block">Importance map block</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#constructing-a-mesh-for-the-sn-calculation">Constructing a mesh for the S<sub>N</sub> calculation</a></li>
<li class="toctree-l4"><a class="reference internal" href="#macromaterials-for-sn-geometries">Macromaterials for S<sub>N</sub> geometries</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>

            
          
        </div>
        
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="index.html">SCALE test documentation</a>
        
      </nav>


      <div class="wy-nav-content">
        
        <div class="rst-content">
        
          















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="index.html" class="icon icon-home"></a> &raquo;</li>
        
      <li>MAVRIC: Monaco with Automated Variance Reduction using Importance Calculations</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
            
            <a href="_sources/MAVRIC.rst.txt" rel="nofollow"> View page source</a>
          
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="mavric-monaco-with-automated-variance-reduction-using-importance-calculations">
<span id="mavric"></span><h1>MAVRIC: Monaco with Automated Variance Reduction using Importance Calculations<a class="headerlink" href="#mavric-monaco-with-automated-variance-reduction-using-importance-calculations" title="Permalink to this headline"></a></h1>
<p><em>D. E. Peplow and C. Celik</em></p>
<div class="section" id="introduction">
<h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
<p>Monte Carlo particle transport calculations for deep penetration problems can require very long run times in order to achieve an acceptable level of statistical uncertainty in the final answers. Discrete-ordinates codes can be faster but have limitations relative to the discretization of space, energy, and direction. Monte Carlo calculations can be modified (biased) to produce results with the same variance in less time if an approximate answer or some other additional information is already known about the problem. If an importance can be assigned to different particles based on how much they will contribute to the final answer, more time can be spent on important particles with less time devoted to unimportant particles. One of the best ways to bias a Monte Carlo code for a particular tally is to form an importance map from the adjoint flux based on that tally. Unfortunately, determining the exact adjoint flux could be just as difficult as computing the original problem itself. However, an approximate adjoint can still be very useful in biasing the Monte Carlo solution <a class="bibtex reference internal" href="#wagner-acceleration-1997" id="id1">[Wag97]</a>. Discrete ordinates can be used to quickly compute that approximate adjoint. Together, Monte Carlo and discrete ordinates can be used to find solutions to thick shielding problems in reasonable times.</p>
<p>The MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) sequence is based on the CADIS (Consistent Adjoint Driven Importance Sampling) and FW-CADIS (Forward-Weighted CADIS) methodologies <a class="bibtex reference internal" href="#wagner-automated-1998" id="id2">[WH98]</a> <a class="bibtex reference internal" href="#wagner-automated-2002" id="id3">[Wag02]</a> <a class="bibtex reference internal" href="#haghighat-monte-2003" id="id4">[HW03]</a> <a class="bibtex reference internal" href="#wagner-forward-weighted-2007" id="id5">[WBP07]</a> MAVRIC automatically performs a three-dimensional, discrete-ordinates calculation using Denovo to compute the adjoint flux as a function of position and energy. This adjoint flux information is then used to construct an importance map (i.e., target weights for weight windows) and a biased source distribution that work together—particles are born with a weight matching the target weight of the cell into which they are born. The fixed-source Monte Carlo radiation transport Monaco then uses the importance map for biasing during particle transport and the biased source distribution as its source. During transport, the particle weight is compared with the importance map after each particle interaction and whenever a particle crosses into a new importance cell in the map.</p>
<p>For problems that do not require variance reduction to complete in a reasonable time, execution of MAVRIC without the importance map calculation provides an easy way to run Monaco. For problems that do require variance reduction to complete in a reasonable time, MAVRIC removes the burden of setting weight windows from the user and performs it automatically with a minimal amount of additional input. Note that the MAVRIC sequence can be used with the final Monaco calculation as either a multigroup (MG) or a continuous-energy (CE) calculation.</p>
<p>Monaco has a wide variety of tally options: it can calculate fluxes (by group) at a point in space, over any geometrical region, or for a user-defined, three-dimensional, rectangular grid. These tallies can also integrate the fluxes with either standard response functions from the cross section library or user-defined response functions. All of these tallies are available in the MAVRIC sequence.</p>
<p>While originally designed for CADIS, the MAVRIC sequence is also capable of creating importance maps using both forward and adjoint deterministic estimates. The FW-CADIS method can be used for optimizing several tallies at once, a mesh tally over a large region, or a mesh tally over the entire problem. Several other methods for producing importance maps are also available in MAVRIC and are explored in Appendix C.</p>
</div>
<div class="section" id="cadis-methodology">
<h2>CADIS Methodology<a class="headerlink" href="#cadis-methodology" title="Permalink to this headline"></a></h2>
<p>MAVRIC is an implementation of CADIS (Consistent Adjoint Driven Importance Sampling) using the Denovo SN and Monaco Monte Carlo functional modules. Source biasing and a mesh-based importance map, overlaying the physical geometry, are the basic methods of variance reduction. In order to make the best use of an importance map, the map must be made consistent with the source biasing. If the source biasing is inconsistent with the weight windows that will be used during the transport process, source particles will undergo Russian roulette or splitting immediately, wasting computational time and negating the intent of the biasing.</p>
<div class="section" id="overview-of-cadis">
<h3>Overview of CADIS<a class="headerlink" href="#overview-of-cadis" title="Permalink to this headline"></a></h3>
<p>CADIS has been well described in the literature, so only a
brief overview is given here. Consider a class source-detector problem
described by a unit source with emission probability distribution
function <span class="math notranslate nohighlight">\(q\left(\overrightarrow{r},E \right)\)</span> and a detector
response function <span class="math notranslate nohighlight">\(\sigma_{d}\left(\overrightarrow{r},E \right)\)</span>.
To determine the total detector response, <em>R</em>, the forward scalar flux
<span class="math notranslate nohighlight">\(\phi\left(\overrightarrow{r},E \right)\)</span> must be known. The
response is found by integrating the product of the detector response
function and the flux over the detector volume <span class="math notranslate nohighlight">\(V_{d}\)</span>.</p>
<div class="math notranslate nohighlight" id="equation-mavric-1">
<span class="eqno">(1)<a class="headerlink" href="#equation-mavric-1" title="Permalink to this equation"></a></span>\[R = \int_{V_{d}}^{}{\int_{E}^{}{\sigma_{d}\left( \overrightarrow{r},E \right)}}\phi\left(\overrightarrow{r},E \right)\textit{dE dV.}\]</div>
<p>Alternatively, if the adjoint scalar flux,
<span class="math notranslate nohighlight">\(\phi^{+}\left(\overrightarrow{r},E \right)\)</span>, is known from the
corresponding adjoint problem with adjoint source
<span class="math notranslate nohighlight">\(q^{+}\left(\overrightarrow{r},E \right) = \sigma_{d}\left(\overrightarrow{r},E \right)\)</span>,
then the total detector response could be found by integrating the
product of the forward source and the adjoint flux over the source
volume, <span class="math notranslate nohighlight">\(V_{s}\)</span>.</p>
<div class="math notranslate nohighlight" id="equation-mavric-2">
<span class="eqno">(2)<a class="headerlink" href="#equation-mavric-2" title="Permalink to this equation"></a></span>\[R = \int_{V_{s}}^{}{\int_{E}^{}{q\left(\overrightarrow{r},E \right)}}\phi^{+}\left( \overrightarrow{r},E \right)\textit{dE dV.}\]</div>
<p>Unfortunately, the exact adjoint flux may be just as difficult to
determine as the forward flux, but an approximation of the adjoint flux
can still be used to form an importance map and a biased source
distribution for use in the forward Monte Carlo calculation.</p>
<p>Wagner<sup>1</sup> showed that if an estimate of the adjoint scalar flux
for the corresponding adjoint problem could be found, then an estimate
of the response <em>R</em> could be made using Eq. . The adjoint source for the
adjoint problem is typically separable and corresponds to the detector
response and spatial area of tally to be optimized:
<span class="math notranslate nohighlight">\(q^{+}\left(\overrightarrow{r},E \right) = \sigma_{d}\left(E \right)g\left( \overrightarrow{r} \right)\)</span>,
where <span class="math notranslate nohighlight">\(\sigma_{d}\left( E \right)\)</span> is a flux-to-dose conversion
factor and <span class="math notranslate nohighlight">\(g\left( \overrightarrow{r} \right)\)</span> is 1 in the tally
volume and 0 otherwise. Then, from the adjoint flux
<span class="math notranslate nohighlight">\(\phi^{+}\left( \overrightarrow{r},E \right)\)</span> and response
estimate <em>R</em>, a biased source distribution,
<span class="math notranslate nohighlight">\(\widehat{q}\left( \overrightarrow{r},E \right)\)</span>, for source
sampling of the form</p>
<div class="math notranslate nohighlight" id="equation-mavric-3">
<span class="eqno">(3)<a class="headerlink" href="#equation-mavric-3" title="Permalink to this equation"></a></span>\[\widehat{q}\left(\overrightarrow{r},E \right) = \frac{1}{R}q\left(\overrightarrow{r},E\right)\phi^{+}\left( \overrightarrow{r},E \right)\]</div>
<p>and weight window target values,
<span class="math notranslate nohighlight">\(\overline{w}\left( \overrightarrow{r},E \right)\)</span>, for particle
transport of the form</p>
<div class="math notranslate nohighlight" id="equation-mavric-4">
<span class="eqno">(4)<a class="headerlink" href="#equation-mavric-4" title="Permalink to this equation"></a></span>\[\overline{w}\left( \overrightarrow{r},E \right) = \frac{R}{\phi^{+}\left( \overrightarrow{r},E \right)}\]</div>
<p>could be constructed, which minimize the variance in the forward Monte
Carlo calculation of <em>R</em>.</p>
<p>When a particle is sampled from the biased source distribution
<span class="math notranslate nohighlight">\(\widehat{q}\left( \overrightarrow{r},E \right)\)</span>, to preserve a
fair game, its initial weight is set to</p>
<div class="math notranslate nohighlight" id="equation-mavric-5">
<span class="eqno">(5)<a class="headerlink" href="#equation-mavric-5" title="Permalink to this equation"></a></span>\[w_{0}\left(\overrightarrow{r},E \right) = \frac{q\left(\overrightarrow{r},E \right)}{\widehat{q}\left( \overrightarrow{r},E \right)} = \frac{R}{\phi^{+}\left( \overrightarrow{r},E \right)}\,\]</div>
<p>which exactly matches the target weight for that particle’s position and
energy. This is the “consistent” part of CADIS—source particles are born
with a weight matching the weight window of the region/energy they are
born into. The source biasing and the weight windows work together.</p>
<p>CADIS has been applied to many problems—including reactor ex-core
detectors, well-logging instruments, cask shielding studies, and
independent spent fuel storage facility models—and has demonstrated very
significant speed-ups in calculation time compared to analog
simulations.</p>
</div>
<div class="section" id="multiple-sources-with-cadis">
<h3>Multiple sources with CADIS<a class="headerlink" href="#multiple-sources-with-cadis" title="Permalink to this headline"></a></h3>
<p>For a typical Monte Carlo calculation with multiple sources (each with a
probability distribution function
<span class="math notranslate nohighlight">\(q_{i}\left( \overrightarrow{r},E \right)\)</span> and a strength
<span class="math notranslate nohighlight">\(S_{i}\)</span>, giving a total source strength of
<span class="math notranslate nohighlight">\(S = \sum_{}^{}S_{i}\)</span>), the source is sampled in two steps. First,
the specific source <em>i</em> is sampled with probability
<span class="math notranslate nohighlight">\(p\left( i \right) = \ S_{i}/S\)</span>, and then the particle is sampled
from the specific source distribution
<span class="math notranslate nohighlight">\(q_{i}\left( \overrightarrow{r},E \right)\)</span>.</p>
<p>The source sampling can be biased at both levels: which source to sample
from and how to sample each source. For example, the specific source can
be sampled using some arbitrary distribution,
<span class="math notranslate nohighlight">\(\widehat{p}\left( i \right)\)</span>, and then the individual sources can
be sampled using distributions
<span class="math notranslate nohighlight">\({\widehat{q}}_{i}\left( \overrightarrow{r},E \right)\)</span>. Particles
would then have a birth weight of</p>
<div class="math notranslate nohighlight" id="equation-mavric-6">
<span class="eqno">(6)<a class="headerlink" href="#equation-mavric-6" title="Permalink to this equation"></a></span>\[w_{0} \equiv \ \left(\frac{p\left( i \right)}{\widehat{p}\left( i \right)} \right)\left(\frac{q_{i}\left( \overrightarrow{r},E \right)}{{\widehat{q}}_{i}\left( \overrightarrow{r},E \right)} \right)\text{.}\]</div>
<p>For CADIS, a biased multiple source needs to be developed so that the
birth weights of sampled particles still match the target weights of the
importance map. For a problem with multiple sources (each with a
distribution <span class="math notranslate nohighlight">\(q_{i}\left( \overrightarrow{r},E \right)\)</span> and a
strength <span class="math notranslate nohighlight">\(S_{i}\)</span>), the goal of the Monte Carlo calculation is to
compute some response <span class="math notranslate nohighlight">\(R\)</span> for a response function
<span class="math notranslate nohighlight">\(\sigma_{d}\left( \overrightarrow{r},E \right)\)</span> at a given
detector.</p>
<div class="math notranslate nohighlight" id="equation-mavric-7">
<span class="eqno">(7)<a class="headerlink" href="#equation-mavric-7" title="Permalink to this equation"></a></span>\[R = \ \int_{V}^{}{\int_{E}^{}{\sigma_{d}\left( \overrightarrow{r},E \right)\text{ϕ}\left( \overrightarrow{r},E \right)\textit{dE dV.}}}\]</div>
<p>Note that the flux <span class="math notranslate nohighlight">\(\phi\left( \overrightarrow{r},E \right)\)</span> has
contributions from each source. The response, <span class="math notranslate nohighlight">\(R_{i}\)</span>, from each
specific source (<span class="math notranslate nohighlight">\(S_{i}\)</span> with
<span class="math notranslate nohighlight">\(q_{i}\left( \overrightarrow{r},E \right)\)</span>) can be expressed using
just the flux from that source,
<span class="math notranslate nohighlight">\(\phi_{i}\left( \overrightarrow{r},E \right)\)</span>, as</p>
<div class="math notranslate nohighlight" id="equation-mavric-8">
<span class="eqno">(8)<a class="headerlink" href="#equation-mavric-8" title="Permalink to this equation"></a></span>\[R_{i} = \ \int_{V}^{}{\int_{E}^{}{\sigma_{d}\left(\overrightarrow{r},E \right)\ \phi_{i}\left(\overrightarrow{r},E \right)\textit{dE dV .}}}\]</div>
<p>The total response is then found as <span class="math notranslate nohighlight">\(R = \sum_{i}^{}R_{i}\)</span>.</p>
<p>For the adjoint problem, using the adjoint source of
<span class="math notranslate nohighlight">\(q^{+}\left( \overrightarrow{r},E \right) = \sigma_{d}\left( \overrightarrow{r},E \right)\)</span>,
the response <span class="math notranslate nohighlight">\(R\)</span> can also be calculated as</p>
<div class="math notranslate nohighlight" id="equation-mavric-9">
<span class="eqno">(9)<a class="headerlink" href="#equation-mavric-9" title="Permalink to this equation"></a></span>\[R = \ \int_{V}^{}{\int_{E}^{}{\left\lbrack \sum_{i}^{}{S_{i}q_{i}\left( \overrightarrow{r},E \right)} \right\rbrack\ \phi^{+}\left( \overrightarrow{r},E \right)\textit{dE dV}}},\]</div>
<p>with response contribution from each specific source being</p>
<div class="math notranslate nohighlight" id="equation-mavric-10">
<span class="eqno">(10)<a class="headerlink" href="#equation-mavric-10" title="Permalink to this equation"></a></span>\[R_{i} = \ \int_{V}^{}{\int_{E}^{}{\ {S_{i}q_{i}\left( \overrightarrow{r},E \right)\text{ϕ}}^{+}\left( \overrightarrow{r}, E \right)\textit{dE dV.}}}\]</div>
<p>The target weights
<span class="math notranslate nohighlight">\(\overline{w}\left( \overrightarrow{r},E \right)\)</span> of the
importance map are found using</p>
<div class="math notranslate nohighlight" id="equation-mavric-11">
<span class="eqno">(11)<a class="headerlink" href="#equation-mavric-11" title="Permalink to this equation"></a></span>\[\overline{w}\left( \overrightarrow{r},E \right) = \frac{R/S}{\text{ϕ}^{+}\left( \overrightarrow{r},E \right)\ }.\]</div>
<p>Each biased source
<span class="math notranslate nohighlight">\({\widehat{q}}_{i}\left( \overrightarrow{r},E \right)\)</span> pdf is
found using</p>
<div class="math notranslate nohighlight" id="equation-mavric-12">
<span class="eqno">(12)<a class="headerlink" href="#equation-mavric-12" title="Permalink to this equation"></a></span>\[{\widehat{q}}_{i}\left(\overrightarrow{r},E \right) = \frac{S_{i}}{R_{i}}{q_{i}\left( \overrightarrow{r},E \right)\text{ϕ}}^{+}\left( \overrightarrow{r}, E \right)\ ,\]</div>
<p>and the biased distribution used to select an individual source is
<span class="math notranslate nohighlight">\(\widehat{p}\left( i \right) = \ R_{i}/\sum_{}^{}{R_{i} = R_{i}/R}\)</span>.</p>
<p>When using the biased distribution used to select an individual source,
<span class="math notranslate nohighlight">\(\widehat{p}\left( i \right)\)</span>, and the biased source distribution,
<span class="math notranslate nohighlight">\({\widehat{q}}_{i}\left( \overrightarrow{r},E \right)\)</span>, the birth
weight of the sampled particle will be</p>
<div class="math notranslate nohighlight" id="equation-mavric-13">
<span class="eqno">(13)<a class="headerlink" href="#equation-mavric-13" title="Permalink to this equation"></a></span>\[\begin{split} \begin{matrix}
    w_{0} &amp; \equiv &amp; \left( \frac{p\left( i \right)}{\widehat{p}\left( i \right)} \right)\left( \frac{q_{i}\left( \overrightarrow{r}, E \right)}{{\widehat{q}}_{i}\left(\overrightarrow{r},E \right)} \right) \\ &amp; = &amp; \ \left( \frac{\frac{S_{i}}{S}}{\frac{R_{i}}{R}} \right) \left( \frac{q_{i}\left( \overrightarrow{r},E \right)}{\frac{S_{i}}{R_{i}}{q_{i}\left( \overrightarrow{r},E \right)\text{ϕ}}^{+}\left( \overrightarrow{r},E \right)} \right) \\
    &amp; = &amp; \frac{R/S}{\text{ϕ}^{+}\left( \overrightarrow{r},E \right)\ }, \\
\end{matrix}\end{split}\]</div>
<p>which matches the target weight,
<span class="math notranslate nohighlight">\(\overline{w}\left( \overrightarrow{r},E \right)\)</span>.</p>
</div>
<div class="section" id="multiple-tallies-with-cadis">
<h3>Multiple tallies with CADIS<a class="headerlink" href="#multiple-tallies-with-cadis" title="Permalink to this headline"></a></h3>
<p>The CADIS methodology works quite well for classic source/detector problems. The statistical uncertainty of the tally that serves as the adjoint source is greatly reduced since the Monte Carlo transport is optimized to spend more simulation time on those particles that contribute to the tally, at the expense of tracking particles in other parts of phase space. However, more recently, Monte Carlo has been applied to problems where multiple tallies need to all be found with low statistical uncertainties. The extension of this idea is the mesh tally—where each voxel is a tally where the user desires low statistical uncertainties. For these problems, the user must accept a total simulation time that is controlled by the tally with the slowest convergence and simulation results where the tallies have a wide range of relative uncertainties.</p>
<p>The obvious way around this problem is to create a separate problem for each tally and use CADIS to optimize each. Each simulation can then be run until the tally reaches the level of acceptable uncertainty. For more than a few tallies, this approach becomes complicated and time-consuming for the user. For large mesh tallies, this approach is not reasonable.</p>
<p>Another approach to treat several tallies, if they are in close proximity to each other, or a mesh tally covering a small portion of the physical problem is to use the CADIS methodology with the adjoint source near the middle of the tallies to be optimized. Since particles in the forward Monte Carlo simulation are optimized to reach the location of the adjoint source, all the tallies surrounding that adjoint source should converge quickly. The drawback to this approach is the difficult question of “how close.” If the tallies are too far apart, certain energies or regions that are needed for one tally may be of low importance for getting particles to the central adjoint source. This may under-predict the flux or dose at the tally sites far from the adjoint source.</p>
<p>MAVRIC has the capability to have multiple adjoint sources with this problem in mind. For several tallies that are far from each other, multiple adjoint sources could be used. In the forward Monte Carlo, particles would be drawn to one of those adjoint sources. The difficulty with this approach is that typically the tally that is closest to the true physical source converges faster than the other tallies—showing the closest adjoint source seems to attract more particles than the others. Assigning more strength to the adjoint source further from the true physical source helps, but finding the correct strengths so that all of the tallies converge to the same relative uncertainty in one simulation is an iterative process for the user.</p>
</div>
<div class="section" id="forward-weighted-cadis">
<h3>Forward-weighted CADIS<a class="headerlink" href="#forward-weighted-cadis" title="Permalink to this headline"></a></h3>
<p>In order to converge several tallies to the same relative uncertainty in
one simulation, the adjoint source corresponding to each of those
tallies needs to be weighted inversely by the expected tally value. In
order to calculate the dose rate at two points—say one near a reactor
and one far from a reactor—in one simulation, then the total adjoint
source used to develop the weight windows and biased source needs to
have two parts. The adjoint source far from the reactor needs to have
more strength than the adjoint source near the reactor by a factor equal
to the ratio of the expected near dose rate to the expected far dose
rate.</p>
<p>This concept can be extended to mesh tallies as well. Instead of using a
uniform adjoint source strength over the entire mesh tally volume, each
voxel of the adjoint source should be weighted inversely by the expected
forward tally value for that voxel. Areas of low flux or low dose rate
would have more adjoint source strength than areas of high flux or high
dose rate.</p>
<p>An estimate of the expected tally results can be found by using a quick
discrete-ordinates calculation. This leads to an extension of the CADIS
method: forward-weighted CADIS (FW-CADIS).**Error! Bookmark not
defined.** First, a forward S<sub>N</sub> calculation is performed to
estimate the expected tally results. A total adjoint source is
constructed where the adjoint source corresponding to each tally is
weighted inversely by those forward tally estimates. Then the standard
CADIS approach is used—an importance map (target weight windows) and a
biased source are made using the adjoint flux computed from the adjoint
S<sub>N</sub> calculation.</p>
<p>For example, if the goal is to calculate a detector response function
<span class="math notranslate nohighlight">\(\sigma_{d}\left( E \right)\)</span> (such as dose rate using
flux-to-dose-rate conversion factors) over a volume (defined by
<span class="math notranslate nohighlight">\(g\left( \overrightarrow{r} \right)\)</span>) corresponding to mesh tally,
then instead of simply using
<span class="math notranslate nohighlight">\(q^{+}\left( \overrightarrow{r},E \right) = \sigma_{d}\left( E \right)\ g(\overrightarrow{r})\)</span>,
the adjoint source would be</p>
<div class="math notranslate nohighlight" id="equation-mavric-14">
<span class="eqno">(14)<a class="headerlink" href="#equation-mavric-14" title="Permalink to this equation"></a></span>\[ q^{+}\left( \overrightarrow{r},E \right) = \frac{\sigma_{d}\left( E \right)\text{g}\left( \overrightarrow{r} \right)}{\int_{}^{}{\sigma_{d}\left( E \right)\text{ϕ}\left( \overrightarrow{r},E \right)}\textit{dE}}\ ,\]</div>
<p>where <span class="math notranslate nohighlight">\(\phi\left( \overrightarrow{r},E \right)\)</span> is an estimate of
the forward flux and the energy integral is over the voxel at <span class="math notranslate nohighlight">\(\overrightarrow{r}\)</span>.
The adjoint source is nonzero only where the mesh tally is defined
(<span class="math notranslate nohighlight">\(g\left( \overrightarrow{r} \right)\)</span>), and its strength is
inversely proportional to the forward estimate of dose rate.</p>
<p>The relative uncertainty of a tally is controlled by two components:
first, the number of tracks contributing to the tally and, second, the
shape of the distribution of scores contributing to that tally. In the
Monte Carlo game, the number of simulated particles,
<span class="math notranslate nohighlight">\(m\left( \overrightarrow{r},E \right)\)</span>, can be related to the true
physical particle density, <span class="math notranslate nohighlight">\(n\left( \overrightarrow{r},E \right),\)</span>
by the average Monte Carlo weight of scoring particles,
<span class="math notranslate nohighlight">\(\overline{w}\left( \overrightarrow{r},E \right)\)</span>, by</p>
<div class="math notranslate nohighlight" id="equation-mavric-15">
<span class="eqno">(15)<a class="headerlink" href="#equation-mavric-15" title="Permalink to this equation"></a></span>\[n\left( \overrightarrow{r},E \right) = \ \overline{w}\left( \overrightarrow{r},E \right)\text{m}\left( \overrightarrow{r},E \right).\]</div>
<p>In a typical Monte Carlo calculation, tallies are made by adding some
score, multiplied by the current particle weight, to an accumulator. To
calculate a similar quantity related to the Monte Carlo particle density
would be very close to calculating any other quantity but without
including the particle weight. The goal of FW-CADIS is to make the Monte
Carlo particle density, <span class="math notranslate nohighlight">\(m\left( \overrightarrow{r},E \right)\)</span>,
uniform over the tally areas, so an importance map needs to be developed
that represents the importance to achieving uniform Monte Carlo particle
density. By attempting to keep the Monte Carlo particle density more
uniform, more uniform relative errors for the tallies should be
realized.</p>
<p>Two options for forward weighting are possible. For tallies over some
area where the entire group-wise flux is needed with low relative
uncertainties, the adjoint source should be weighted inversely by the
forward flux, <span class="math notranslate nohighlight">\(\phi\left( \overrightarrow{r},E \right)\)</span>. The other
option, for a tally where only an energy-integrated quantity is desired,
is to weight the adjoint inversely by that energy-integrated
quantity,<span class="math notranslate nohighlight">\(\int_{}^{}{\sigma_{d}\left( E \right)\text{ϕ}\left( \overrightarrow{r},E \right)}\text{\ dE}\)</span>.
For a tally where the total flux is desired, then the response in the
adjoint source is simply <span class="math notranslate nohighlight">\(\sigma_{d}\left( E \right) = 1\)</span>.</p>
<p>To optimize the forward Monte Carlo simulation for the calculation of
some quantity at multiple tally locations or across a mesh tally, the
adjoint source needs to be weighted by the estimate of that quantity.
For a tally defined by its spatial location
<span class="math notranslate nohighlight">\(g\left( \overrightarrow{r} \right)\)</span> and its optional response
<span class="math notranslate nohighlight">\(\sigma_{d}\left( E \right)\)</span>, the standard adjoint source would be
<span class="math notranslate nohighlight">\(q^{+}\left( \overrightarrow{r},E \right) = \sigma_{d}\left( E \right)\text{g}\left( \overrightarrow{r} \right)\)</span>.
The forward-weighted adjoint source,
<span class="math notranslate nohighlight">\(q^{+}\left( \overrightarrow{r},E \right)\)</span>, depending on what
quantity is to be optimized, is listed below.</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 40%" />
<col style="width: 60%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p><strong>For the calculation of</strong></p></th>
<th class="head"><p><strong>Adjoint source</strong></p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>Energy and spatially dependent flux.       <span class="math notranslate nohighlight">\(\phi\left(\overrightarrow{r},E \right)\)</span></p></td>
<td><div class="math notranslate nohighlight">
\[\frac{g\left( \overrightarrow{r}\right)}{\phi\left(\overrightarrow{r},E \right)}\]</div>
</td>
</tr>
<tr class="row-odd"><td><p>Spatially dependent total flux.         <span class="math notranslate nohighlight">\(\int_{}^{}{\phi\left( \overrightarrow{r},E \right)}\textit{dE}\)</span></p></td>
<td><div class="math notranslate nohighlight">
\[\frac{g\left( \overrightarrow{r}\right)}{\int_{}^{}{\phi\left( \overrightarrow{r},E \right)}\textit{dE}}\]</div>
</td>
</tr>
<tr class="row-even"><td><p>Spatially dependent total response.         <span class="math notranslate nohighlight">\(\int_{}^{}{\sigma_{d}\left( E \right)\text{ϕ}\left(\overrightarrow{r},E\right)}\textit{dE}\)</span></p></td>
<td><div class="math notranslate nohighlight">
\[\frac{\sigma_{d}\left( E \right)\text{g}\left( \overrightarrow{r} \right)}{\int_{}^{}{\sigma_{d}\left( E \right)\text{ϕ}\left( \overrightarrow{r},E \right)}\textit{dE}}\]</div>
</td>
</tr>
</tbody>
</table>
<p>The bottom line of FW-CADIS is that in order to calculate a quantity at
multiple tally locations (or across a mesh tally) with more uniform
relative uncertainties, an adjoint source needs to be developed for an
objective function that keeps some non-physical quantity—related to the
Monte Carlo particle density and similar in form to the desired
quantity—constant. FW-CADIS uses the solution of a forward
discrete-ordinates calculation to properly weight the adjoint source.
After that, the standard CADIS approach is used.</p>
</div>
</div>
<div class="section" id="mavric-implementation-of-cadis">
<h2>MAVRIC Implementation of CADIS<a class="headerlink" href="#mavric-implementation-of-cadis" title="Permalink to this headline"></a></h2>
<p>With MAVRIC, as with other shielding codes, the user defines the problem as a set of physical models—the material compositions, the geometry, the source, and the detectors (locations and response functions)—as well as some mathematical parameters on how to solve the problem (number of histories, etc.). For the variance reduction portion of MAVRIC, the only additional inputs required are (1) the mesh planes to use in the discrete-ordinates calculation(s) and (2) the adjoint source description—basically the location and the response of each tally to optimize in the forward Monte Carlo calculation. MAVRIC takes this information and constructs a Denovo adjoint problem. (The adjoint source is weighted by a Denovo forward flux or response estimate for FW-CADIS applications.)  MAVRIC then uses the CADIS methodology: it combines the adjoint flux from the Denovo calculation with the source description and creates the importance map (weight window targets) and the mesh-based biased source. Monaco is then run using the CADIS biased source distribution and the weight window targets.</p>
<div class="section" id="denovo">
<h3>Denovo<a class="headerlink" href="#denovo" title="Permalink to this headline"></a></h3>
<p>Denovo is a parallel three-dimensional SN code that is used to generate adjoint (and, for FW-CADIS, forward) scalar fluxes for the CADIS methods in MAVRIC. For use in MAVRIC/CADIS, it is highly desirable that the SN code be fast, positive, and robust. The phase-space shape of the forward and adjoint fluxes, as opposed to a highly accurate solution, is the most important quality for Monte Carlo weight-window generation. Accordingly, Denovo provides a step-characteristics spatial differencing option that produces positive scalar fluxes as long as the source (volume plus in-scatter) is positive. Denovo uses an orthogonal, nonuniform mesh that is ideal for CADIS applications because of the speed and robustness of calculations on this mesh type.</p>
<p>Denovo uses the highly robust GMRES (Generalized Minimum Residual) Krylov method to solve the SN equations in each group. GMRES has been shown to be more robust and efficient than traditional source (fixed-point) iteration. The in-group discrete SN equations are defined as</p>
<div class="math notranslate nohighlight" id="equation-mavric-16">
<span class="eqno">(16)<a class="headerlink" href="#equation-mavric-16" title="Permalink to this equation"></a></span>\[\mathbf{L}\psi = \mathbf{\text{MS}}\phi + q\]</div>
<p>where <strong>L</strong> is the differential transport operator, <strong>M</strong> is the
moment-to-discrete operator, <strong>S</strong> is the matrix of scattering
cross-section moments, <em>q</em> is the external and in-scatter source,
<span class="math notranslate nohighlight">\(\phi\)</span> is the vector of angular flux moments, and <span class="math notranslate nohighlight">\(\psi\)</span> is
the vector of angular fluxes at discrete angles. Applying the operator
<strong>D</strong>, where <span class="math notranslate nohighlight">\(\phi = \mathbf{D}\psi\)</span>, and rearranging terms casts
the in-group equations in the form of a traditional linear system,
<span class="math notranslate nohighlight">\(\mathbf{A}x = b\)</span>,</p>
<blockquote>
<div><div class="math notranslate nohighlight" id="equation-mavric-17">
<span class="eqno">(17)<a class="headerlink" href="#equation-mavric-17" title="Permalink to this equation"></a></span>\[\left( \mathbf{I} - \mathbf{D}\mathbf{L}^{- 1}\mathbf{\text{MS}} \right) = \mathbf{D}\mathbf{L}^{- 1}q .\]</div>
</div></blockquote>
<p>The operation <span class="math notranslate nohighlight">\(\mathbf{L}^{- 1}\nu\)</span>, where <span class="math notranslate nohighlight">\(\nu\)</span> is an
iteration vector, is performed using a traditional wave-front solve
(transport sweep). The parallel implementation of the Denovo wave-front
solver uses the well-known Koch-Baker-Alcouffe (KBA) algorithm, which is
a two-dimensional block‑spatial decomposition of a three-dimensional
orthogonal mesh <a class="bibtex reference internal" href="#baker-sn-1998" id="id6">[BK98]</a>. The Trilinos package is used for the GMRES
implementation <a class="bibtex reference internal" href="#willenbring-trilinos-2003" id="id7">[WH03]</a> Denovo stores the mesh-based scalar fluxes in a
double precision binary file (<a href="#id8"><span class="problematic" id="id9">*</span></a>.dff) called a Denovo flux file. Past
versions of SCALE/Denovo used the TORT <a class="bibtex reference internal" href="#rhoades-tort-1997" id="id10">[RS97]</a> *.varscl file format
(DOORS package <a class="bibtex reference internal" href="#rhoades-doors-1998" id="id11">[RC98]</a>), but this was limited to single precision. Since
the rest of the MAVRIC sequence has not yet been parallelized, Denovo is
currently used only in serial mode within MAVRIC.</p>
</div>
<div class="section" id="monaco">
<h3>Monaco<a class="headerlink" href="#monaco" title="Permalink to this headline"></a></h3>
<p>The forward Monte Carlo transport is performed using Monaco, a
fixed-source, shielding code that uses the SCALE General Geometry
Package (SGGP, the same as used by the criticality code KENO-VI) and the
standard SCALE material information processor. Monaco can use either MG
or CE cross section libraries. Monaco was originally based on the MORSE
Monte Carlo code but has been extensively modified to modernize the
coding, incorporate more flexibility in terms of sources/tallies, and
read a user-friendly block/keyword style input.</p>
<p>Much of the input to MAVRIC is the same as Monaco. More details can be
found in the Monaco chapter of the SCALE manual.</p>
</div>
<div class="section" id="running-mavric">
<h3>Running MAVRIC<a class="headerlink" href="#running-mavric" title="Permalink to this headline"></a></h3>
<p>The objective of a SCALE sequence is to execute several codes, passing
the output from one to the input of the next, in order to perform some
analysis—things that users typically had to do in the past. MAVRIC does
this for difficult shielding problems by running approximate
discrete-ordinates calculations, constructing an importance map and
biased source for one or more tallies that the user wants to optimize in
the Monte Carlo calculation, and then using those in a forward Monaco
Monte Carlo calculation. MAVRIC also prepares the forward and adjoint
cross sections when needed. The steps of a MAVRIC sequence are listed in
<a class="reference internal" href="#mavric-sequence"><span class="std std-numref">Table 1</span></a>. The user can instruct MAVRIC to run this whole sequence of
steps or just some subset of the steps—in order to verify the
intermediate steps or to reuse previously calculated quantities in a new
analyses.</p>
<p>The MAVRIC sequence can be stopped after key points by using the
“parm= <em>parameter</em> ” operator on the “=mavric” command line, which is
the first line of the input file. The various parameters are listed in
Table <a class="reference internal" href="#mavric-param"><span class="std std-numref">Table 2</span></a>. These parameters allow the user to perform checks and make
changes to the importance map calculation before the actual Monte Carlo
calculation in Monaco.</p>
<p>MAVRIC also allows the sequence to start at several different points. If
an importance map and biased source have already been computed, they can
be used directly. If the adjoint scalar fluxes are known, they can
quickly be used to create the importance map and biased source and then
begin the forward Monte Carlo. All of the different combinations of
starting MAVRIC with some previously calculated quantities are listed in
the following section detailing the input options.</p>
<p>When using MG cross-section libraries that do not have flux-to-dose-rate
conversion factors, use “parm=nodose” to prevent the cross section
processing codes from trying to move these values into the working
library.</p>
<p>MAVRIC creates many files that use the base problem name from the output
file. For an output file called “c:path1path2\<em>outputName</em>.out” or
“/home/path1/path2/ <em>outputName</em>.inp”, spaces in the output name will
cause trouble and should not be used.</p>
<table class="colwidths-given docutils align-center" id="mavric-sequence">
<caption><span class="caption-number">Table 1 </span><span class="caption-text">Steps in the MAVRIC sequence</span><a class="headerlink" href="#mavric-sequence" title="Permalink to this table"></a></caption>
<colgroup>
<col style="width: 50%" />
<col style="width: 50%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p><strong>Cross section calculation</strong></p></td>
<td><p>XSProc is used to calculate the forward cross sections for Monaco</p></td>
</tr>
<tr class="row-even"><td><p><strong>Forward Denovo (optional)</strong></p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p>Cross section calculation</p></td>
<td><p>XSProc is used to calculate the forward cross sections for Denovo</p></td>
</tr>
<tr class="row-even"><td><p>Forward flux calculation</p></td>
<td><p>Denovo calculates the estimate of the forward flux</p></td>
</tr>
<tr class="row-odd"><td><p><strong>Adjoint Denovo (optional)</strong></p></td>
<td></td>
</tr>
<tr class="row-even"><td><p>Cross section calculation</p></td>
<td><p>XSProc is used to calculate the adjoint cross sections for Denovo</p></td>
</tr>
<tr class="row-odd"><td><p>Adjoint flux calculation</p></td>
<td><p>Denovo calculates the estimate of the adjoint flux</p></td>
</tr>
<tr class="row-even"><td><p><strong>CADIS (optional)</strong></p></td>
<td><p>The scalar flux file from Denovo is then used to create the biased source distribution and transport weight windows</p></td>
</tr>
<tr class="row-odd"><td><p><strong>Monte Carlo calculation</strong></p></td>
<td><p>Monaco uses the biased source distribution and transport weight windows to calculate the various tallies</p></td>
</tr>
</tbody>
</table>
<table class="colwidths-given docutils align-center" id="mavric-param">
<caption><span class="caption-number">Table 2 </span><span class="caption-text">Parameters for the MAVRIC command line (“parm=…”)</span><a class="headerlink" href="#mavric-param" title="Permalink to this table"></a></caption>
<colgroup>
<col style="width: 50%" />
<col style="width: 50%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>Parameter</p></th>
<th class="head"><p>MAVRIC will stop after</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>check</p></td>
<td><p>input checking</p></td>
</tr>
<tr class="row-odd"><td><p>forinp</p></td>
<td><p>Forward Denovo input construction (makes <code class="docutils literal notranslate"><span class="pre">xkba_b.inp</span></code> in the tmp area)</p></td>
</tr>
<tr class="row-even"><td><p>forward</p></td>
<td><p>The forward Denovo calculation</p></td>
</tr>
<tr class="row-odd"><td><p>adjinp</p></td>
<td><p>Adjoint Denovo input construction (makes <code class="docutils literal notranslate"><span class="pre">xkba_b.inp</span></code> in the tmp area)</p></td>
</tr>
<tr class="row-even"><td><p>adjoint</p></td>
<td><p>The adjoint Denovo calculation</p></td>
</tr>
<tr class="row-odd"><td><p>impmap</p></td>
<td><p>Calculation of importance map and biased source</p></td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="mavric-input">
<h2>MAVRIC input<a class="headerlink" href="#mavric-input" title="Permalink to this headline"></a></h2>
<p>The input file for MAVRIC consists of three lines of text (“=mavric”
command line with optional parameters, the problem title, and SCALE
cross section library name) and then several blocks, with each block
starting with “read xxxx” and ending with “end xxxx”. There are three
required blocks and nine optional blocks. Material and geometry blocks
must be listed first and in the specified order. Other blocks may be
listed in any order.</p>
<p>Blocks (must be in this order):</p>
<ul class="simple">
<li><p>Composition – (required) SCALE standard composition, list of materials used in the problem</p></li>
<li><p>Celldata – SCALE resonance self-shielding</p></li>
<li><p>Geometry – (required) SCALE general geometry description</p></li>
<li><p>Array – optional addition to the above geometry description</p></li>
<li><p>Volume – optional calculation or listing of region volumes</p></li>
<li><p>Plot – create 2D slices of the SGGP geometry</p></li>
</ul>
<p>Other Blocks (any order, following the blocks listed above):</p>
<ul class="simple">
<li><p>Definitions – defines locations, response functions, and grid geometries used by other blocks</p></li>
<li><p>Sources – (required) description of the particle source spatial, energy, and directional distributions</p></li>
<li><p>Tallies – description of what to calculate: point detector tallies, region tallies, or mesh tallies</p></li>
<li><p>Parameters – how to perform the simulation (random number seed, how many histories, etc.)</p></li>
<li><p>Biasing – data for reducing the variance of the simulation</p></li>
<li><p>ImportanceMap – instructions for creating an importance map based on a discrete-ordinates calculation</p></li>
</ul>
<p>The material blocks (Composition and Celldata) and the physical model
blocks (Geometry, Array, Volume, and Plot) follow the standard SCALE
format. See the other SCALE references as noted in the following
sections for details. The Biasing block and ImportanceMap block cannot
both be used.</p>
<p>For the other six blocks, scalar variables are set by “keyword=value”,
fixed-length arrays are set with “keyword value<sub>1</sub>
value<sub>N</sub>”, variable-length arrays are set with “keyword
value<sub>1</sub> … value<sub>N</sub> end”, and some text and filenames
are read in as quoted strings. Single keywords to set options are also
used in some instances. The indention, comment lines, and
upper/lowercase shown in this document are not required— they are used
in the examples only for clarity. Except for strings in quotes (like
filenames), SCALE is case insensitive.</p>
<p>After all input blocks are listed, a single line with “end data” should be listed.
A final “end” should also be listed, to signify the end of all MAVRIC input.
Nine of the blocks are the same input blocks used by the functional module Monaco,
with a few extra keywords only for use with MAVRIC. These extra keywords are highlighted here,
without relisting all of the standard Monaco keywords for those blocks.
See <a class="reference internal" href="#input-format"><span class="std std-numref">Table 3</span></a> for an overview of MAVRIC input file structure.</p>
<div class="section" id="composition-block">
<h3>Composition block<a class="headerlink" href="#composition-block" title="Permalink to this headline"></a></h3>
<p>Material information input follows the standard SCALE format for
material input. Basic materials known to the SCALE library may be used
as well as completely user-defined materials (using isotopes with known
cross sections). Input instructions are located in the XSProc chapter in
the SCALE manual. The Standard Composition Library chapter lists the
different cross section libraries and the names of standard materials.
An example is as follows:</p>
<div class="highlight-rest notranslate"><div class="highlight"><pre><span></span>read composition

    uo2 1 0.2 293.0 92234 0.0055 92235 3.5 92238 96.4945 end

    orconcrete 2 1.0 293.0 end

    ss304 3 1.0 293.0 end

end composition
</pre></div>
</div>
<p>Details on the cell data block are also included in the XSProc chapter.
When using different libraries for the importance map production (listed
at the top of the input) and the final Monte Carlo calculation (listed
in the parameters block, if different), make sure that the materials are
present in both libraries.</p>
<table class="colwidths-given docutils align-center" id="input-format">
<caption><span class="caption-number">Table 3 </span><span class="caption-text">Overall input format</span><a class="headerlink" href="#input-format" title="Permalink to this table"></a></caption>
<colgroup>
<col style="width: 50%" />
<col style="width: 50%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>input file</p></th>
<th class="head"><p>Comment</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><div class="highlight-rest notranslate"><div class="highlight"><pre><span></span>=mavric
Some title for this problem
v7-27n19g
read composition
   ...
end composition
read celldata
   ...
end celldata
read geometry
   ...
end geometry
read array
   ...
end array
read volume
   ...
end volume
read plot
   ...
end plot
read definitions
   ...
end definitions
read sources
   ...
end sources
read tallies
   ...
end tallies
read parameters
   ...
end parameters
read biasing
   ...
end biasing
read importanceMap
   ...
end importanceMap
end data
end
</pre></div>
</div>
</td>
<td><div class="highlight-rest notranslate"><div class="highlight"><pre><span></span>name of sequence
title
cross section library name
SCALE material compositions
    [required block]

SCALE resonance self-shielding
    [optional block]

SCALE SGGP geometry
    [required block]

SCALE SGGP arrays
    [optional block]

SCALE SGGP volume calc
    [optional block]

SGGP Plots
    [optional block]

Definitions
    [possibly required]

Sources definition
    [required block]

Tally specifications
    [optional block]

Monte Carlo parameters
    [optional block]

Biasing information
    [optional block]

Importance map
    [optional block]

end of all blocks
end of MAVRIC input
</pre></div>
</div>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="sggp-geometry-blocks">
<h3>SGGP geometry blocks<a class="headerlink" href="#sggp-geometry-blocks" title="Permalink to this headline"></a></h3>
<p>MAVRIC uses the functional module Monaco for the forward Monte Carlo calculation. Monaco tracks particles through the physical geometry described by the SGGP input blocks as well as through the mesh importance map and any mesh tallies, which are defined in the global coordinates and overlay the physical geometry. Because Monaco must track through all of these geometries at the same time, users should not use the reflective boundary capability in the SGGP geometry.</p>
<p>For more details on each SGGP Geometry block, see the following sections of the KENO-VI chapter of the SCALE Manual.</p>
<blockquote>
<div><p>Geometry – <em>Geometry Data</em></p>
<p>Array – <em>Array Data</em></p>
<p>Volume – <em>Volume Data</em></p>
<p>Plot – <em>Plot Data</em></p>
</div></blockquote>
</div>
<div class="section" id="other-blocks-shared-with-monaco">
<h3>Other blocks shared with Monaco<a class="headerlink" href="#other-blocks-shared-with-monaco" title="Permalink to this headline"></a></h3>
<p>The definitions, sources, tallies, and biasing blocks are all the same
as Monaco. They are all fully described in the Monaco chapter of the
SCALE Manual.</p>
<blockquote>
<div><p>Definitions – <em>Definitions Block</em></p>
<p>Sources – <em>Sources Block</em></p>
<p>Tallies – <em>Tallies Block</em></p>
<p>Biasing – <em>Biasing Block</em></p>
</div></blockquote>
<p>In the parameters block, there are several extra keywords compared to
Monaco (see the <em>Parameter Block</em> section of the Monaco chapter) which
are used when the cross section library used in the importance
calculations is different from the library used in the final forward
Monaco Monte Carlo calculation. The library listed at the beginning of
the MAVRIC input file will be used for the importance calculations
(forward and adjoint Denovo calculation, formation of the importance
map, and biased sources). To use a different MG library in the final
Monaco simulation, use the keyword “library=” with the cross section
library name in quotes. A cross section library for Monaco will be made
using csas-mg. If there are any extra parameters to use (“parm=” in the
“=csas-mg” line of the csas-mg input), they can be passed along using
the keyword “parmString=” with the extra information in quotes. For
example, the following input file would use a coarse-group library for
the importance calculations and a fine-group library for the final
Monaco, each with CENTRM processing.</p>
<div class="highlight-rest notranslate"><div class="highlight"><pre><span></span>=mavric parm=centrm
v7-27n19g


read parameters

    library=”v7-200n47g” parmString=”centrm”



end parameters



end data

end
</pre></div>
</div>
<p>To use a CE cross section in the final Monaco step, use the keyword “ceLibrary=” with the cross section library name in quotes. When using the “library=” or “ceLibrary=” keywords, they should precede the “neutron”, “photon”, “noNeutron”, and “noPhoton” keywords. <a class="reference internal" href="#extra-keywords"><span class="std std-numref">Table 4</span></a> summarizes all of the keywords in the MAVRIC parameter block.</p>
<p>When using two different cross section libraries, be sure that the responses and distributions are defined in ways that do not depend on the cross section library. For example, any response that is just a list of n values (corresponding to a cross section library of n groups) needs to have the group energies specifically listed so that it can be evaluated properly on the other group structure.</p>
<table class="docutils align-default" id="extra-keywords">
<caption><span class="caption-number">Table 4 </span><span class="caption-text">Extra keywords for the parameters block</span><a class="headerlink" href="#extra-keywords" title="Permalink to this table"></a></caption>
<colgroup>
<col style="width: 10%" />
<col style="width: 10%" />
<col style="width: 10%" />
<col style="width: 10%" />
<col style="width: 10%" />
<col style="width: 10%" />
<col style="width: 10%" />
<col style="width: 10%" />
<col style="width: 10%" />
<col style="width: 10%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"></th>
<th class="head"></th>
<th class="head"></th>
<th class="head"></th>
<th class="head"></th>
<th class="head"></th>
<th class="head"></th>
<th class="head"></th>
<th class="head"></th>
<th class="head"></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>block</p></td>
<td></td>
<td></td>
<td><p>keyword</p></td>
<td><p>type</p></td>
<td><p>length</p></td>
<td><p>default</p></td>
<td></td>
<td><p>required</p></td>
<td><p>restrictions/comments</p></td>
</tr>
<tr class="row-odd"><td><p>read parameters</p></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="row-even"><td></td>
<td><p>All of the keywords listed in the Monaco manual still apply</p></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="row-odd"><td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="row-even"><td></td>
<td><p>Final Monaco Monte Carlo calculation is multi-group</p></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="row-odd"><td></td>
<td><p>library=</p></td>
<td></td>
<td></td>
<td><p>character</p></td>
<td></td>
<td><p>not present</p></td>
<td></td>
<td><p>no</p></td>
<td><p>MG library for final Monaco run, if different than MAVRIC</p></td>
</tr>
<tr class="row-even"><td></td>
<td><p>parmString=</p></td>
<td></td>
<td></td>
<td><p>character</p></td>
<td></td>
<td><p>not present</p></td>
<td></td>
<td><p>no</p></td>
<td><p>parm for MG cross section processing using CSAS-MG</p></td>
</tr>
<tr class="row-odd"><td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="row-even"><td></td>
<td><p>Final Monaco Monte Carlo calculation is continuous energy</p></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="row-odd"><td></td>
<td><p>ceLibrary=</p></td>
<td></td>
<td></td>
<td><p>character</p></td>
<td></td>
<td><p>not present</p></td>
<td></td>
<td><p>no</p></td>
<td><p>continuous energy library name</p></td>
</tr>
<tr class="row-even"><td><p>end parameters</p></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="row-odd"><td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="row-even"><td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="row-odd"><td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="row-even"><td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="importance-map-block">
<h3>Importance map block<a class="headerlink" href="#importance-map-block" title="Permalink to this headline"></a></h3>
<p>The importance map block is the “heart and soul” of MAVRIC. This block lists the parameters for creating an importance map and biased source from one (adjoint) or two (forward, followed by adjoint) Denovo discrete-ordinates calculations. Without an importance map block, MAVRIC can be used to run Monaco and use its conventional types of variance reduction. If both the importance map and biasing blocks are specified, only the importance map block will be used. There are a variety of ways to use the importance map block, as explained in the subsections below. Keywords for this block are summarized at the end of this section, in
:numref:``</p>
<div class="section" id="constructing-a-mesh-for-the-sn-calculation">
<h4>Constructing a mesh for the S<sub>N</sub> calculation<a class="headerlink" href="#constructing-a-mesh-for-the-sn-calculation" title="Permalink to this headline"></a></h4>
<p>All of the uses of the importance map block that run the
discrete-ordinates code require the use of a grid geometry that overlays
the physical geometry. Grid geometries are defined in the definitions
block of the MAVRIC input. The extent and level of detail needed in a
grid geometry are discussed in the following paragraphs.</p>
<p>When using S<sub>N</sub> methods alone for solving radiation transport in
shielding problems, a good rule of thumb is to use mesh cell sizes on
the order of a meanfree path of the particle. For complex shielding
problems, this could lead to an extremely large number of mesh cells,
especially when considering the size of the meanfree path of the lowest
energy neutrons and photons in common shielding materials.</p>
<p>In MAVRIC, the goal is to use the S<sub>N</sub> calculation for a quick
approximate solution. Accuracy is not paramount—just getting an idea of
the overall shape of the true importance map will help accelerate the
convergence of the forward Monte Carlo calculation. The more accurate
the importance map, the better the forward Monte Carlo acceleration will
be. At some point there is a time trade-off when the computational time
for calculating the importance map followed by the Monte Carlo
calculation exceeds that of a standard analog Monte Carlo calculation.
Large numbers of mesh cells, coming from using very small mesh sizes,
for S<sub>N</sub> calculations also use a great deal of computer memory.</p>
<p>Because the deterministic solution(s) for CADIS and FW-CADIS can have
moderate fidelity and still provide variance reduction parameters that
substantially accelerate the Monte Carlo solution, mesh cell sizes in
MAVRIC applications can be larger than what most S<sub>N</sub> practioners
would typically use. The use of relatively coarse mesh reduces memory
requirements and the run time of the deterministic solution(s). Some
general guidelines to keep in mind when creating a mesh for the
importance map/biased source are:</p>
<ul class="simple">
<li><p>The true source regions should be included in the mesh with mesh
planes at their boundaries.</p></li>
<li><p>For point or very small sources, place them in the center of a mesh
cell, not on the mesh planes.</p></li>
<li><p>Any region of the geometry where particles could eventually
contribute to the tallies (the “important” areas) should be included
in the mesh.</p></li>
<li><p>Point adjoint sources (corresponding to point detector locations) in
standard CADIS calculations do not have to be included inside the
mesh. For FW-CADIS, they must be in the mesh and should be located at
a mesh cell center, not on any of the mesh planes.</p></li>
<li><p>Volumetric adjoint sources should be included in the mesh with mesh
planes at their boundaries.</p></li>
<li><p>Mesh planes should be placed at significant material boundaries.</p></li>
<li><p>Neighboring cell sizes should not be drastically different.</p></li>
<li><p>Smaller cell sizes should be used where the adjoint flux is changing
rapidly, for example, toward the surfaces of adjoint sources and
shields (rather than their interiors).</p></li>
</ul>
<p>Another aspect to keep in mind is that the source in the forward Monaco
Monte Carlo calculation will be a biased, mesh-based source. Source
particles will be selected by first sampling which mesh cell to use and
then sampling a position uniformly within that mesh cell that meets the
user criteria of “unit=”, “region=”, or “mixture=” if specified. The
mesh should have enough resolution that the mesh source will be an
accurate representation of the true source.</p>
<p>The geometry for the Denovo calculation is specified using the keyword
“gridGeometryID=” and the identification number of a grid geometry that
was defined in the definitions block. The material assigned to each
voxel of the mesh is determined by testing the center point in the SGGP
geometry (unless the macro-material option is used – see below).</p>
</div>
<div class="section" id="macromaterials-for-sn-geometries">
<h4>Macromaterials for S<sub>N</sub> geometries<a class="headerlink" href="#macromaterials-for-sn-geometries" title="Permalink to this headline"></a></h4>
<p>Part of the advantage of the CADIS method is that the adjoint
discrete-ordinates calculation only needs to be approximate in order to
form a reasonable importance map and biased source. This usually means
that the mesh used is much coarser than the mesh that would be used if
the problem were to be solved only with a discrete-ordinates code. This
coarse mesh may miss significant details (especially curves) in the
geometry and produce a less-than-optimal importance map.</p>
<p>In order to get more accurate solutions from a coarse-mesh
discrete-ordinates calculation, Denovo can represent the material in
each voxel of the mesh as a volume-weighted mixture of the real
materials, called macromaterials, in the problem. When constructing the
Denovo input, the Denovo EigenValue Calculation (DEVC, see section SECTIONREFERENCE)
sequence can estimate the volume fraction occupied by each real
material in each voxel by a sampling method. The user can specify
parameters for how to sample the geometry. Note that finer sampling
makes more accurate estimates of the material fraction but requires more
setup time to create the Denovo input. Users should understand how the
macromaterials are sampled and consider that when constructing a mesh
grid. This is especially important for geometries that contain arrays.
Careful consideration should be given when overlaying a mesh on a
geometry that contains arrays of arrays.</p>
<p>Because the list of macromaterials could become large, the user can also
specify a tolerance for how close two different macromaterials can be to
be considered the same, thereby reducing the total number of
macromaterials. The macromaterial tolerance, “<code class="docutils literal notranslate"><span class="pre">mmTolerance=</span></code>”, is used for
creating a different macromaterial from the ones already created by
looking at the infinity norm between two macromaterials.
The number of macromaterials does not appreciably impact Denovo run time
or memory requirements.</p>
<p>Two different sampling methods are available—point testing <a class="bibtex reference internal" href="#ibrahim-improving-2009" id="id12">[IPE+09]</a> with
the keyword <code class="docutils literal notranslate"><span class="pre">mmPointTest</span></code> and ray tracing <a class="bibtex reference internal" href="#johnson-fast-2013" id="id13">[Joh13]</a> with the keyword
<code class="docutils literal notranslate"><span class="pre">mmRayTest</span></code>.</p>
<div class="section" id="ray-tracing">
<h5>Ray Tracing<a class="headerlink" href="#ray-tracing" title="Permalink to this headline"></a></h5>
<p>This method estimates the volume of different materials in the Denovo mesh grid elements by tracing rays through the SGGP geometry and computing the average track lengths through the each material. Rays are traced in all three dimensions to better estimate the volume fractions of materials within each voxel. The mmSubCell parameter controls how many rays to trace in each voxel in each dimension. For example, if mmSubCell= n, then when tracing rays in the z dimension, each column of voxels uses a set of n×n rays starting uniformly spaced in the x  and y  dimensions. With rays being cast from all three orthogonal directions, a total of 3n2 rays are used to sample each voxel. One can think of subcells as an equally spaced sub-mesh with a single ray positioned at each center. The number of subcells in each direction, and hence the number of rays, can be explicitly given with mmSubCells ny nz nx nz nx ny end keyword for rays parallel to the x axis, y axis, and z axis.
<a class="reference internal" href="#ray-positions"><span class="std std-numref">Fig. 1</span></a> shows different subcell configurations (in two dimensions) for a given voxel.</p>
<div class="figure align-center" id="id14">
<span id="ray-positions"></span><a class="reference internal image-reference" href="_images/fig4.1.01_rayTrace6.png"><img alt="_images/fig4.1.01_rayTrace6.png" src="_images/fig4.1.01_rayTrace6.png" style="width: 500px;" /></a>
<p class="caption"><span class="caption-number">Fig. 1 </span><span class="caption-text">Ray positions within a voxel with different mmSubCells parameters.</span><a class="headerlink" href="#id14" title="Permalink to this image"></a></p>
</div>
<p>Ray tracing is a more robust method compared to the simple point testing
method used in previous versions of SCALE/MAVRIC; however, it requires
more memory than point testing. Ray tracing gives more accurate
estimates of volume fractions because track lengths across a voxel give
more information than a series of test points. Ray tracing is also much
faster than point testing because the particle tracking routines are
optimized for quickly determining lists of materials and distance along
a given ray.</p>
<p>Ray tracing operates on the grid geometry supplied by the user and
shoots rays in all three directions starting from the lower bounds of
the mesh grid. An example of an arbitrary assembly geometry is shown in
<a class="reference internal" href="#geom-model"><span class="std std-numref">Fig. 2</span></a>. A ray consists of a number of steps that each correspond
to crossing a material boundary along the path of the ray. Ratios of
each step’s length to the voxel length in the ray’s direction determine
the material volume fraction of that step in that voxel, and summation
of the same material volume fractions gives the material volume fraction
of that material in that voxel. Ray tracing through a single voxel that
contains a fuel pin is illustrated in Figure 4.1.3.</p>
<div class="figure align-center" id="id15">
<span id="geom-model"></span><a class="reference internal image-reference" href="_images/fig4.1.02_kenoDenovo.png"><img alt="_images/fig4.1.02_kenoDenovo.png" src="_images/fig4.1.02_kenoDenovo.png" style="width: 600px;" /></a>
<p class="caption"><span class="caption-number">Fig. 2 </span><span class="caption-text">Geometry model (left) and the Denovo representation (right) of an assembly using macromaterials determined by ray tracing.</span><a class="headerlink" href="#id15" title="Permalink to this image"></a></p>
</div>
<p id="bibtex-bibliography-MAVRIC-0"><dl class="citation">
<dt class="bibtex label" id="baker-sn-1998"><span class="brackets"><a class="fn-backref" href="#id6">BK98</a></span></dt>
<dd><p>Randal S. Baker and Kenneth R. Koch. An Sn algorithm for the massively parallel CM-200 computer. <em>Nuclear Science and Engineering</em>, 128(3):312–320, 1998. Publisher: Taylor &amp; Francis.</p>
</dd>
<dt class="bibtex label" id="haghighat-monte-2003"><span class="brackets"><a class="fn-backref" href="#id4">HW03</a></span></dt>
<dd><p>Alireza Haghighat and John C. Wagner. Monte Carlo variance reduction with deterministic importance functions. <em>Progress in Nuclear Energy</em>, 42(1):25–53, 2003. Publisher: Elsevier.</p>
</dd>
<dt class="bibtex label" id="ibrahim-improving-2009"><span class="brackets"><a class="fn-backref" href="#id12">IPE+09</a></span></dt>
<dd><p>Ahmad M. Ibrahim, Douglas E. Peplow, Thomas M. Evans, John C. Wagner, and Paul PH Wilson. Improving the Mesh Generation Capabilities in the SCALE Hybrid Shielding Analysis Sequence. <em>Trans. Am. Nucl. Soc</em>, 100:302, 2009.</p>
</dd>
<dt class="bibtex label" id="johnson-fast-2013"><span class="brackets"><a class="fn-backref" href="#id13">Joh13</a></span></dt>
<dd><p>Seth R. Johnson. Fast mix table construction for material discretization. In <em>Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering-M and C 2013</em>. 2013.</p>
</dd>
<dt class="bibtex label" id="rhoades-doors-1998"><span class="brackets"><a class="fn-backref" href="#id11">RC98</a></span></dt>
<dd><p>W. A. Rhoades and R. L. Childs. DOORS 3.2, one-, two-, three-dimensional discrete ordinates neutron/photon transport code system. <em>RSICC, Oak Ridge National Laboratory</em>, 300:650, 1998.</p>
</dd>
<dt class="bibtex label" id="rhoades-tort-1997"><span class="brackets"><a class="fn-backref" href="#id10">RS97</a></span></dt>
<dd><p>Wayne A. Rhoades and D. B. Simpson. The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3). Technical Report, Oak Ridge National Lab., TN (United States), 1997.</p>
</dd>
<dt class="bibtex label" id="wagner-acceleration-1997"><span class="brackets"><a class="fn-backref" href="#id1">Wag97</a></span></dt>
<dd><p>John C. Wagner. <em>Acceleration of Monte Carlo shielding calculations with an automated variance reduction technique and parallel processing</em>. PhD thesis, Pennsylvania State University, 1997.</p>
</dd>
<dt class="bibtex label" id="wagner-automated-2002"><span class="brackets"><a class="fn-backref" href="#id3">Wag02</a></span></dt>
<dd><p>John C. Wagner. An automated deterministic variance reduction generator for Monte Carlo shielding applications. In <em>Proceedings of the American Nuclear Society 12th Biennial RPSD Topical Meeting</em>, 14–18. Citeseer, 2002.</p>
</dd>
<dt class="bibtex label" id="wagner-forward-weighted-2007"><span class="brackets"><a class="fn-backref" href="#id5">WBP07</a></span></dt>
<dd><p>John C. Wagner, Edward D. Blakeman, and Douglas E. Peplow. Forward-weighted CADIS method for global variance reduction. <em>Transactions-American Nuclear Society</em>, 97:630, 2007. Publisher: American Nuclear Society.</p>
</dd>
<dt class="bibtex label" id="wagner-automated-1998"><span class="brackets"><a class="fn-backref" href="#id2">WH98</a></span></dt>
<dd><p>John C. Wagner and Alireza Haghighat. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function. <em>Nuclear Science and Engineering</em>, 128(2):186–208, 1998. Publisher: Taylor &amp; Francis.</p>
</dd>
<dt class="bibtex label" id="willenbring-trilinos-2003"><span class="brackets"><a class="fn-backref" href="#id7">WH03</a></span></dt>
<dd><p>James M. Willenbring and Michael Allen Heroux. Trilinos users guide. Technical Report SAND2003-2952, Sandia National Laboratories, 2003.</p>
</dd>
</dl>
</p>
</div>
</div>
</div>
</div>
</div>


           </div>
           
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
      
        <a href="index.html" class="btn btn-neutral float-left" title="Welcome to SCALE test documentation!" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        
        &copy; Copyright 2020, SCALE developers

    </p>
  </div>
    
    
    
    Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a
    
    <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a>
    
    provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  

  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.Navigation.enable(true);
      });
  </script>

  
  
    
   

</body>
</html>