Keno.html 1.86 MB
Newer Older
Batson Iii's avatar
Batson Iii committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000


<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Keno: A Monte Carlo Criticality Program &mdash; SCALE Manual 0.0.1 documentation</title>
  

  
  <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
  <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
  <link rel="stylesheet" href="_static/custom.css" type="text/css" />

  
  
  
  

  
  <!--[if lt IE 9]>
    <script src="_static/js/html5shiv.min.js"></script>
  <![endif]-->
  
    
      <script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
        <script src="_static/jquery.js"></script>
        <script src="_static/underscore.js"></script>
        <script src="_static/doctools.js"></script>
        <script src="_static/language_data.js"></script>
        <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
    
    <script type="text/javascript" src="_static/js/theme.js"></script>

    
    <link rel="index" title="Index" href="genindex.html" />
    <link rel="search" title="Search" href="search.html" />
    <link rel="next" title="Keno Appendix A: KENO V.a Shape Descriptions" href="KenoA.html" />
    <link rel="prev" title="Monte Carlo Transport Overview" href="Monte%20Carlo%20Transport%20Overview.html" /> 
</head>

<body class="wy-body-for-nav">

   
  <div class="wy-grid-for-nav">
    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search" >
          

          
            <a href="index.html" class="icon icon-home" alt="Documentation Home"> SCALE Manual
          

          
          </a>

          
            
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        
        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <p class="caption"><span class="caption-text">Reactor Physics</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Polaris.html">Polaris: 2D Light Water Reactor Lattice Physics Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="PolarisA.html">SCALE 6.3 Polaris Input Format</a></li>
</ul>
<p class="caption"><span class="caption-text">Criticality Safety</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Criticality%20Safety%20Overview.html">Criticality Safety Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS5.html">CSAS5:  Control Module For Enhanced Criticality Safety Analysis Sequences With KENO V.a</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS5App.html">Additional Example Applications of CSAS5</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS6.html">CSAS6:  Control Module for Enhanced Criticality Safety Analysis with KENO-VI</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS6App.html">Additional Example Applications of CSAS6</a></li>
<li class="toctree-l1"><a class="reference internal" href="STARBUCS.html">STARBUCS: A Scale Control Module for Automated Criticality Safety Analyses Using Burnup Credit</a></li>
<li class="toctree-l1"><a class="reference internal" href="Sourcerer.html">Sourcerer: Deterministic Starting Source for Criticality Calculations</a></li>
<li class="toctree-l1"><a class="reference internal" href="DEVC.html">DEVC: Denovo EigenValue Calculation</a></li>
<li class="toctree-l1"><a class="reference internal" href="KMART.html">KMART5 and KMART6: Postprocessors for KENO V.A and KENO-VI</a></li>
<li class="toctree-l1"><a class="reference internal" href="K5C5.html">K5toK6 and C5toC6: Input File Conversion Programs for KENO and CSAS</a></li>
</ul>
<p class="caption"><span class="caption-text">Material Specification and Cross Section Processing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Material%20Specification%20and%20Cross%20Section%20Processing%20Overview.html">Material Specification and Cross Section Processing Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProc.html">XSPROC: The Material and Cross Section Processing Module for SCALE</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProcAppA.html">XSProc: Standard Composition Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProcAppB.html">XSProc Standard Composition Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProcAppC.html">Examples of Complete XSProc Input Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="stdcmp.html">Standard Composition Library</a></li>
<li class="toctree-l1"><a class="reference internal" href="BONAMI.html">BONAMI: Resonance Self-Shielding by the Bondarenko Method</a></li>
<li class="toctree-l1"><a class="reference internal" href="CENTRM.html">CENTRM: A Neutron Transport Code for Computing Continuous-Energy Spectra in General One-Dimensional Geometries and Two-Dimensional Lattice Cells</a></li>
<li class="toctree-l1"><a class="reference internal" href="PMC.html">PMC: A Program to Produce Multigroup Cross Sections Using Pointwise Energy Spectra from CENTRM</a></li>
<li class="toctree-l1"><a class="reference internal" href="PMCAppAB.html">PMC Appendices A and B</a></li>
<li class="toctree-l1"><a class="reference internal" href="CHOPS.html">CHOPS: Module to Compute Pointwise Disadvantage Factors and Produce a Cell-Homogenized CENTRM Library</a></li>
<li class="toctree-l1"><a class="reference internal" href="CRAWDAD.html">CRAWDAD: Module to Produce CENTRM-Formatted Continuous-Energy Nuclear Data Libraries</a></li>
<li class="toctree-l1"><a class="reference internal" href="MCDancoff.html">MCDancoff Data Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="CAJUN.html">CAJUN: Module for Combining and Manipulating CENTRM Continuous-Energy Libraries</a></li>
</ul>
<p class="caption"><span class="caption-text">Monte Carlo Transport</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Monte%20Carlo%20Transport%20Overview.html">Monte Carlo Transport Overview</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Keno: A Monte Carlo Criticality Program</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#introduction-to-keno">Introduction to KENO</a></li>
<li class="toctree-l2"><a class="reference internal" href="#keno-data-guide">KENO Data Guide</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#keno-input-outline">Keno input outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="#procedure-for-data-input">Procedure for data input</a></li>
<li class="toctree-l3"><a class="reference internal" href="#title-and-parameter-data">Title and parameter data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#geometry-data">Geometry data</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#units">UNITS</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#array-data">ARRAY Data</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#array-parameters">ARRAY Parameters</a></li>
<li class="toctree-l4"><a class="reference internal" href="#array-orientation-data">ARRAY orientation data</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#albedo-data">Albedo data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#biasing-or-weighting-data">Biasing or weighting data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#start-data">Start data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#extra-1-d-xsecs-ids-data">Extra 1-D XSECS IDs data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#mixing-table-data">Mixing table data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#plot-data">Plot data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#energy-group-boundary-data">Energy group boundary data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#volume-data">Volume data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#grid-geometry-data">Grid geometry data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#reaction-data">Reaction data</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#notes-for-keno-users">Notes for Keno Users</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#data-entry">Data entry</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#multiple-and-scattered-entries-in-the-mixing-table">Multiple and scattered entries in the mixing table</a></li>
<li class="toctree-l4"><a class="reference internal" href="#multiple-entries-in-geometry-data">Multiple entries in geometry data</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#default-logical-unit-numbers-for-keno">Default logical unit numbers for KENO</a></li>
<li class="toctree-l3"><a class="reference internal" href="#parameter-input">Parameter input</a></li>
<li class="toctree-l3"><a class="reference internal" href="#cross-sections">Cross sections</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#use-a-mixed-cross-section-monte-carlo-format-library">Use a mixed cross section Monte Carlo format library</a></li>
<li class="toctree-l4"><a class="reference internal" href="#use-an-ampx-working-format-library">Use an AMPX working format library</a></li>
<li class="toctree-l4"><a class="reference internal" href="#number-of-scattering-angles">Number of scattering angles</a></li>
<li class="toctree-l4"><a class="reference internal" href="#cross-section-message-cutoff">Cross section message cutoff</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#mixing-table">Mixing table</a></li>
<li class="toctree-l3"><a class="reference internal" href="#geometry">Geometry</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#use-of-holes-in-the-geometry">Use of holes in the geometry</a></li>
<li class="toctree-l4"><a class="reference internal" href="#nesting-holes">Nesting holes</a></li>
<li class="toctree-l4"><a class="reference internal" href="#multiple-arrays">Multiple arrays</a></li>
<li class="toctree-l4"><a class="reference internal" href="#arrays-and-holes">Arrays and holes</a></li>
<li class="toctree-l4"><a class="reference internal" href="#triangular-pitched-arrays-in-keno-vi">Triangular pitched arrays in KENO-VI</a></li>
<li class="toctree-l4"><a class="reference internal" href="#triangular-pitched-arrays-in-keno-v-a">Triangular pitched Arrays in KENO V.a</a></li>
<li class="toctree-l4"><a class="reference internal" href="#dodecahedral-pitched-arrays">Dodecahedral pitched arrays</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#alternative-sample-problem-mockups">Alternative sample problem mockups</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#sample-problem-c-12-first-alternative">Sample Problem C.12, First Alternative</a></li>
<li class="toctree-l4"><a class="reference internal" href="#sample-problem-c-12-second-alternative">Sample Problem C.12, Second Alternative</a></li>
<li class="toctree-l4"><a class="reference internal" href="#sample-problem-c-13-alternative">Sample Problem C.13, Alternative</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#id52">Biasing or weighting data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#color-plots">Color plots</a></li>
<li class="toctree-l3"><a class="reference internal" href="#keno-multiple-mesh-and-mesh-based-quantity-specifications">KENO Multiple Mesh and Mesh-based Quantity Specifications</a></li>
<li class="toctree-l3"><a class="reference internal" href="#random-sequence">Random sequence</a></li>
<li class="toctree-l3"><a class="reference internal" href="#matrix-k-effective">Matrix k-effective</a></li>
<li class="toctree-l3"><a class="reference internal" href="#deviations">Deviations</a></li>
<li class="toctree-l3"><a class="reference internal" href="#generation-time-and-lifetime">Generation time and lifetime</a></li>
<li class="toctree-l3"><a class="reference internal" href="#energy-of-the-average-lethargy-of-fission">Energy of the Average Lethargy of Fission</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#description-of-output">Description of Output</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#program-verification-information">Program verification information</a></li>
<li class="toctree-l3"><a class="reference internal" href="#tables-of-parameter-data">Tables of parameter data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#unprocessed-geometry-input-data">Unprocessed geometry input data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#table-of-data-sets-used-in-the-problem">Table of data sets used in the problem</a></li>
<li class="toctree-l3"><a class="reference internal" href="#table-of-additional-information">Table of additional information</a></li>
<li class="toctree-l3"><a class="reference internal" href="#id69">Mixing table data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#albedo-cross-section-correspondence">Albedo cross section correspondence</a></li>
<li class="toctree-l3"><a class="reference internal" href="#d-macroscopic-cross-sections">1-D macroscopic cross sections</a></li>
<li class="toctree-l3"><a class="reference internal" href="#extra-1-d-cross-sections">Extra 1-d cross sections</a></li>
<li class="toctree-l3"><a class="reference internal" href="#id74">2-D macroscopic cross sections</a></li>
<li class="toctree-l3"><a class="reference internal" href="#probabilities-and-angles">Probabilities and angles</a></li>
<li class="toctree-l3"><a class="reference internal" href="#array-summary">Array summary</a></li>
<li class="toctree-l3"><a class="reference internal" href="#id78">Geometry data</a></li>
<li class="toctree-l3"><a class="reference internal" href="#unit-orientation-description">Unit orientation description</a></li>
<li class="toctree-l3"><a class="reference internal" href="#volume-information">Volume information</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#keno-v-a">KENO V.a</a></li>
<li class="toctree-l4"><a class="reference internal" href="#keno-vi">KENO-VI</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#mesh-volumes">Mesh volumes</a></li>
<li class="toctree-l3"><a class="reference internal" href="#biasing-information">Biasing information</a></li>
<li class="toctree-l3"><a class="reference internal" href="#group-dependent-weights">Group-dependent weights</a></li>
<li class="toctree-l3"><a class="reference internal" href="#plot-representation">Plot representation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#initial-source-and-final-pretracking-edits">Initial source and final pretracking edits</a></li>
<li class="toctree-l3"><a class="reference internal" href="#reference-center-for-flux-moment-angular-flux-transform">Reference center for flux moment/angular flux transform</a></li>
<li class="toctree-l3"><a class="reference internal" href="#print-starting-points">Print starting points</a></li>
<li class="toctree-l3"><a class="reference internal" href="#k-effectives-by-generation">K-effectives by generation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#problem-characterization-edit">Problem characterization edit</a></li>
<li class="toctree-l3"><a class="reference internal" href="#final-k-effective-edit">Final k-effective edit</a></li>
<li class="toctree-l3"><a class="reference internal" href="#plot-of-average-k-effective-by-generation-run">Plot of average k-effective by generation run</a></li>
<li class="toctree-l3"><a class="reference internal" href="#plot-of-average-k-effective-by-generations-skipped">Plot of average k-effective by generations skipped</a></li>
<li class="toctree-l3"><a class="reference internal" href="#final-edit-of-fissions-absorptions-and-leakage">Final edit of fissions, absorptions, and leakage</a></li>
<li class="toctree-l3"><a class="reference internal" href="#reaction-tally">Reaction tally</a></li>
<li class="toctree-l3"><a class="reference internal" href="#source-convergence-diagnostics">Source convergence diagnostics</a></li>
<li class="toctree-l3"><a class="reference internal" href="#matrix-k-effective-by-position-index">Matrix k-effective by position index</a></li>
<li class="toctree-l3"><a class="reference internal" href="#fission-production-by-position-index-matrix">Fission production by position index matrix</a></li>
<li class="toctree-l3"><a class="reference internal" href="#source-vector-by-position-index">Source vector by position index</a></li>
<li class="toctree-l3"><a class="reference internal" href="#cofactor-k-effective-by-position-index">Cofactor k-effective by position index</a></li>
<li class="toctree-l3"><a class="reference internal" href="#matrix-k-effective-by-unit-number">Matrix k-effective by unit number</a></li>
<li class="toctree-l3"><a class="reference internal" href="#fission-production-by-unit-number-matrix">Fission production by unit number matrix</a></li>
<li class="toctree-l3"><a class="reference internal" href="#source-vector-by-unit-number">Source vector by unit number</a></li>
<li class="toctree-l3"><a class="reference internal" href="#cofactor-k-effective-by-unit-number">Cofactor k-effective by unit number</a></li>
<li class="toctree-l3"><a class="reference internal" href="#matrix-k-effective-by-hole-number">Matrix k-effective by hole number</a></li>
<li class="toctree-l3"><a class="reference internal" href="#fission-production-by-hole-number-matrix">Fission production by hole number matrix</a></li>
<li class="toctree-l3"><a class="reference internal" href="#source-vector-by-hole-number">Source vector by hole number</a></li>
<li class="toctree-l3"><a class="reference internal" href="#cofactor-k-effective-by-hole-number">Cofactor k-effective by hole number</a></li>
<li class="toctree-l3"><a class="reference internal" href="#matrix-k-effective-by-array-number">Matrix k-effective by array number</a></li>
<li class="toctree-l3"><a class="reference internal" href="#fission-production-by-array-number-matrix">Fission production by array number matrix</a></li>
<li class="toctree-l3"><a class="reference internal" href="#source-vector-by-array-number">Source vector by array number</a></li>
<li class="toctree-l3"><a class="reference internal" href="#cofactor-k-effective-by-array-number">Cofactor k-effective by array number</a></li>
<li class="toctree-l3"><a class="reference internal" href="#fission-density-edit">Fission density edit</a></li>
<li class="toctree-l3"><a class="reference internal" href="#flux-edit">Flux edit</a></li>
<li class="toctree-l3"><a class="reference internal" href="#frequency-distributions">Frequency distributions</a></li>
<li class="toctree-l3"><a class="reference internal" href="#summary-of-parallel-performance">Summary of parallel performance</a></li>
<li class="toctree-l3"><a class="reference internal" href="#final-results-table">Final results table</a></li>
<li class="toctree-l3"><a class="reference internal" href="#html-output">HTML output</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#id121">Program verification information</a></li>
<li class="toctree-l4"><a class="reference internal" href="#messages">Messages</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id124">Tables of parameter data</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id126">Table of additional information</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id128">Mixing table data</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id130">1-D macroscopic cross sections</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id132">2-D macroscopic cross sections</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id134">Probabilities and angles</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id136">Geometry data</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id138">Volume information</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id146">Biasing information</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id148">Group-dependent weights</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id150">Plot representation</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id152">Initial source and final pretracking edits</a></li>
<li class="toctree-l4"><a class="reference internal" href="#reference-center-for-flux-moment-angular-flux-tranform">Reference center for flux moment/angular flux tranform</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id155">K-effectives by generation</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id157">Problem characterization edit</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id159">Final k-effective edit</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id161">Plot of average k-effective by generation run</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id163">Plot of average k-effective by generations skipped</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id165">Final edit of fissions, absorptions, and leakage</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id167">Matrix k-effective by position index</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id169">Fission production by position index matrix</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id171">Source vector by position index</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id173">Cofactor k-effective by position index</a></li>
<li class="toctree-l4"><a class="reference internal" href="#matrix-k-effective-fission-production-source-vector-and-cofactor-k-effective-by-unit-number">Matrix k-effective, fission production, source vector and  cofactor k-effective by unit number</a></li>
<li class="toctree-l4"><a class="reference internal" href="#matrix-k-effective-fission-production-source-vector-and-cofactor-k-effective-by-hole-number">Matrix k-effective, fission production, source vector and cofactor k-effective by hole number</a></li>
<li class="toctree-l4"><a class="reference internal" href="#matrix-k-effective-fission-production-source-vector-and-cofactor-k-effective-by-array-number">Matrix k-effective, fission production, source vector and  cofactor k-effective by array number</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id178">Fission density edit</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id180">Flux edit</a></li>
<li class="toctree-l4"><a class="reference internal" href="#flux-plotting">Flux plotting</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id183">Frequency distributions</a></li>
<li class="toctree-l4"><a class="reference internal" href="#id185">Final results table</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#warning-messages-and-error-messages">Warning messages and error messages</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#id188">Messages</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#theory-and-techniques">Theory and Techniques</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#the-transport-equation">The transport equation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#continuous-energy-mode-solution-procedure">Continuous energy mode solution procedure</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#problem-initialization">Problem initialization</a></li>
<li class="toctree-l4"><a class="reference internal" href="#initial-source-distribution">Initial source distribution</a></li>
<li class="toctree-l4"><a class="reference internal" href="#collision-site-selection">Collision site selection</a></li>
<li class="toctree-l4"><a class="reference internal" href="#collision-treatment">Collision treatment</a></li>
<li class="toctree-l4"><a class="reference internal" href="#fission-treatment">Fission treatment</a></li>
<li class="toctree-l4"><a class="reference internal" href="#sampling-details">Sampling details</a></li>
<li class="toctree-l4"><a class="reference internal" href="#kinematics-data">Kinematics data</a></li>
<li class="toctree-l4"><a class="reference internal" href="#thermal-scattering-effects">Thermal scattering effects</a></li>
<li class="toctree-l4"><a class="reference internal" href="#doppler-broadening-rejection-correction-method">Doppler broadening rejection correction method</a></li>
<li class="toctree-l4"><a class="reference internal" href="#doppler-broadening-methods">Doppler broadening methods</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#multigroup-mode-solution-procedure">Multigroup mode solution procedure</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#id226">Collision treatment</a></li>
<li class="toctree-l4"><a class="reference internal" href="#fission-point-selection">Fission point selection</a></li>
<li class="toctree-l4"><a class="reference internal" href="#biasing-or-weighting">Biasing or weighting</a></li>
<li class="toctree-l4"><a class="reference internal" href="#differential-albedos">Differential albedos</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#id234">Geometry</a></li>
<li class="toctree-l3"><a class="reference internal" href="#fluxes">Fluxes</a></li>
<li class="toctree-l3"><a class="reference internal" href="#reaction-rate-and-few-group-micro-cross-section-calculations">Reaction Rate and Few Group Micro Cross Section Calculations</a></li>
<li class="toctree-l3"><a class="reference internal" href="#id239">Source Convergence Diagnostics</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#shannon-entropy-statistics">Shannon Entropy Statistics</a></li>
<li class="toctree-l4"><a class="reference internal" href="#source-convergence-diagnostic-input">Source Convergence Diagnostic Input</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="KenoA.html">Keno Appendix A: KENO V.a Shape Descriptions</a></li>
<li class="toctree-l1"><a class="reference internal" href="KenoB.html">Keno Appendix B: KENO VI Shape Descriptions</a></li>
<li class="toctree-l1"><a class="reference internal" href="KenoC.html">Keno Appendix C: Sample problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Monaco.html">Monaco: A Fixed-Source Monte Carlo Transport Code for Shielding Applications</a></li>
</ul>
<p class="caption"><span class="caption-text">Radiation Shielding</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="MAVRIC.html">MAVRIC: Monaco with Automated Variance Reduction using Importance Calculations</a></li>
<li class="toctree-l1"><a class="reference internal" href="CAAScapability.html">MAVRIC Appendix A: CAAS Capability</a></li>
<li class="toctree-l1"><a class="reference internal" href="appendixb.html">MAVRIC Appendix B: MAVRIC Utilities</a></li>
<li class="toctree-l1"><a class="reference internal" href="appendixc.html">MAVRIC Appendix C: Advanced Features</a></li>
</ul>

            
          
        </div>
        
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="index.html">SCALE Manual</a>
        
      </nav>


      <div class="wy-nav-content">
        
        <div class="rst-content">
        
          















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="index.html" class="icon icon-home"></a> &raquo;</li>
        
      <li>Keno: A Monte Carlo Criticality Program</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
            
            <a href="_sources/Keno.rst.txt" rel="nofollow"> View page source</a>
          
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="keno-a-monte-carlo-criticality-program">
<span id="keno"></span><h1>Keno: A Monte Carlo Criticality Program<a class="headerlink" href="#keno-a-monte-carlo-criticality-program" title="Permalink to this headline">¶</a></h1>
<p><em>L. M. Petrie, K. B. Bekar, C. Celik, D. F. Hollenbach</em>,<sup>1</sup> <em>C. M.</em>
<em>Perfetti, S. Goluoglu,</em><sup>1</sup> <em>N. F. Landers,</em><sup>1</sup> <em>M. E. Dunn, B.</em>
<em>T. Rearden</em></p>
<p>KENO is a three-dimensional (3D) Monte Carlo criticality transport
program developed and maintained for use as part of the SCALE Code
System. It can be used as part of a sequence or as a standalone program.
There are two versions of the code currently supported in SCALE.
KENO V.a is the older of the two. KENO-VI contains all current KENO V.a
features plus a more flexible geometry package known as the SCALE
Generalized Geometry Package. The geometry package in KENO-VI is capable
of modeling any volume that can be constructed using quadratic
equations. In addition, such features as geometry intersections, body
rotations, hexagonal and dodecahedral arrays, and array boundaries have
been included to make the code more flexible.</p>
<p>The simpler geometry features supported by KENO V.a allow for
significantly shorter execution times than KENO-VI, while the additional
geometry features supported in KENO-VI make the code appropriate for
cases where geometry modeling is not possible with KENO V.a. In
particular, KENO-VI allows intersections, body truncations with planes,
and a much wider variety of geometrical bodies. KENO-VI also has the
ability to rotate bodies so that volumes no longer must be positioned
parallel to a major axis. Hexagonal arrays are available in KENO-VI and
dohecahedral arrays enable the code to model pebble bed reactors and
other systems composed of close packed spheres. The use of array
boundaries makes it possible to fill a non-cuboidal volume with an
array, specifying the boundary where a particle leaves and enters the
array.</p>
<p>Except for geometry capabilities, the two versions of KENO share most of
the computational capabilities and the input flexibility specific to
most SCALE modules. They can both operate in multigroup or continuous
energy mode, run as standalone codes, or integrated in computational
sequences such as CSAS, TSUNAMI-3D, or TRITON. Both versions of the code
are continually updated and are written in FORTRAN 90.</p>
<p>Computational capabilities shared by the two versions of KENO include
the determination of k‑effective, neutron lifetime, generation time,
energy-dependent leakages, energy- and region-dependent absorptions,
fissions, the system mean-free-path, the region-dependent
mean-free-path, average neutron energy, flux densities, fission
densities, reaction rate tallies, mesh tallies, source convergence
diagnostics, problem-dependent continuous energy temperature treatments,
parallel calculations, restart capabilities, and many more.</p>
<p><sup>1</sup>Formerly with Oak Ridge National Laboratory</p>
<p>ACKNOWLEDGMENTS</p>
<p>Many individuals have contributed significantly to the development of
KENO. Special recognition is given to G. E. Whitesides, former Director
of the Computing Applications Division, who was responsible for the
concept and development of the original KENO code. He has also
contributed significantly to some of the techniques used in both KENO
versions. The late J. T. Thomas offered many ideas that have been
implemented in the code. R. M. Westfall, retired from ORNL, provided
early consultation, encouragement, and benchmarks for validating the
code. The special abilities of J. R. Knight, retired from ORNL,
contributed substantially to debugging early versions of the code. S. W.
D. Hart was instrumental in implementing continuous energy temperature
treatments. W. J. Marshall has provided substantial validation and
quality assurance reviews. Appreciation is expressed to C. V. Parks and
S. M. Bowman for their support of KENO and the KENO3D visualization
tool. The late P. B. Fox provided many of the figures in this document.
D. Ilas, B. J. Marshall, and D. E. Mueller consolidated the previous
KENO V.a and KENO-VI manuals into this present form. The efforts of
L. F. Norris (retired), W. C. Carter (retired), S. J. Poarch, D. J.
Weaver (retired), S. Y. Walker and R. B. Raney in preparing this
document are gratefully acknowledged.</p>
<p>The authors thank the U. S. Nuclear Regulatory Commission and the DOE
Nuclear Criticality Safety Program for sponsorship of the continuous
energy, source convergence diagnostics, and grid geometry features in
the current version.</p>
<div class="section" id="introduction-to-keno">
<h2>Introduction to KENO<a class="headerlink" href="#introduction-to-keno" title="Permalink to this headline">¶</a></h2>
<p>KENO, a functional module in the SCALE system, is a Monte Carlo
criticality program used to calculate <span class="math notranslate nohighlight">\(k_{eff}\)</span>, fluxes, reaction rates,
and other data for three-dimensional (3-D) systems. Special features
include multigroup or continuous energy mode, simplified data input, the
ability to specify origins for spherical and cylindrical geometry
regions, a P<sub>n</sub> scattering treatment, and restart capability.</p>
<p>The KENO data input features flexibility in the order of input. The only
restrictions are that the sequence identifier, title, and cross section
library must be entered first. A large portion of the data has been
assigned default values found to be adequate for many
problems. This feature enables the user to run a problem with a minimum
of input data.</p>
<p>In addition to the features listed above, KENO-VI uses the SCALE
Generalized Geometry Package (SGGP), which contains a much larger set of
geometrical bodies, including cuboids, cylinders, spheres, cones,
dodecahedrons, elliptical cylinders, ellipsoids, hoppers,
parallelepipeds, planes, rhomboids, and wedges. The code’s flexibility
is increased by allowing: intersecting geometry regions; hexagonal,
dodecahedral, and cuboidal arrays; bodies and holes rotated to any angle
and translated to any position; and a specified array boundary that
contains only that portion of the array located inside the boundary.
Users should be aware that the added geometry features in KENO‑VI can
result in significantly longer run times than KENO V.a. A KENO-VI
problem that can be modeled in KENO V.a will typically run about four
times as long with KENO-VI as it does with KENO V.a. Therefore KENO-VI
is not a replacement for KENO V.a, but rather an additional version for
more complex geometries that could not be modeled previously.</p>
<p>Blocks of input data are entered in the form</p>
<p><strong>READ XXXX</strong> <em>input_data</em> <strong>END XXXX,</strong></p>
<p>where <strong>XXXX</strong> is the keyword for the type of data being entered. The
types of data entered include parameters, geometry region data, array
definition data, biasing or weighting data, albedo boundary conditions,
starting distribution information, the cross section mixing table, extra
one-dimensional (1-D) (reaction rate) cross section IDs for special
applications, energy group boundaries for tallying in the continuous
energy mode, a mesh grid for collecting flux moments, and printer plot
information.</p>
<p>A block of data can be omitted unless it is needed or desired for the
problem. Within the blocks of data, most of the input is activated by
using keywords to override default values.</p>
<p>The treatment of the energy variable can be either multigroup or
continuous. Changing the calculation mode from multigroup to continuous
energy or vice versa is established by simply changing the cross section
library used. All available calculated entities in the multigroup mode
can also be calculated in the continuous energy mode. If the calculated
entity is energy or group dependent, it is automatically tallied into
the appropriate group structure in the continuous energy mode.</p>
<p>The KENO V.a geometry input consists of spheres, hemispheres, cylinders,
hemicylinders, and cuboids. Although the origin of the cylinders,
hemicylinders, spheres, and hemispheres is zero by default, they may be
specified to any value that will allow the geometry to fit in the
problem. This feature allows the use of nonconcentric cylindrical and
spherical shapes and provides a great deal of freedom in positioning
them. Another feature that expands the generality of the code is the
ability to place the cut surface of the hemicylinders and hemispheres at
any distance between the radius and the origin.</p>
<p>An additional convenience is the availability of an alternative method
for specifying the array definition unit-location data. This method uses
FIDO-like options for filling the array.</p>
<p>As mentioned above, KENO-VI uses the SGGP, which contains a much more
flexible geometry package than the one in KENO V.a. In KENO-VI, geometry
regions are constructed and processed as sets of quadratic equations. A
set of geometric shapes (including all of those used in KENO V.a plus
others) is available in KENO-VI, as well as the ability to build more
complex geometric shapes using sets of quadratic equations. Unlike
KENO V.a, KENO-VI allows intersections between geometry regions within a
unit, and it provides the ability to specify an array boundary that
intersects the array.</p>
<p>The most flexible KENO V.a geometry features are the
“<strong>ARRAY</strong>-of-<strong>ARRAY</strong>s” and “<strong>HOLE</strong>s” capabilities. The
<strong>ARRAY</strong>-of-<strong>ARRAY</strong>s option allows the construction of <strong>ARRAY</strong>s
from other <strong>ARRAY</strong>s. The depth of nesting is limited only by
computer space restrictions. This option greatly simplifies the setup
for <strong>ARRAY</strong>s involving different <strong>UNIT</strong>s at different spacings.
The <strong>HOLE</strong> option allows a <strong>UNIT</strong> or an <strong>ARRAY</strong> to be placed at
any desired location within a geometry region. The emplaced <strong>UNIT</strong> or
<strong>ARRAY</strong> cannot intersect any geometry region and must be wholly
contained within a region. As many <strong>HOLE</strong>s as will snugly fit
without intersecting can be placed in a region. This option is
especially useful for describing shipping casks and reflectors that have
gaps or other geometrical features. Any number of <strong>HOLE</strong>s can be
described in a problem, and <strong>HOLE</strong>s can be nested to any depth.</p>
<p>The primary difference between the KENO V.a and KENO-VI geometry input
is the methodology used to represent the geometry/material regions in a
unit. KENO-VI uses two geometry records (cards) to describe a region.
The first record, called the GEOMETRY record, contains the geometry
(<strong>shape</strong>) keyword, region boundary definitions, and any geometry
modification data. Using geometry modification data, regions can be
rotated and translated to any angle and position within a unit. The
second record, the <strong>CONTENT</strong> record, contains the <strong>MEDIA</strong> keyword;
the material, <strong>HOLE</strong>, or <strong>ARRAY</strong> ID number; the bias ID number; and
the region definition vector. KENO-VI requires that a <strong>GLOBAL UNIT</strong> be
specified in all problems, including single unit problems.</p>
<p>In addition to the <em>cuboidal</em> <strong>ARRAY</strong>s available in KENO V.a,
<em>hexagonal</em> <strong>ARRAY</strong>s and <em>dodecahedral</em> <strong>ARRAY</strong>s can be directly
constructed in KENO-VI. Also, the ability to specify an <strong>ARRAY</strong>
boundary that intersects the <strong>ARRAY</strong> makes it possible to construct a
lattice in a cylinder using one <strong>ARRAY</strong> in KENO-VI instead of multiple
<strong>ARRAY</strong>s and <strong>HOLE</strong>s as would be required in KENO V.a.</p>
<p>Anisotropic scattering is treated by using discrete scattering angles.
The angles and associated probabilities are generated in a manner that
preserves the moments of the angular scattering distribution for the
selected group-to-group transfer. These moments can be derived from the
coefficients of a P<sub>n</sub> Legendre polynomial expansion. All moments
through the 2n − 1 moment are preserved for n discrete scattering
angles. A one-to-one correspondence exists such that n Legendre
coefficients yield n moments. The cases of zero and one scattering angle
are treated in a special manner. Even when the user specifies multiple
scattering angles, KENO can recognize that the distribution is
isotropic, and therefore KENO selects from a continuous isotropic
distribution. If the user specifies one scattering angle, the code
selects the scattering angle from a linear function if it is positive
between -1 and +1, and otherwise it performs semicontinuous scattering
by picking scattering angle cosines uniformly over some range between –1
and +1. The probability is zero over the rest of the range.</p>
<p>The KENO restart option is easy to activate. Certain changes can be made
when a problem is restarted, including using a different random sequence
or turning off certain print options such as fluxes or the fissions and
absorptions by region.</p>
<p>KENO can also compute angular fluxes and flux moments in multigroup
calculations, which are required to compute scattering terms for
generation of sensitivity coefficients with the SAMS module or the
TSUNAMI-3D control module. Fluxes can also be accumulated in a Cartesian
mesh that is superimposed over the user-defined geometry in an automated
manner.</p>
<p>KENO can perform Monte Carlo transport calculations concurrently on a
number of computational nodes. By introducing a simple master-slave
approach via MPI, KENO runs different random walks concurrently on the
replicated geometry within the same generation. Fission source and other
tallied quantities are gathered at the end of each generation by the
master process and are then processed either for final edits or
subsequent generations. Code parallel performance is strongly dependent
on the size of the problem simulated and the size of the tallied
quantities.</p>
</div>
<div class="section" id="keno-data-guide">
<h2>KENO Data Guide<a class="headerlink" href="#keno-data-guide" title="Permalink to this headline">¶</a></h2>
<p>KENO may be run stand alone or as part of a SCALE criticality safety or
sensitivity and uncertainty analysis sequence. If KENO is run stand
alone in the multigroup mode, cross section data can be used from an
AMPX <a class="bibtex reference internal" href="#dunn-ampx-2000-2002" id="id1">[DG02]</a> working format library or from a Monte Carlo format cross
section library. If KENO uses an AMPX working format library, a mixing
table data block must be entered. If a Monte Carlo format library is
used, a mixing table data block is not entered, and the mixtures
specified in the KENO geometry description must be consistent with the
mixtures created on the Monte Carlo format library file.</p>
<p>If KENO is run stand alone in the continuous energy mode, a mixing table
data block must be provided unless the restart option is used.</p>
<p>If KENO is run as part of a SCALE criticality safety or sensitivity and
uncertainty analysis sequence, the mixtures are defined in the CSAS or
TSUNAMI-3D input, and a mixing table data block cannot be entered in
KENO. Furthermore, the mixture numbers used in the KENO geometry
description must correspond to those defined in the composition data
block of the CSAS or TSUNAMI-3D input. To use a cell-weighted mixture in
KENO, the keyword “<strong>CELLMIX</strong>=,” followed by a unique mixture
number, must be specified in the unit cell data of the CSAS or
TSUNAMI‑3D sequence. Unit cell data are applicable only in the
multigroup mode. The mixture number used in the KENO input is the unique
mixture number immediately following the keyword “<strong>CELLMIX</strong>=.” A
cell‑weighted mixture is available only in SCALE sequences that use
XSDRN to perform a cell-weighting calculation using a multigroup cross
section library. <a class="reference internal" href="#tab8-1-1"><span class="std std-numref">Table 136</span></a> through <a class="reference internal" href="#tab8-1-14"><span class="std std-numref">Table 149</span></a> summarize the KENO
input data blocks. These input data blocks are discussed in detail in
the following sections.</p>
<p>In order to run KENO parallel (standalone execution), the user must
provide a name with the “%” prefix in the input file (=%kenovi). Control
modules like CSAS, TRITON, and TSUNAMI-3D automatically initiate
parallel KENO execution if the user provides the required arguments
while running this code.</p>
<table class="docutils align-center" id="tab8-1-1">
<caption><span class="caption-number">Table 136 </span><span class="caption-text">Summary of parameter data.</span><a class="headerlink" href="#tab8-1-1" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><a class="reference internal image-reference" href="_images/tab11.svg"><img alt="_images/tab11.svg" class="align-center" src="_images/tab11.svg" width="800" /></a>
</td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-2">
<caption><span class="caption-number">Table 137 </span><span class="caption-text">Summary of array data.</span><a class="headerlink" href="#tab8-1-2" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><a class="reference internal image-reference" href="_images/tab21.svg"><img alt="_images/tab21.svg" class="align-center" src="_images/tab21.svg" width="1000" /></a>
</td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-3">
<caption><span class="caption-number">Table 138 </span><span class="caption-text">Summary of biasing data.</span><a class="headerlink" href="#tab8-1-3" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><a class="reference internal image-reference" href="_images/tab31.svg"><img alt="_images/tab31.svg" class="align-center" src="_images/tab31.svg" width="1000" /></a>
</td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-4">
<caption><span class="caption-number">Table 139 </span><span class="caption-text">Summary of boundary condition data.</span><a class="headerlink" href="#tab8-1-4" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><a class="reference internal image-reference" href="_images/tab41.svg"><img alt="_images/tab41.svg" class="align-center" src="_images/tab41.svg" width="1200" /></a>
</td>
</tr>
</tbody>
</table>
<table class="docutils align-default" id="tab8-1-5">
<caption><span class="caption-number">Table 140 </span><span class="caption-text">Summary of boundary condition data specific to KENO-VI.</span><a class="headerlink" href="#tab8-1-5" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><a class="reference internal image-reference" href="_images/tab51.svg"><img alt="_images/tab51.svg" class="align-center" src="_images/tab51.svg" width="800" /></a>
</td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-6">
<caption><span class="caption-number">Table 141 </span><span class="caption-text">Summary of geometry data in KENO V.a.</span><a class="headerlink" href="#tab8-1-6" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><img alt="_images/tab6.svg" src="_images/tab6.svg" /></td>
</tr>
<tr class="row-even"><td><img alt="_images/tab6cont.svg" src="_images/tab6cont.svg" /></td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-7">
<caption><span class="caption-number">Table 142 </span><span class="caption-text">Summary of geometry data in KENO-VI.</span><a class="headerlink" href="#tab8-1-7" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><img alt="_images/tab7.svg" src="_images/tab7.svg" /></td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-8">
<caption><span class="caption-number">Table 143 </span><span class="caption-text">Summary of mixing table data.</span><a class="headerlink" href="#tab8-1-8" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><img alt="_images/tab8.svg" src="_images/tab8.svg" /></td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-9">
<caption><span class="caption-number">Table 144 </span><span class="caption-text">Summary of plot data.</span><a class="headerlink" href="#tab8-1-9" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><a class="reference internal image-reference" href="_images/tab9.svg"><img alt="_images/tab9.svg" class="align-center" src="_images/tab9.svg" width="1000" /></a>
</td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-10">
<caption><span class="caption-number">Table 145 </span><span class="caption-text">Summary of starting data.</span><a class="headerlink" href="#tab8-1-10" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><a class="reference internal image-reference" href="_images/tab10.svg"><img alt="_images/tab10.svg" class="align-center" src="_images/tab10.svg" width="1000" /></a>
</td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-11">
<caption><span class="caption-number">Table 146 </span><span class="caption-text">Summary of volume data (KENO-VI).</span><a class="headerlink" href="#tab8-1-11" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><a class="reference internal image-reference" href="_images/tab111.svg"><img alt="_images/tab111.svg" class="align-center" src="_images/tab111.svg" width="10000" /></a>
</td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-12">
<caption><span class="caption-number">Table 147 </span><span class="caption-text">Summary of grid geometry data.</span><a class="headerlink" href="#tab8-1-12" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><a class="reference internal image-reference" href="_images/tab12.svg"><img alt="_images/tab12.svg" class="align-center" src="_images/tab12.svg" width="1000" /></a>
</td>
</tr>
</tbody>
</table>
<span id="tab8-1-13"></span><table class="docutils align-center" id="id245">
<caption><span class="caption-number">Table 148 </span><span class="caption-text">Summary of energy group boundary data.</span><a class="headerlink" href="#id245" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 50%" />
<col style="width: 50%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p>ENERGY</p></td>
<td><p>Format: READ ENERGY energy group
boundaries END ENERGY</p>
<p>Enter upper energy boundary for
each group in eV. The last entry
is the lower energy boundary of
the last group. For N groups,
there are N+1 entries. Entries
must be in descending order and
in units of eV.</p>
</td>
</tr>
</tbody>
</table>
<table class="docutils align-center" id="tab8-1-14">
<caption><span class="caption-number">Table 149 </span><span class="caption-text">Summary of reaction data.</span><a class="headerlink" href="#tab8-1-14" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 100%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><a class="reference internal image-reference" href="_images/tab14.svg"><img alt="_images/tab14.svg" class="align-center" src="_images/tab14.svg" width="1000" /></a>
</td>
</tr>
</tbody>
</table>
<div class="section" id="keno-input-outline">
<span id="id2"></span><h3>Keno input outline<a class="headerlink" href="#keno-input-outline" title="Permalink to this headline">¶</a></h3>
<p>The data input for KENO is outlined below. Default data for KENO have
been found to be adequate for many problems. These values should be
carefully considered when entering data.</p>
<p>Blocks of input data are entered in the form:</p>
<p><strong>READ XXXX</strong> <em>input_data</em> <strong>END XXXX</strong></p>
<p>where <strong>XXXX</strong> is the keyword for the type of data being entered. The
keywords that can be used are listed in Table 8.1.15. A minimum of four
characters is required for a keyword, and some keyword names may be as
long as twelve characters (<strong>READ PARAMETER</strong>, <strong>READ GEOMETRY</strong>, etc.).
Keyword inputs are not case sensitive. Data input is activated by
entering the words <strong>READ XXXX</strong> followed by one or more blanks. All
input data pertinent to <strong>XXXX</strong> are then entered. Data for <strong>XXXX</strong> are
terminated by entering <strong>END XXXX</strong> followed by two or more blanks. Note
that multiple <strong>READ GRID</strong> blocks are used if multiple grid definitions
are needed.</p>
<span id="tab8-1-15"></span><table class="docutils align-center" id="id246">
<caption><span class="caption-number">Table 150 </span><span class="caption-text">Types of input data.</span><a class="headerlink" href="#id246" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 50%" />
<col style="width: 50%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p>Type of data</p></td>
<td><p>First four characters</p></td>
</tr>
<tr class="row-even"><td><p>Parameters</p></td>
<td><p>PARA or PARM</p></td>
</tr>
<tr class="row-odd"><td><p>Geometry</p></td>
<td><p>GEOM</p></td>
</tr>
<tr class="row-even"><td><p>Biasing</p></td>
<td><p>BIAS</p></td>
</tr>
<tr class="row-odd"><td><p>Boundary conditions</p></td>
<td><p>BOUN or BNDS</p></td>
</tr>
<tr class="row-even"><td><p>Start</p></td>
<td><p>STAR or STRT</p></td>
</tr>
<tr class="row-odd"><td><p>Energy</p></td>
<td><p>ENER</p></td>
</tr>
<tr class="row-even"><td><p>Array (unit orientation)</p></td>
<td><p>ARRA</p></td>
</tr>
<tr class="row-odd"><td><p>Extra 1-D cross sections</p></td>
<td><p>X1DS</p></td>
</tr>
<tr class="row-even"><td><p>Cross section mixing table<sup>a</sup></p></td>
<td><p>MIXT or MIX</p></td>
</tr>
<tr class="row-odd"><td><p>Plot<sup>a</sup></p></td>
<td><p>PLOT or PLT or PICT</p></td>
</tr>
<tr class="row-even"><td><p>Volumes</p></td>
<td><p>VOLU</p></td>
</tr>
<tr class="row-odd"><td><p>Grid geometry</p></td>
<td><p>GRID</p></td>
</tr>
<tr class="row-even"><td><p>Reactions</p></td>
<td><p>REAC</p></td>
</tr>
<tr class="row-odd"><td><p><sup>a</sup> MIX and PLT must include
a trailing blank, which is
considered part of the keyword.</p></td>
<td></td>
</tr>
</tbody>
</table>
<p>Three data records <strong>must</strong> be entered for every problem: first the
SCALE sequence identifier, then the problem title, and then the <strong>END
DATA</strong> to terminate the problem.</p>
<p>(1) KENO is typically run using one of the SCALE CSAS or TSUNAMI
sequences, but it may also be run stand alone using KENO V.a or KENO-VI.
The sequence identifier is specified using one line similar to:</p>
<p>=kenovi</p>
<p>This line may also include additional runtime directives that are
described throughout the SCALE manual. For example:</p>
<p>=kenova parm=check</p>
<p>The following guidance generally assumes the user is running KENO stand
alone. If KENO is to be run using of the other sequences (e.g., CSAS5),
see the appropriate manual section for additional guidance.</p>
<ol class="arabic simple" start="2">
<li><p><strong>problem title</strong></p></li>
</ol>
<blockquote>
<div><p>Enter a problem title (limit 80 characters, including blanks; extra
characters will be discarded). A title <strong>must be entered</strong>.
See Sect. 8.1.2.3.</p>
</div></blockquote>
<ol class="arabic simple" start="3">
<li><p><strong>READ PARA</strong> <em>parameter_data</em> <strong>END PARA</strong></p></li>
</ol>
<blockquote>
<div><p>Enter parameter input as needed to describe a problem. If parameter
data are desired in standalone KENO calculations (i.e., non-CSAS),
they must immediately follow the problem title. Default values are
assigned to all parameters. A problem <strong>can</strong> be run without entering
any parameter data if the default values are acceptable.</p>
<p>Parameter data must begin with the words <strong>READ PARA</strong>, <strong>READ
PARM</strong>, or <strong>READ PARAMETER.</strong> Parameter data may be entered in any
order. If a parameter is entered more than once, the last value is
used. The words <strong>END PARA</strong> or <strong>END PARM</strong>, or <strong>END PARAMETER</strong>
terminate the parameter data. See <a class="reference internal" href="#id3"><span class="std std-ref">Title and parameter data</span></a>.</p>
</div></blockquote>
<p>(n<sub>1</sub>)…( n<sub>13</sub>) The following data may be entered in any
order. Data not needed to describe the problem may be omitted.</p>
<p>(n<sub>1</sub>) <strong>READ GEOM</strong> <em>all_geometry_region_data</em> <strong>END GEOM</strong></p>
<p>Geometry region data must be entered for every problem that is not a
restart problem. Geometry data must begin with the words <strong>READ GEOM</strong>
or <strong>READ GEOMETRY</strong>. The words <strong>END GEOM</strong> or <strong>END GEOMETRY</strong>
terminate the geometry region data. See <a class="reference internal" href="#id4"><span class="std std-ref">Geometry data</span></a>.</p>
<p>(n<sub>2</sub>) <strong>READ ARRA</strong> <em>array_definition_data</em> <strong>END ARRA</strong></p>
<blockquote>
<div><p>Enter array definition data as needed to describe the problem. Array
definition data define the array size and position units (defined in
the geometry data) in a 3-D lattice that represents the physical
problem being analyzed. Array data must begin with the words <strong>READ
ARRA</strong> or <strong>READ ARRAY</strong> and must terminate with the words <strong>END
ARRA</strong> or <strong>END ARRAY</strong>. See <a class="reference internal" href="#id10"><span class="std std-ref">ARRAY Data</span></a>.</p>
</div></blockquote>
<p>(n<sub>4</sub>) <strong>READ BOUN</strong> <em>albedo_boundary_conditions</em> <strong>END BOUN</strong></p>
<blockquote>
<div><p>Enter albedo boundary conditions as needed to describe the problem.
Albedo data must begin with the words <strong>READ BOUN, READ BNDS</strong>,
<strong>READ BOUND</strong>, or <strong>READ BOUNDS,</strong> and it must terminate with the
words <strong>END BOUN</strong>, <strong>ENDS BNDS</strong>, <strong>END BOUND</strong>, or <strong>END BOUNDS</strong>.
See <a class="reference internal" href="#id16"><span class="std std-ref">Albedo data</span></a>.</p>
</div></blockquote>
<p>(n<sub>3</sub>) <strong>READ BIAS</strong> <em>biasing_information</em> <strong>END BIAS</strong></p>
<blockquote>
<div><p>The <em>biasing_information</em> is used to define the weight given to a
neutron surviving Russian roulette. Biasing data must begin with the
words <strong>READ BIAS</strong>. The words <strong>END BIAS</strong> terminate the biasing
data. See <a class="reference internal" href="#id17"><span class="std std-ref">Biasing or weighting data</span></a>.</p>
</div></blockquote>
<p>(n<sub>5</sub>) <strong>READ STAR</strong> <em>starting_distribution_information</em> <strong>END
STAR</strong></p>
<blockquote>
<div><p>Enter starting information data for starting the initial source
neutrons only if a uniform starting distribution is undesirable.
Start data must begin with the words <strong>READ STAR, READ STRT</strong> or
<strong>READ START</strong>, and it must terminate with the words <strong>END STAR</strong>,
<strong>END STRT</strong> or <strong>END START</strong>. See <a class="reference internal" href="#id18"><span class="std std-ref">Start data</span></a>.</p>
</div></blockquote>
<p>(n<sub>6</sub>) <strong>READ ENER</strong> <em>energy_group_boundaries</em> <strong>END ENER</strong></p>
<blockquote>
<div><p>Enter upper energy boundaries for each neutron energy group to be
used for tallying in the continuous energy mode. Energy bin data
begin with the words <strong>READ ENER</strong> or <strong>READ ENERGY</strong> and terminate
with the words <strong>END ENER</strong> or <strong>END ENERGY</strong>. The last entry is the
lower energy boundary of the last group. The values must be in
descending order. This block is only applicable to continuous energy
KENO calculations. See <a class="reference internal" href="#id22"><span class="std std-ref">Energy group boundary data</span></a>.</p>
</div></blockquote>
<p>(n<sub>7</sub>) <strong>READ MIXT</strong> <em>cross_section_mixing_table</em> <strong>END MIXT</strong></p>
<blockquote>
<div><p>Enter a mixing table to define all the mixtures to be used in the
problem. The mixing table must begin with the words <strong>READ MIXT</strong> or
<strong>READ MIX</strong> and must end with the words <strong>END MIXT</strong> or <strong>END MIX</strong>.
Do not enter mixing table data if KENO is being executed as a part of
a SCALE sequence. See <a class="reference internal" href="#id20"><span class="std std-ref">Mixing table data</span></a>.</p>
</div></blockquote>
<p>(n<sub>8</sub>) <strong>READ X1DS</strong> <em>extra_1-D_cross_section_IDs</em> <strong>END X1DS</strong></p>
<blockquote>
<div><p>Enter the IDs of any extra 1-D cross sections to be used in the
problem. These must be available on the mixture cross section
library. Extra 1-D cross section data must begin with the words
<strong>READ X1DS</strong> and terminate with the words <strong>END X1DS</strong>. See
<a class="reference internal" href="#id19"><span class="std std-ref">Extra 1-D XSECS IDs data</span></a>.</p>
</div></blockquote>
<p>(n<sub>9</sub>) <strong>READ PLOT</strong> <em>plot_data</em> <strong>END PLOT</strong></p>
<blockquote>
<div><p>Enter the data needed to provide a 2-D character or color plot of a
slice through a specified portion of the 3-D geometrical
representation of the problem. Plot data must begin with the words
<strong>READ PLOT</strong>, <strong>READ PLT</strong>, or <strong>READ PICT</strong> and terminate with the
words <strong>END PLOT</strong>, <strong>END PLT</strong>, or <strong>END PICT</strong>. See <a class="reference internal" href="#id21"><span class="std std-ref">Plot data</span></a>.</p>
</div></blockquote>
<p>(n<sub>10</sub>) <strong>READ VOLU</strong> <em>volume_data</em> <strong>END VOLU</strong></p>
<blockquote>
<div><p>Enter the data needed to specify the volumes of the geometry data.
Volume data must begin with the words <strong>READ VOLU</strong> or <strong>READ
VOLUME</strong> and end with the words <strong>END VOLU</strong> or <strong>END VOLUME</strong>. See
Sect.Volume data.</p>
</div></blockquote>
<p>(n<sub>11</sub>) <strong>READ GRID</strong> <em>mesh_grid_data</em> <strong>END GRID</strong></p>
<blockquote>
<div><p>Enter the data needed to specify a simple Cartesian grid over either
the entire problem or part of the problem geometry for tallying
fluxes, moments, fission sources, etc. Grid data may be entered using
the keywords <strong>READ GRID</strong>, <strong>READ GRIDGEOM</strong>, or <strong>READ