Criticality Safety Overview.html 21.1 KB
Newer Older
Batson Iii's avatar
Batson Iii committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402


<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Criticality Safety Overview &mdash; SCALE Manual 0.0.1 documentation</title>
  

  
  <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
  <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
  <link rel="stylesheet" href="_static/custom.css" type="text/css" />

  
  
  
  

  
  <!--[if lt IE 9]>
    <script src="_static/js/html5shiv.min.js"></script>
  <![endif]-->
  
    
      <script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
        <script src="_static/jquery.js"></script>
        <script src="_static/underscore.js"></script>
        <script src="_static/doctools.js"></script>
        <script src="_static/language_data.js"></script>
        <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
    
    <script type="text/javascript" src="_static/js/theme.js"></script>

    
    <link rel="index" title="Index" href="genindex.html" />
    <link rel="search" title="Search" href="search.html" />
    <link rel="next" title="CSAS5: Control Module For Enhanced Criticality Safety Analysis Sequences With KENO V.a" href="CSAS5.html" />
    <link rel="prev" title="SCALE 6.3 Polaris Input Format" href="PolarisA.html" /> 
</head>

<body class="wy-body-for-nav">

   
  <div class="wy-grid-for-nav">
    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search" >
          

          
            <a href="index.html" class="icon icon-home" alt="Documentation Home"> SCALE Manual
          

          
          </a>

          
            
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        
        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <p class="caption"><span class="caption-text">Reactor Physics</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Polaris.html">Polaris: 2D Light Water Reactor Lattice Physics Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="PolarisA.html">SCALE 6.3 Polaris Input Format</a></li>
</ul>
<p class="caption"><span class="caption-text">Criticality Safety</span></p>
<ul class="current">
<li class="toctree-l1 current"><a class="current reference internal" href="#">Criticality Safety Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS5.html">CSAS5:  Control Module For Enhanced Criticality Safety Analysis Sequences With KENO V.a</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS5App.html">Additional Example Applications of CSAS5</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS6.html">CSAS6:  Control Module for Enhanced Criticality Safety Analysis with KENO-VI</a></li>
<li class="toctree-l1"><a class="reference internal" href="CSAS6App.html">Additional Example Applications of CSAS6</a></li>
<li class="toctree-l1"><a class="reference internal" href="STARBUCS.html">STARBUCS: A Scale Control Module for Automated Criticality Safety Analyses Using Burnup Credit</a></li>
<li class="toctree-l1"><a class="reference internal" href="Sourcerer.html">Sourcerer: Deterministic Starting Source for Criticality Calculations</a></li>
<li class="toctree-l1"><a class="reference internal" href="DEVC.html">DEVC: Denovo EigenValue Calculation</a></li>
<li class="toctree-l1"><a class="reference internal" href="KMART.html">KMART5 and KMART6: Postprocessors for KENO V.A and KENO-VI</a></li>
<li class="toctree-l1"><a class="reference internal" href="K5C5.html">K5toK6 and C5toC6: Input File Conversion Programs for KENO and CSAS</a></li>
</ul>
<p class="caption"><span class="caption-text">Material Specification and Cross Section Processing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Material%20Specification%20and%20Cross%20Section%20Processing%20Overview.html">Material Specification and Cross Section Processing Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProc.html">XSPROC: The Material and Cross Section Processing Module for SCALE</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProcAppA.html">XSProc: Standard Composition Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProcAppB.html">XSProc Standard Composition Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="XSProcAppC.html">Examples of Complete XSProc Input Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="stdcmp.html">Standard Composition Library</a></li>
<li class="toctree-l1"><a class="reference internal" href="BONAMI.html">BONAMI: Resonance Self-Shielding by the Bondarenko Method</a></li>
<li class="toctree-l1"><a class="reference internal" href="CENTRM.html">CENTRM: A Neutron Transport Code for Computing Continuous-Energy Spectra in General One-Dimensional Geometries and Two-Dimensional Lattice Cells</a></li>
</ul>
<p class="caption"><span class="caption-text">Monte Carlo Transport</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Monte%20Carlo%20Transport%20Overview.html">Monte Carlo Transport Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="Keno.html">Keno: A Monte Carlo Criticality Program</a></li>
<li class="toctree-l1"><a class="reference internal" href="KenoA.html">Keno Appendix A: KENO V.a Shape Descriptions</a></li>
<li class="toctree-l1"><a class="reference internal" href="KenoB.html">Keno Appendix B: KENO VI Shape Descriptions</a></li>
<li class="toctree-l1"><a class="reference internal" href="KenoC.html">Keno Appendix C: Sample problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Monaco.html">Monaco: A Fixed-Source Monte Carlo Transport Code for Shielding Applications</a></li>
</ul>
<p class="caption"><span class="caption-text">Radiation Shielding</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="MAVRIC.html">MAVRIC: Monaco with Automated Variance Reduction using Importance Calculations</a></li>
<li class="toctree-l1"><a class="reference internal" href="CAAScapability.html">MAVRIC Appendix A: CAAS Capability</a></li>
<li class="toctree-l1"><a class="reference internal" href="appendixb.html">MAVRIC Appendix B: MAVRIC Utilities</a></li>
<li class="toctree-l1"><a class="reference internal" href="appendixc.html">MAVRIC Appendix C: Advanced Features</a></li>
</ul>

            
          
        </div>
        
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="index.html">SCALE Manual</a>
        
      </nav>


      <div class="wy-nav-content">
        
        <div class="rst-content">
        
          















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="index.html" class="icon icon-home"></a> &raquo;</li>
        
      <li>Criticality Safety Overview</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
            
            <a href="_sources/Criticality Safety Overview.rst.txt" rel="nofollow"> View page source</a>
          
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="criticality-safety-overview">
<h1>Criticality Safety Overview<a class="headerlink" href="#criticality-safety-overview" title="Permalink to this headline"></a></h1>
<p><strong>Introduction by B. T. Rearden</strong></p>
<p>SCALE provides a suite of computational tools for criticality safety
analysis that is primarily based on the KENO Monte Carlo code for
eigenvalue neutronics calculations <a class="bibtex reference internal" href="Sourcerer.html#goluoglu-monte-2011" id="id1">[GPJD+11]</a>. Two variants of KENO provide
identical solution capabilities with different geometry packages. KENO
V.a uses a simple and efficient geometry package sufficient for modeling
many systems of interest to criticality safety and reactor physics
analysts. KENO-VI uses the SCALE Generalized Geometry Package, which
provides a quadratic-based geometry system with much greater flexibility
in problem modeling but with slower runtimes. Both versions of KENO
perform eigenvalue calculations for neutron transport primarily to
calculate multiplication factors (<em>keff</em>) and flux distributions of
fissile systems in both continuous energy and multigroup modes. They are
typically accessed through the integrated SCALE sequences described
below. KENO’s grid geometry capability extends region-based features for
accumulating data for source or biasing parameter specifications, as
well as for tallying results from a calculation for visualization or
communication of data into or out of a calculation. Criticality safety
analysts may also be interested in the sensitivity and uncertainty
analysis techniques that can be applied for code and data validation as
described elsewhere in this document.</p>
<p><strong>Criticality Safety Analysis Sequences</strong></p>
<p>The Criticality Safety Analysis Sequences (CSAS) with KENO V.a (CSAS5)
and KENO-VI (CSAS6**)** provide a reliable, efficient means of
performing <em>keff</em> calculations for systems routinely encountered in
engineering practice. The CSAS sequences implement XSProc to process
material input and provide a temperature and resonance-corrected cross
section library based on the physical characteristics of the problem
being analyzed. If a continuous energy cross section library is
specified, no resonance processing is needed, and the continuous energy
cross sections are used directly in KENO, with temperature corrections
provided as the cross sections are loaded.</p>
<p>A search capability is available with CSAS5 to find desired values of
<em>keff</em> as a function of dimensions or densities. The two basic search
options offered are (1) an optimum search seeking a maximum or minimum
value of <em>keff</em> and (2) a critical search seeking a fixed value of
<em>keff</em>.</p>
<p>For continuous energy calculations, reaction rate tallies can be
requested within the CSAS input, and for multigroup calculations,
reaction rate calculations are performed using the KENO Module for
Activity-Reaction Rate Tabulation (KMART) post-processing tools. A
conversion tool is provided to up-convert KENO V.a input to KENO-VI
either as a direct KENO input (K5toK6) or, more commonly, as a CSAS
sequence (C5toC6).</p>
<p><strong>STARBUCS: Burnup-Credit Analysis Sequence</strong></p>
<p>The Standardized Analysis of Reactivity for Burnup Credit using SCALE
(STARBUCS) <a class="bibtex reference internal" href="#gauld-starbucs-2001" id="id2">[GB01]</a><a class="bibtex reference internal" href="#radulescu-enhancements-2009" id="id3">[RG09]</a> is a control module to perform
criticality calculations for spent fuel systems employing burnup credit.
STARBUCS automates the criticality safety analysis of spent fuel
configurations by coupling the depletion and criticality aspects of the
analysis, thereby eliminating the need to manually process the spent
fuel nuclide compositions into a format compatible with criticality
safety codes.</p>
<p>STARBUCS performs a depletion analysis calculation for each spatially
varying burnup region (if an axial or horizontal burnup profile is
specified) of a spent fuel assembly using the ORIGEN-ARP methodology of
SCALE. If a multigroup calculation is to be performed in KENO, the spent
fuel compositions are then used to generate resonance self-shielded
cross sections for each burnup-dependent fuel region. Finally, a
KENO criticality calculation is performed to determine the neutron
multiplication factor for the system.</p>
<p>The STARBUCS input format has been designed around the existing
depletion analysis and criticality safety sequences of SCALE. Only a
minimal amount of input beyond that typically required for a fresh-fuel
calculation is needed to perform a burnup-credit calculation.</p>
<p>STARBUCS was developed to facilitate studies of major burnup-credit
phenomena, such as those identified in the US Nuclear Regulatory
Commission’s <em>Interim Staff Guidance 8</em>, <a class="bibtex reference internal" href="STARBUCS.html#us-nuclear-regulatory-commission-burnup-2012" id="id4">[Com12]</a> but it is restricted to
modeling one assembly type with the same starting enrichment loaded
throughout the transportation or storage model. Greater flexibility is
available by computing individual assembly burnup compositions with the
ORIGAMI code and then creating a KENO model to implement these
compositions.</p>
<p>For burnup loading curve iterative calculations, STARBUCS employs the
search algorithm from CSAS5 to determine initial fuel enrichments that
satisfy a convergence criterion for the calculated <em>keff</em> value of the
spent fuel configuration.</p>
<p><strong>Sourcerer: Hybrid Method for Starting Source Distribution</strong></p>
<p>As the fidelity of criticality models continues to increase, especially
for storage and transportation systems, the ability of the Monte Carlo
codes to consistently provide a converged fission source can be
challenging. Studies have shown that using a starting fission
distribution similar to the true fission distribution can reduce the
number of skipped generations required for fission source convergence,
and it can significantly improve the reliability of the final <em>keff</em>
result <a class="bibtex reference internal" href="Sourcerer.html#ibrahim-acceleration-2011" id="id5">[IPW+11]</a>. The Sourcerer sequence applies the
Denovo <a class="bibtex reference internal" href="appendixc.html#evans-denovo-2010" id="id6">[ESSC10]</a> discrete ordinates code to generate a starting fission
source distribution in a KENO Monte Carlo calculation. The discrete
ordinates calculation is performed on a user-defined Cartesian grid
geometry where macroscopic material definitions are automatically
created from the Monte Carlo model and multigroup group cross sections
are appropriately generated.</p>
<p>For many criticality safety applications, the additional step of
performing a deterministic calculation to initialize the starting
fission source distribution is not necessary. However, for challenging
criticality safety analyses such as as-loaded spent nuclear fuel
transportation packages with a mixed loading of low- and high-burnup
fuel, even a low-fidelity deterministic solution for the fission source
produces more reliable results than the typical starting distributions
of uniform or cosine functions over the fissionable regions, as
demonstrated in a recent study <a class="bibtex reference internal" href="Sourcerer.html#ibrahim-hybrid-2013" id="id7">[Ibr13]</a>.</p>
<p><strong>Criticality Accident Alarm System Analysis with KENO and MAVRIC</strong></p>
<p>Criticality accident alarm systems (CAAS) safety analyses modeling
presents challenges because the analysis consists of a criticality
problem and a deep-penetration shielding problem <a class="bibtex reference internal" href="#peplow-criticality-2009" id="id8">[PPJ09]</a>. Modern codes are
typically optimized to handle one of these types of problems, but not
both. The two problems also differ in size—the criticality problem
depends on materials relatively close to the fissionable materials,
whereas the shielding problem can cover a much larger range.</p>
<p>CAAS analysis can be performed using the CSAS6 criticality sequence and
the MAVRIC shielding sequence. First, the fission distribution (in space
and energy) is determined via CSAS6. This information is collected on a
grid geometry that overlies the physical geometry model and is saved as
a Monaco mesh source file. The mesh source is then used as the source
term in MAVRIC. The absolute source strength is set by the user to the
total number of fissions (based on the total power released) during the
criticality excursion. MAVRIC can be optimized to calculate a specific
detector response at one location or to calculate multiple
responses/locations with roughly the same relative uncertainty.</p>
<p id="bibtex-bibliography-Criticality Safety Overview-0"><dl class="citation">
<dt class="bibtex label" id="us-nuclear-regulatory-commission-burnup-2012"><span class="brackets"><a class="fn-backref" href="#id4">Com12</a></span></dt>
<dd><p>US Nuclear Regulatory Commission. Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks, Interim Staff Guidance—8, Rev. 3. Technical Report, US Nuclear Regulatory Commission, September 2012.</p>
</dd>
<dt class="bibtex label" id="evans-denovo-2010"><span class="brackets"><a class="fn-backref" href="#id6">ESSC10</a></span></dt>
<dd><p>Thomas M. Evans, Alissa S. Stafford, Rachel N. Slaybaugh, and Kevin T. Clarno. Denovo: A new three-dimensional parallel discrete ordinates code in SCALE. <em>Nuclear technology</em>, 171(2):171–200, 2010. Publisher: Taylor &amp; Francis.</p>
</dd>
<dt class="bibtex label" id="gauld-starbucs-2001"><span class="brackets"><a class="fn-backref" href="#id2">GB01</a></span></dt>
<dd><p>Ian C. Gauld and Stephen M. Bowman. STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit. Technical Report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States); Nuclear …, 2001.</p>
</dd>
<dt class="bibtex label" id="goluoglu-monte-2011"><span class="brackets"><a class="fn-backref" href="#id1">GPJD+11</a></span></dt>
<dd><p>Sedat Goluoglu, Lester M. Petrie Jr, Michael E. Dunn, Daniel F. Hollenbach, and Bradley T. Rearden. Monte Carlo criticality methods and analysis capabilities in SCALE. <em>Nuclear Technology</em>, 174(2):214–235, 2011. Publisher: Taylor &amp; Francis.</p>
</dd>
<dt class="bibtex label" id="ibrahim-hybrid-2013"><span class="brackets"><a class="fn-backref" href="#id7">Ibr13</a></span></dt>
<dd><p>A. Ibrahim. Hybrid Technique in SCALE for Fission Source Convergence Applied to Used Fuel Nuclear Fuel Analysis. <em>Proc. ANS NCSD 2013</em>, 2013.</p>
</dd>
<dt class="bibtex label" id="ibrahim-acceleration-2011"><span class="brackets"><a class="fn-backref" href="#id5">IPW+11</a></span></dt>
<dd><p>Ahmad M. Ibrahim, Douglas E. Peplow, John C. Wagner, Scott W. Mosher, and Thomas M. Evans. Acceleration of Monte Carlo Criticality Calculations Using Deterministic-Based Starting Sources. <em>Transactions of the American Nuclear Society</em>, 105:539–541, 2011. Publisher: American Nuclear Society, Inc.</p>
</dd>
<dt class="bibtex label" id="peplow-criticality-2009"><span class="brackets"><a class="fn-backref" href="#id8">PPJ09</a></span></dt>
<dd><p>Douglas E. Peplow and Lester M. Petrie Jr. Criticality Accident Alarm System Modeling with SCALE. Technical Report AC05-00OR22725, Oak Ridge National Laboratory, May 2009. URL: <a class="reference external" href="http://inis.iaea.org/Search/search.aspx?orig_q=RN:40080894">http://inis.iaea.org/Search/search.aspx?orig_q=RN:40080894</a>.</p>
</dd>
<dt class="bibtex label" id="radulescu-enhancements-2009"><span class="brackets"><a class="fn-backref" href="#id3">RG09</a></span></dt>
<dd><p>Georgeta Radulescu and Ian C. Gauld. Enhancements to the Burnup Credit Criticality Safety Analysis Sequence in SCALE. In <em>Proc. 2009 Nuclear Criticality Safety Division Topical Meeting on Realism, Robustness and the Nuclear Renaissance</em>, 13–17. 2009.</p>
</dd>
</dl>
</p>
</div>


           </div>
           
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="CSAS5.html" class="btn btn-neutral float-right" title="CSAS5: Control Module For Enhanced Criticality Safety Analysis Sequences With KENO V.a" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="PolarisA.html" class="btn btn-neutral float-left" title="SCALE 6.3 Polaris Input Format" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        
        &copy; Copyright 2020, SCALE developers

    </p>
  </div>
    
    
    
    Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a
    
    <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a>
    
    provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  

  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.Navigation.enable(true);
      });
  </script>

  
  
    
   

</body>
</html>