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II. A.  EQUATIONS FOR SCATTERING THEORY                               
 

  In this section, equations for scattering theory are presented but not derived.  Specifics for 
the R-matrix formulation of scattering theory are presented in Section II.A.1, which provides a 
discussion of an alternative formulation (the A-matrix).  Readers interested in the derivation of 
the equations for scattering theory are referred to the Lane and Thomas article [AL58] for a 
detailed derivation in the general case, or to Section II.A.2 of this document for a simplified 
version. 
 
  In scattering theory, a channel may be defined by c = (α, l, s, J), where the following 
definitions apply: 
 
• α represents the two particles making up the channel; α includes mass (m and M), charge (z 

and Z), spin (i and I ) with associated parities, and all other quantum numbers for each of the 
two particles, plus the Q-value (equivalent to the negative of the threshold energy in the 
center of momentum system). 

 
• l is the orbital angular momentum of the pair, and the associated parity is given by (-1) l. 
 
• s represents the channel spin (including the associated parity); that is, s is the quantized 

vector sum of the spins of the two particles of the pair: Iis += . 
 
• J is the total angular momentum (and associated parity); that is, J is the quantized vector sum 

of l and s: slJ += . 
 
Only J and its associated parity π are conserved for any given interaction.  The other quantum 
numbers may differ from channel to channel, as long as the sum rules for spin and parity are 
obeyed.  Within this document and within the SAMMY code, the set of all channels with the 
same J and π are called a “spin group.” 
 
  In all formulae given below, spin quantum numbers (e.g., J ) are implicitly assumed to 
include the associated parity.  Quantized vector sum rules are implicitly assumed to be obeyed.  
Readers unfamiliar with these sum rules are referred to Section II.C.1.a for a mini-tutorial on the 
subject. 
 
 Let the angle-integrated cross sections from entrance channel c to exit channel c' with 
total angular momentum J be represented by σcc'.  This cross section is given in terms of the 
scattering matrix U cc' as  

 
22

' ' ' '2 ,ci w
cc J cc cc JJ

a

g e U
k α
πσ δ δ= −  (II A.1) 

 
where kα is the wave number (and K kα α= = center-of-mass momentum) associated with 
incident particle pair α, gJα is the spin statistical factor, and wc is the Coulomb phase-shift 
difference.  Note that wc is zero for non-Coulomb channels.  (Details for the charged-particle 
case are presented in Section II.C.4.)  The spin statistical factor g is given by 
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 2 1 ,
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=

+ +
 (II A.2) 

 
and center-of-mass momentum Kα by 
 

 ( )
( )

2
22

2
2 .m MK k E
m Mα α= =
+

 (II A.3) 

 
Here E is the laboratory kinetic energy of the incident (moving) particle.  A derivation of this 
value for Kα is given in Section II.C.2. 
 
 The scattering matrix U can be written in terms of matrix W as 
 
 ' ' ' ,cc c cc cU W= Ω Ω  (II A.4) 
where Ω is given by 

 ( ) .c ci w
c e ϕ−Ω =  (II A.5) 

 
Here again, wc is zero for non-Coulomb channels, and the potential scattering phase shifts for 
non-Coulomb interactions φc are defined in many references (e.g., [AL58]) and shown in 
Table II A .1.  The matrix W in Eq. (II A.4) is related to the R-matrix (in matrix notation with 
indices suppressed) via 
 1/ 2 1 * 1/ 2( ) ( ) .W P I RL I RL P− −= − −  (II A.6) 
 
The quantity I in this equation represents the identity matrix.  The form of the R-matrix is given 
in Section II.A.1 in general and in Section II.B for the versions used in SAMMY.  The quantity L 
in Eq. (II A.6) is given by 
 ( ) ,L S B iP= − +  (II A.7) 
 
with P being the penetration factor (penetrability) S the shift factor, and B the arbitrary boundary 
constant at the channel radius ac.  P and S are functions of energy E, and also depend on the 
orbital angular momentum l and the channel radius ac.  Formulae for P and S are found in many 
references (see, for example, Eq. (2.9) in [JL58]). 
 
  For non-Coulomb interactions, the penetrability and shift factor have the form 
 ( ) ( )  and   ,l lP P S Sρ ρ→ →  (II A.8) 
where ρ is related to the center-of-mass momentum which in turn is related to the laboratory 
energy of the incident particle (E).  For arbitrary channel c with particle pair α, orbital angular 
momentum l, and channel radius ac,  ρ has the form 
 

 
( ) ( )21 ,

( )c c
m M Mk a E a

m M m M
α α

α α
α α

ρ = = −Ξ
+ +

 (II A.9) 
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as shown in Section II.C.2.  Here αΞ  is the energy threshold for particle pair α, mα and Mα are 
the masses of the two particles of particle pair α, and m and M are the masses of the incident 
particle and target nuclide, respectively. 
 
  Appropriate formulae for P, S, and φ in the non-Coulomb case are shown in Table IIA.1.  
For two charged particles, formulae for the penetrabilities are given in Section II.C.4.   
 
  The energy dependence of fission and capture widths is negligible over the energy range 
of these calculations.  Therefore, a penetrability of unity may be used. 
 
 
 
 

Table II  A .1.  Hard-sphere penetrability (penetration factor) P, level shift factor S, and 
potential-scattering phase shift φ for orbital angular momentum l, wave number k, and 

channel radius ac, with ρ = kac 
 

l Pl Sl lϕ  

0 
 

ρ 0 ρ 

1 
 

ρ3/(1 + ρ2) -1 / (1 + ρ2) ρ-tan-1 ρ 

2 
 

ρ5 / (9 + 3 ρ2 + ρ4) -(18 + 3 ρ2) / (9 + 3 ρ2 + ρ4) ρ-tan-1[3ρ / (3 - ρ2)] 

3 
 

ρ7  / (225 + 45 ρ2) + 
 6ρ4 + ρ6) 

-(675 + 90 ρ2 + 6 ρ4) / 
 (225 + 45 ρ2 + 6 ρ4 + ρ6) 

ρ-tan-1[ρ(15-ρ2) / (15-6 ρ2)] 

4 
 

ρ9 / (11025 + 1575 ρ2 + 
 135ρ4 + 10ρ6 + ρ8 

 

-(44100 + 4725 ρ2 + 270 ρ4 + 10 ρ6) / 
 (11025 + 1575 ρ2 + 135 ρ4 + 10 ρ6 + ρ8) 

ρ-tan-1[ρ(105 - 10 ρ2) / 
 (105 – 45 ρ2 + ρ4)] 

l 

( ) 2
1

2
1

1
2

−−

−

+− ll

l

PSl
Pρ

 

2
1

2 2
1 1

( )
( )

l

l l

l S
l

l S P
ρ −

− −

−
−

− +
 ( )1

1 1 1tan ( ( )/l l lP l Sϕ −
− − −− −

or 
)( 1 lll XBB += −  

              1(1 )/ l lB X−−  
with 

tan( )l lB ρ ϕ= −  
 
and 

1 1( ) ( )/l l lX P l S− −= −  
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  Formulae for a particular cross section type can be derived by summing over the terms in 
Eq. (II A.1).  For the total cross section, the sum over all possible exit channels and all spin 
groups gives 
 

 ( )

( )( )

2

' '2

'

2*
' ' ' ' ' '2

'

2

2 1 Re .

total
cc cc

incident all J
channels channels

c c

J cc cc cc cc cc cc
J incident all

channels channels
c c

J cc
J incident

channels
c

g U
k

g U U U
k

g U
k

α
α

α

α

πσ δ

π δ δ δ

π

= −

= − − +

= −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

 (II A.10) 

 
For non-charged incident particles, the elastic (or scattering) cross section is given by 
 

 ( ) 2

'2
'

1 2Re .J cc cc
J c incident c incident

channel channel

g U U
kαα
α

πσ
= =

⎛ ⎞
⎜ ⎟= − +⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (II A.11) 

 
 
Similarly, the cross section for any non-elastic reaction can be written 
 
 

 
2

'2
'

.reaction
J cc

J c incident c reaction
channel channel

g U
kα
α

πσ
= =

= ∑ ∑ ∑  (II A.12) 

 
In particular, the capture cross section could be written as the difference between the total and all 
other cross sections, 

 
2

'2
'

1 .capture
J cc

J c incident c all channels
channel except capture

g U
kα

πσ
= =

⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (II A.13) 

 
 
(This form will be used later, in Section II.B.1.a, when the capture channels are treated in an 
approximate fashion.) 
 
 


