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I11.C.1.a. Resolution broadening: Gaussian
1. Square distribution in flight-path length
Broadening in L is due to the “spread” or “distribution of locations™ at which the flight path

begins or ends (for details, see ref. [DL84]). This distribution may include contributions from both
the source and the detector, and may be described by a square function in length L; that is,

d—L for L'-AL/2 < L" < L'+AL/2
dE"p (E.E")=4 AL (IICl a.l)
0 otherwise

Note that AL is equal to V12 times the standard deviation of an “equivalent” Gaussian distribution
in length. Note also that the input quantity A L may be expressed either as a constant (see variable
DELTAL in card set 5 of the INPut file, Table VI A.l, or card set 4 of the PARameter file,
Table VI B.2), or as an energy-dependent function of the form

AL=EAL, +AL, . (Il C1 a.2)

(See card set 11, line number 2, of the PARameter file, Table VI B.2).

For convenience in later calculations, this square function in length will be converted to a
Gaussian function in energy; that is,

=12
dE"IDL(E',E"); dE eXp{_‘EAE

AT )

where E and A, are found by equating means and variances of the two expressions in
Egs. (III C1 a.1) and (IIT C1 a.3).

} : (II1 C1 a.3)

The mean energy for the distribution described in Eq. (IIl C1 a.1) is given by

L'+AL/2 L'+AL/2

daL"  m 1 2
En—/— — (Ln) dL"
LVAIW AL 2t? ALL'JW 2 (I C1 a.4)
m 1 3 AL
=——(L"?AL+(AL) /12)=E"|1 .
2t2 AL( +( ) ) |: +12 L12j|

Similarly, the second moment of that distribution is given to first order in (A L/L ')2 by

L'+AL/2

" 2
E”zd—L;E'z 1+A"2 (III C1 a.5)
AL 2L

L'-AL/2
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so that the variance of the square distribution is given by
E”[1+(AL/LY /2|-E2[1+(AL/LY) /12}2 ~E”[1+(AL/LY)/3] .(UCLa6)

Since the mean of the Gaussian distribution in Eq. (III C1 a.3) is E and the variance is A /2, the
parameters of the Gaussian are given (to lowest order) by

E=E' (11 C1 a.7)
and
A =~2/3E'(AL/L") . (IT C1 a.8)

2. Square distribution in time

Finite channel width is one contributor to broadening in time (for details, see [DL84]). The
channel width is represented by a square function in time with width At, as

dv fort—At /2<t'<t+At /2
dE'p, (E,E') =1 AL (II1 C1 a.9)
0 otherwise

Generally the channel width is constant for a certain energy range, but changes from one range to the
next. SAMMY input accommodates this characteristic: values for At, are given as a constant

DELTAB times a “crunch factor” CF; for energies between Bci.; and Bei. Details are given in
Table VI A.1, card set 6.

This component of the resolution function also will be converted to an equivalent Gaussian
function in the energy variable. Arguments similar to those given above for Eqgs. (Il C1 a.3)
through (III C1 a.8) show that this Gaussian has the form

dE (E-EY
dE'p. (E,E') = expy———— III C1 a.10
pc( ) Wc\/; p{ W02 ( )
where
W, =+2/3 EAt /t . (I CI a.11)
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3. Gaussian distribution in time

Neutron burst width is another contributor to the resolution broadening. This effect may be
approximated by a Gaussian (or convolution of Gaussian plus exponential; see Sections I1I.C.1.b
and III C1.c) with full width at half max Atg. (See variable DELTAG in Table VIA.1, card set 5, or
Table VI B.2, card set 4.) That is, the Gaussian distribution function in time is given by

dt' (t-t)
dE' E.E')=——exps——+—} , I C1 a.12
ps (E,E") = p{ ”: } ( )
which translates into
dE’ (E-EY
dE' E.E')= exXpy—————¢ , IIIC1 a.13
pe(BE) =077 p{ W } ( )

in which the quantities Wg and W are defined in terms of the full width at half max via

W, =At; /+/In2 (III C1 a.14)
and
3
W, = E (Atej . (III C1 a.15)
(m/2)ln2 L

[The derivation of Eq. (IIT C1 a.13) requires the approximation that JE'~E to zeroth order.]

4. Gaussian distribution in energy

For some applications the resolution is best described by a Gaussian function of energy
rather than time or length. For example, neutrons produced by (p,Li7) or (p,t) using protons from
Van de Graaff accelerators have relatively small energy spreads determined by beam energy spread,
target thickness, etc. The Gaussian widths of such neutron distributions are often approximately
constant in energy. The distribution has the form

dE" (E-EY
dE'p. (E,E')= exXpy————— > I C1 a.16
pe( ) Ac\/; p{ A2 ( )
in which the width A, is given by
Ac =Aq, +AE . (IIICI1 a.17)

Parameters A, and A., are input as DELTC1 and DELTC2 in Table VI B.2, card set 4.
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5. Convolution of the pieces

The resolution-broadened cross section (or other function) is expressed as the convolution of
the resolution function(s) with the unbroadened cross section, as

fu(E) = ﬁTOdE1 exp{—(ElW;zE)}

(I C1 a.18)

in which we have combined Egs. (IIT C1 a.3), (III C1 a.10), (Il C1 a.13), and (III C1 a.16). This
formula can be written in the form

fu(E) = — IJ;TdE'exp{—(E'A_—ZE)}f(E') , (I Cl a.19)

in which the combined resolution function is found from

1 (E-E)| _
Aall \/; exp {_ Aill } -

T E -E) 1 E,-E)
- IdElexp{—( ! )}x Y jdEzexp{—(zA—zl)} (111 C1 a.20)

L
1 7 (Es_E2)2 1 (E'_E3)2
dE - - .
X WG\/;J; 36XP{ WGz X AC\/; Aé

It is well-known that the convolution of two or more Gaussians is also a Gaussian, with the
variance given by the sum of the variances of the components. This could also be demonstrated by
direct integration of Eq. (III C1 a.20).
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[In our situation, this is strictly true only if the width A, of the second Gaussian is
independent of the variable of integration E, of the first Gaussian. Nevertheless, we may
approximate E'and L' in our expression for A , Eq. (III C1 a.8), by E and L since the integrand of
Eq. (I C1 a.20) is large only near E'=E (i.e.,, L'=L).]

The variance for the combined resolution function of Eq. (III C1 a.20) may therefore be

written as
2 2 2
At 3 (At
A2, = 2> | (ALY, _E S+ AL . (III C1 a.21)
3 t L m oL
2

Replacing t in Eq. (IIT C1 a.21) by its equivalent in terms of E and L and rearranging give

2 2 2 2
AL = 3E2(A—Lj N Eg%[&j N EEsL(A&j 4 EEz(A_LLj + A2, (I Cl a.22)
m

a3 L m 3l L m2\ L 3

which may be rewritten in the form
AZ

all

2 2 2
a=Z[A_'-J Cb= 2R g o= 2 LA} mcia2s)
30U L m3\ L min2{ L

=aE’+bE’ +CE*+A. (111 C1 a.23)
with

IfEisinunits ofeV, Aty inpsec, and L in meters, then neutron mass m may be expressed as
m=2(723)" . (I C1 a.25)

This follows directly from m=1.67482x 1079 and 1 erg = g cm’/s” = 6.2418x10"" eV . With this
value for the mass, the parameters in Eq. (III C1 a.23) become

2
a- \EA_LL] = (0.81650AL/LY |

2 2\ At, ’ At Y
b=|| =] 7| =[0on2s—= (IL C1 2.26)

3m

12 2 At 2
c:( 2 j Ai] ;[0.01661—Gj
min2 L L

It should be noted that more accurate values than these are used in the SAMMY code, as discussed
in Section IX.A.
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Partial derivatives

From Eqgs. (I C1 a.19) and (IIT C1 a.22), the partial derivative of cross section (or

transmission) f,, with respect to the component widths may be found using the chain rule as

Ofa _ OAar Ofa (LI C1 a.27)

oX oX O0A,,

Partial derivatives of A, are, using Eq. (III C1 a.22) through (III C1 a.24),

2
Oy __Ea (L C1 2.28)
oAL A, AL
3
O __Eb (I C1 a.29)
OAt. A, At
3
O __ETC (I C1 a.30)
ot, A, At
Olu _ Ac (Il C1 a.31)
8ACl AaII
and
OBar _EAc (Il C1 2.32)
aACZ AaII

The partial derivative with respect to A, is found numerically via

ofy _ fa (Aall +d>_ Fa (Aall _d) (I C1 a.33)

oA, 2d ’

all

where d is set equal to A,  with q=0.02.
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