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III.C.1.a.   Resolution broadening: Gaussian 
 
1.  Square distribution in flight-path length 
 

Broadening in L is due to the “spread” or “distribution of locations” at which the flight path 
begins or ends (for details, see ref. [DL84]).  This distribution may include contributions from both 
the source and the detector, and may be described by a square function in length L; that is, 
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Note that ΔL  is equal to 12  times the standard deviation of an “equivalent” Gaussian distribution 
in length.  Note also that the input quantity LΔ  may be expressed either as a constant (see variable 
DELTAL in card set 5 of the INPut file, Table VI A.1, or card set 4 of the PARameter file, 
Table VI B.2), or as an energy-dependent function of the form 

 1 0 .L E L LΔ = Δ + Δ  (III C1 a.2) 

(See card set 11, line number 2, of the PARameter file, Table VI B.2). 
 

For convenience in later calculations, this square function in length will be converted to a 
Gaussian function in energy; that is,  

 ( )
2

" "" ', " exp ,L
LL

dE E EdE E Eρ
π

⎧ ⎫−⎪ ⎪≅ −⎨ ⎬ΔΔ ⎪ ⎪⎩ ⎭
 (III C1 a.3) 

where E and LΔ are found by equating means and variances of the two expressions in 
Eqs. (III C1 a.1) and (III C1 a.3). 
 

The mean energy for the distribution described in Eq. (III C1 a.1) is given by 
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Similarly, the second moment of that distribution is given to first order in ( )2/ 'L LΔ  by 
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so that the variance of the square distribution is given by 
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Since the mean of the Gaussian distribution in Eq. (III C1 a.3) is E  and the variance is 2 / 2LΔ , the 
parameters of the Gaussian are given (to lowest order) by 
 
 'E E=  (III C1 a.7) 
and 

 ( )2 / 3 ' / ' .L E L LΔ = Δ  (III C1 a.8) 
 
 
2.  Square distribution in time 
 

Finite channel width is one contributor to broadening in time (for details, see [DL84]).  The 
channel width is represented by a square function in time with width ctΔ  as 
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Generally the channel width is constant for a certain energy range, but changes from one range to the 
next.  SAMMY input accommodates this characteristic: values for ctΔ  are given as a constant 
DELTAB times a “crunch factor” CFi  for energies between Bci-1 and Bci.   Details are given in 
Table VI A.1, card set 6. 
 

This component of the resolution function also will be converted to an equivalent Gaussian 
function in the energy variable.  Arguments similar to those given above for Eqs. (III C1 a.3) 
through (III C1 a.8) show that this Gaussian has the form 
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where 
 2 / 3 / .c cW E t t= Δ  (III C1 a.11) 
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3.  Gaussian distribution in time 

Neutron burst width is another contributor to the resolution broadening.  This effect may be 
approximated by a Gaussian (or convolution of Gaussian plus exponential; see Sections III.C.1.b 
and III C1.c) with full width at half max ΔtG.  (See variable DELTAG in Table VIA.1, card set 5, or 
Table VI B.2, card set 4.)  That is, the Gaussian distribution function in time is given by 
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which translates into 
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in which the quantities wG and WG are defined in terms of the full width at half max via 
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 and 
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[The derivation of Eq. (III C1 a.13) requires the approximation that 'E   E≈  to zeroth order.] 
 
 
 
4.  Gaussian distribution in energy 

For some applications the resolution is best described by a Gaussian function of energy 
rather than time or length.   For example, neutrons produced by (p,Li7) or (p,t) using protons from 
Van de Graaff accelerators have relatively small energy spreads determined by beam energy spread, 
target thickness, etc.   The Gaussian widths of such neutron distributions are often approximately 
constant in energy.  The distribution has the form 
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in which the width CΔ is given by 

 1 2 .C C C EΔ = Δ + Δ  (III C1 a.17) 

Parameters 1CΔ  and 2CΔ  are input as DELTC1 and DELTC2 in Table VI B.2, card set 4. 
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5.  Convolution of the pieces 

The resolution-broadened cross section (or other function) is expressed as the convolution of 
the resolution function(s) with the unbroadened cross section, as 
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in which we have combined Eqs. (III C1 a.3), (III C1 a.10), (III C1 a.13), and (III C1 a.16).  This 
formula can be written in the form 
 

 ( ) ( ) ( )
2

2

'1 'exp ' ,all
allall

E E
f E dE f E

π

+∞

−∞

⎧ ⎫−⎪ ⎪= −⎨ ⎬ΔΔ ⎪ ⎪⎩ ⎭
∫  (III C1 a.19) 

 
in which the combined resolution function is found from 
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 (III C1 a.20) 

 
It is well-known that the convolution of two or more Gaussians is also a Gaussian, with the 

variance given by the sum of the variances of the components.  This could also be demonstrated by 
direct integration of Eq. (III C1 a.20).   
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[In our situation, this is strictly true only if the width LΔ  of the second Gaussian is 
independent of the variable of integration 1E  of the first Gaussian.  Nevertheless, we may 
approximate 'E  and 'L  in our expression for LΔ , Eq. (III C1 a.8), by E and L since the integrand of 
Eq. (III C1 a.20) is large only near 'E E≅  (i.e., 'L L≅ ).] 
 
 The variance for the combined resolution function of Eq. (III C1 a.20) may therefore be 
written as 
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Replacing t in Eq. (III C1 a.21) by its equivalent in terms of E and L and rearranging give 
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which may be rewritten in the form 

 2 3 2 2 2 ,all CaE bE cEΔ = + + + Δ  (III C1 a.23) 
with 
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If E is in units of eV,  GtΔ  in μsec, and L in meters, then neutron mass m may be expressed as 

 ( )22 72.3 .m ≅  (III C1 a.25) 

This follows directly from 241.67482 10m   g−= ×  and 2 2 111 erg cm /s 6.2418 10 eVg= = × .  With this 
value for the mass, the parameters in Eq. (III C1 a.23) become 
 

 

( )
2

2

2 21/2

221/2

2 0.81650 / ,
3

2 2 0.011293 ,
3

2 0.01661 .
ln 2

c c

GG

La L L
L

t t
b

m L L

ttc
Lm L

⎛ ⎞Δ
= ≅ Δ⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞Δ Δ⎛ ⎞⎛ ⎞= ≅⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

Δ⎛ ⎞⎛ ⎞Δ⎛ ⎞= ≅ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 (III C1 a.26) 

 
It should be noted that more accurate values than these are used in the SAMMY code, as discussed 
in Section IX.A. 
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Partial derivatives 
 

From Eqs. (III C1 a.19) and (III C1 a.22), the partial derivative of cross section (or 
transmission) allf  with respect to the component widths may be found using the chain rule as 
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Partial derivatives of allΔ  are, using Eq. (III C1 a.22) through (III C1 a.24), 
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and 
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The partial derivative with respect to allΔ is found numerically via 
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where d is set equal to all qΔ  with 0.02q = . 


