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VIILA. EQUATIONS FOR UNRESOLVED RESONANCE REGION

The formulae for cross sections in the unresolved resonance region, as implemented in
SAMMY, are presented in this section. The implementation is a modified form of that provided by
Fritz Frohner in his FITACS code [FF89]. (Please note that any mistakes in these formulae are
attributable only to the author of this manual, not to Frohner. The author is indebted to Herve
Derrien for significant contributions both to the development of the code and to the composition of
this section of the manual.)

Elastic cross section

The elastic cross section is given as the difference between the total cross section and the
sum of all the non-elastic partial cross sections. The total cross section is given by Eqgs. (VIII A.1)
through (VIII A.4), and the non-elastic partial cross sections by Egs. (VIII A.5) through (VIII A.20).
Total cross section

The average total cross section, for a given spin and parity and incident channel ¢, may be
written in the form

(0.) = 2:‘;& (1—Re<5cc>) : (VIIT A.1)

where, as usual, g. is the spin factor and £, is the center-of-mass momentum. The average scattering
matrix <SCC> is given by

1 - RCC L(C)*
(S, )=e" —< ) — (VI A.2)
1=(R,. )L
and the average R-matrix can be written in the form
(R.)=R7+izxs, | (VI A 3)

with parameters defined as follows:

R” = distant-level parameter (an input quantity);

. = hard-sphere scattering phase shift, generated using matching radius a (an input quantity);
L = (S.—B.)+iP. (seeSectionIl.A), with boundary condition B, chosen such thatS — B, =0;
s, = pole strength.
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The pole strength is defined in terms of input quantities S‘c (the strength function, for which we have

introduced the tilde to avoid confusion with the shift factor used in definition of L’ ) and a. (the R-

matrix matching radius) as
s,=8~NE/2p | (VIII A.4)

where p is the center-of-mass momentum k. multiplied by the channel radius a..

Non-elastic partial cross sections

The non-elastic partial cross sections may be written in terms of transmission coefficients 7
as

0 —V,[2=8,. 5
ng TT;) ﬂ'T/T 2T
(o2 = =440 \dte 1+——=%¢ ) A
< ab> e T ! LJ T (VI A.5)

where the quantities to the left of the integral sign are the Hauser-Feshbach expression, and the
integrand is the Moldauer prescription [PM80] for the width fluctuation correction factor. (A
derivation of this expression, including the assumptions under which it is derived, is provided in
Section VIII.A.1.) Here a represents the incident channel and b the exit channel; v, and 7, represent

the number of degrees of freedom (multiplicity) and transmission coefficient, respectively, for
channel c. Subscript y refers to photon channels. 7 is defined as the sum over all channels:

T=>T . (VIIT A.6)

The transmission coefficient for neutron channels is given by

2 4r P s,
1-(R)L,|

c

: (VIII A.7)

where c¢ is an incident channel, P and L are as defined in Section II.A, and the other quantities are
given above. For photon and fission channels, the transmission coefficients for spin J are

_27;< >/D and ‘._27z< >/D , (VIIL A.8)

in which D, is the mean level spacing for levels with this spin.

The J-dependence of the mean level spacing is set in SAMMY/FITACS via the Bethe
formula (e.g., [FF83]):
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: (VIIL A.9)

where d (£ ) is independent of J, and ¢ is the spin cutoff parameter. The spin cutoff parameter is
related to the level density parameter a and the energy £ by the formula

o’ =(0.14592)(A4+1)"" \Ja(E+BE-PE) , (VIIL A.10)

in which BE represents the neutron binding energy (an input parameter) and PE the pairing energy
(also an input parameter). The value for a is determined from the input quantity D, which is the
mean level spacing of the / = 0 resonances at £ = 0; note that D includes both J =17 — i and
J =1+ i,where /s the spin of the target nucleus and i = 2 is the spin of the neutron. An expression
for the inverse of D can be found from Eq. (VIII A.9) to be

D=3 (D, (E=0))"
(1-1) (]+3) (VI A.11)
~(a(0))" {exp[%}expl (;022) ]} ;

this expression is used to determine the value of o* and hence of the level density parameter a.

The energy dependence of the mean level spacing is calculated with the Gilbert-Cameron
composite formula [AG65]. Let E represent the excitation energy of the compound nucleus; this

energy is equal to the sum of the incident neutron kinetic energy £ and the neutron binding energy
BE (which is an input quantity). That is to say,

E =E+BE . (VIIT A.12)

The energy dependence for low excitation energies (Ex < EO), where E is a matching

energy, is given by the constant-temperature formula

D—INCGXP[Q E, - PE | }{EXEO( c, 3

- . (VIIA.I3
3 (EO _PE)3/2 2 \/EO —PE EO PEJ} ( )
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In the code, the matching energy E, is set at

B =|2e—1Y (VIIL A.14)
2 (N+Z+1)

in units of MeV, with N + Z being the mass number for the target nucleus. Values of the constants
C; and C; are given by

C,=y4a and C,=—F— (VIII A.15)

with ¢ defined as
g=0.1452(N+Z+1)" | (VI A.16)

where N + Z is again the mass number for the target nucleus and a is the level density parameter.

Athigher energies (Ex > E, ) , the energy dependence of the mean level spacing is calculated

via the Fermi-Gas formula

exp| C,\[E, — PE |
(EX _PE)3/2

D« C, (VI A.17)

Note that the two formulae agree at the matching energy (i.e., at £ = E|).

Radiation widths <Fy> are assumed to depend only on parity @ and on E. The energy

dependence is calculated with the giant dipole resonance model.

Fission widths < l"f> may vary with spin as well as parity and incident neutron energy E.

Energy dependence is calculated with the Hill-Wheeler fission barrier transmission coefficients
[DH53]. For a given J", the energy dependence of the fission widths is taken to be

(T, (E)) = (T,(0) 1+61;E’_(I()[EE_HV;Z ZH/WVJ/HW} , (VI A.18)

Section VIIL.A, page 4 (R7) Page 496



Section VIIL.A, page 5 (R7) Page 497

where the Hill-Wheeler threshold energy £,,, and the Hill-Wheeler threshold width 7, are input
quantities. This equation may be written in more “standard” notation as

1+exp(27(E, - BE)/ho)

—(Ef—BE))/ha)) ’

(VIIT A.19)
1+ exp(—2 7r(E

X

where, as above, E_ is the excitation energy of the neutron and BE is the binding energy. Also,

E , is the fission barrier height, and 7 the width of the fission barrier.

Finally, a few words regarding the derivation of Eq. (VIII A.5) are warranted. That
derivation is based on several assumptions:

(1) The Moldauer prescription [PM80] for width fluctuations is used. That is, the width fluctuation
correction factor is introduced to compensate for the non-unity of the ratio

< TaTTb > / < Tj}T >Tb> . (VIII A.20)

(2) Partial widths obey a chi-squared distribution with v, degrees of freedom (where the value of

v_depends on the number of channels of this de-excitation); averages are therefore weighted

with this distribution. In the Moldauer prescription for width fluctuations, simple channels
have 1 < v <1.78; for lumped channels, v, is a function of 7. .

(3) Channels with the same transmission coefficients may be combined by introducing
multiplicities.

The integral of Eq. (VIII A.5) is described by Frohner as the “width fluctuation correction or
Dresner factor.” One (relatively modest) difference between SAMMY and the original FITACS
coding is the algorithm for calculating the Dresner integral; in SAMMY, the coding has been refined
to increase both speed and accuracy of calculation by using a non-uniform grid designed specifically
for this task.

(Note: Prior to release 7 of the code, the Moldauer correction was inadvertently disabled in
code. This has now been fixed.)
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