
Abstract

In 1980 the multilevel multichannel R-matrix code SAMMY was released for use in analysis of

neutron-induced cross section data at the Oak Ridge Electron Linear Accelerator. Since that

time, SAMMY has evolved to the point where it is now in use around the world for analysis

of many different types of data. SAMMY is not limited to incident neutrons but can also

be used for incident protons, alpha particles, or other charged particles; likewise, Coulomb

exit channels can be included. Corrections for a wide variety of experimental conditions are

available in the code: Doppler and resolution broadening, multiple-scattering corrections for

capture or reaction yields, normalizations and backgrounds, to name but a few. The fitting

procedure is Bayes’ method, and data and parameter covariance matrices are properly treated

within the code. Pre- and post-processing capabilities are also available, including (but not

limited to) connections with the Evaluated Nuclear Data Files. Though originally designed

for use in the resolved resonance region, SAMMY also includes a treatment for data analysis

in the unresolved resonance region.

This document serves as a users’ guide for SAMMY and many of its auxiliary codes.

Citations:

Citations for use of the SAMMY code should refer to this manual as

N. M. Larson, Updated Users’ Guide for SAMMY: Multilevel R-Matrix Fits to Neutron Data

Using Bayes’ Equations, ORNL/TM-9179/R8, Oak Ridge National Laboratory, Oak Ridge,

TN, USA (2008). Also ENDF-364/R2. The manual is available on the SAMMY web site at

https://info.ornl.gov/sites/publications/files/Pub13056.pdf
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CHAPTER 1

Introduction

This document serves as a users’ guide to the multilevel multichannel R-matrix code SAMMY.

Beginning with Revision 6, the organization of this manual has been redesigned in an effort

to make it more legible, logical, and useful. A summary of the structure of this document is

given here.

Introductions for the original version of this manual through the previous revision are

available in Appendix A. An introduction specifically for the current revision, describing re-

cent modifications and additions to the code and the manual, is found immediately following

this general introduction. All SAMMY users are encouraged to read §I.A for an overview of

recent developments.

Analysis of neutron cross-section data in the resolved resonance region (RRR) has three

distinct aspects, each of which must be included in any analysis code: First, an appropriate

formalism is needed for generating theoretical cross sections. Second, a plausible mathemat-

ical description must be provided for every experimental condition that affects the values of

the quantities being measured. Third, a fitting procedure must be available to determine

the parameter values which provide the “best” fit of theoretical to experimental numbers.

These three aspects of the SAMMY code are described in §II (2), III (3), and IV (4) of this

manual, respectively.

Calculation of the cross sections in the RRR is described in §II (2), with emphasis

on the Reich-Moore approximation to R-matrix theory. Explicit equations are given for

the various types of energy-differential cross sections (total, elastic, capture, fission, other

reaction) and for the angle and energy-differential cross sections (elastic, reaction). Both

Coulomb and non-Coulomb (neutron) formulae are shown.

Experimental modifications to the theoretical cross sections in the RRR are described

in §III(3). Included here are such effects as Doppler and resolution broadening, normal-

ization and backgrounds, finite-size corrections, and treatment of more than one nuclide in

the target sample. SAMMY’s fitting procedure is described in §IV(4). Bayes’ equations are

derived from Bayes’ theorem plus assumptions about normality and linearity. The relation-

ship between Bayes’ equations and the more familiar least-squares equations is described.
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Emphasis is placed on methodologies for properly including all measurement uncertainty in

the analysis process, including the many SAMMY options for inclusion of data covariance

information.

§V(5) describes such topics as post-processor options (calculating multigroup cross

sections or other averages) and other miscellaneous features.

The input to SAMMY is detailed in §VI(6). Output is described in §VII(7).

SAMMY’s treatment of the unresolved resonance region (URR) is discussed in §VIII(8).

The theoretical treatment was borrowed directly from Fritz Fröhner’s FITACS pro-

gram; subsequently, input/output and certain details of the calculation have been augmented

to increase the functionality of this code.

§IX(9) describes the relationship of SAMMY to the Evaluated Nuclear Data Files

(ENDF). Certain types of ENDF files can be used to provide resonance parameters, param-

eter covariance matrices, or experimental data as input to SAMMY. Likewise, SAMMY can

produce ENDF files containing resonance parameters, point-wise cross sections, or uncer-

tainty information.

A number of auxiliary programs are available for use with SAMMY input or output.

§X(10) contains a brief description of those for which the SAMMY author has maintenance

responsibility.

Advice for running SAMMY is presented in §XI(11). Even experienced SAMMY users

are encouraged to read this section, as it contains information about recent developments

that may be unfamiliar (but potentially useful) to long-time users. Novices are likely to find

valuable suggestions in this section. Anyone requesting the author’s help is expected to have

read and followed the procedures outlined in §XI.B(11.2).

Sample runs are described in §XII(12). These include (1) tutorial exercises (designed to

familiarize a novice user with running the code), (2) test cases (designed for quality control,

to ensure that the code gives consistent answers from one platform to another and from one

version to another, but also useful as examples of input for specific features of the code),

and (3) simulations (Monte Carlo simulations of multiple-scattering corrections, designed to

test the accuracy of the SAMMY treatment for those corrections).

§XIII(13) provides an introduction to the computer code itself, for the benefit of the

code managers at various sites. The casual user will probably not need the information from

this section.



CHAPTER 2

Scattering Theory

Details of scattering theory have been well understood since the middle of the previous

century, when they were summarized in a review article by Lane and Thomas [AL58][1]. A

wealth of additional reference material is available to the student of scattering theory; only a

few are listed here. The text by Foderaro [AF71][2] provides a more elementary introduction

to the subject. One publication by Fröhner [FF80][3] is based on lectures presented at the

International Centre for Theoretical Physics (ICTP) Winter Courses on Nuclear Physics and

Reactors, 1978; this is a comprehensive and useful guide to applied neutron resonance theory.

It includes a variety of topics, including preparation of data, various approximations to

scattering theory, Doppler broadening, experimental complications, data-fitting procedures,

and statistical tests. Another Fröhner paper [FF00][4] is somewhat more theoretical, and

covers many aspects of data fitting in the resonance region.

The particular aspect of scattering theory with which we are concerned is the R-matrix

formalism. A summary of the underlying principles is given here.

R-matrix theory is a mathematically rigorous phenomenological description of what

is actually seen in an experiment (i.e., the measured cross section). The theory is not a

model of neutron-nucleus interaction, in the sense that it makes no assumptions about the

underlying physics of the interaction. Instead it parameterizes the measurement in terms

of quantities such as the interaction radii and boundary conditions, resonance energies and

widths, and quantum numbers; values for these parameters may be determined by fitting

theoretical calculations to observed data. The theory is mathematically correct, in that it is

analytic, unitary, and rigorous; nevertheless, in practical applications, the theory is always

approximated in some fashion.

R-matrix theory is based on the following assumptions1:

(1) the applicability of non-relativistic quantum mechanics;

1In practical applications two of these four assumptions may be violated in one degree or another: (1)
The theory may be used for relativistic neutron energies, and corrected for relativistic effects; nevertheless,
non-relativistic quantum mechanics is assumed. (2) A fission experiment with more than two final products
is treated as a two-step process. That is, the immediate result of the neutron-nuclide interaction is assumed
to be limited to two final products, at least one of which decays prior to detection.
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(2) the absence or unimportance of all processes in which more than two product nuclei

are formed;

(3) the absence or unimportance of all processes of creation or destruction; and

(4) the existence of a finite radial separation beyond which no nuclear interactions

occur, although Coulomb interactions are given special treatment.

R-matrix theory is expressed in terms of channels, where a channel is defined as a

pair of (incoming or outgoing) particles, plus specific information relevant to the interaction

between the two particles. A schematic depicting entrance and exit channels is shown in Fig.

2.1. Note that entrance channels can also occur as exit channels, but some exit channels (e.g.,

fission channels) do not occur as entrance channels. Two interacting particles are shown in

the portion of the figure that is labeled “Interior Region”; here the particles are separated

by less than the interaction radius a.

In Section 2.1, general equations of scattering theory are presented and their derivations

discussed. The fundamental R-matrix equations are presented. Section II.A.12.1.1 gives a

detailed derivation of the equations for a simple case. Section II.A.22.1.2 shows the relation-

ship between the R-matrix and the A-matrix, which is another common representation of

scattering theory.

The approximations to R-matrix theory available in the SAMMY code are detailed in

Section II.B2.2. The recommended choice for most applications is the Reich-Moore approxi-

mation, described in Section II.B.12.2.1. For some applications, the Reich-Moore approxima-

tion is inadequate; for those cases, a method for using SAMMY’s Reich-Moore approximation

to mimic the full (exact) R-matrix is presented Section II.B.22.2.2. Two historically useful

but now obsolete approximations are single-level and multilevel Breit Wigner (SLBW and

MLBW), discussed in Section II.B.32.2.3. Provisions for including non-compound (direct)

effects are discussed in Section II.B.42.2.4.

In Section II.C2.3, details are given for the SAMMY nomenclature and other con-

ventions, for transformations to the center-of-momentum system, and for the calculation of

penetrability, shift factors, and hard-sphere phase shifts in both Coulomb and non-Coulomb

cases.
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Figure 2.1: Schematic of entrance and exit channels as used in scattering
theory. For the interior region (with separation distance r < a), no
assumptions are made about the nature of the interaction. In the
figure, m, i, and z refer to the mass, spin, and charge of the
incident particle while M , I and Z refer to the target particle.
Orbital angular momentum is denoted by l and velocity by v.
Primes are used for post-collision quantities.

2.1 Equations For Scattering theory

In this section, equations for scattering theory are presented but not derived. Specifics

for the R-matrix formulation of scattering theory are presented in Section II.A.12.1.1, which

provides a discussion of an alternative formulation (the A-matrix). Readers interested in the

derivation of the equations for scattering theory are referred to the Lane and Thomas article

[1] for a detailed derivation in the general case, or to Section II.A.22.1.2 of this document

for a simplified version.

In scattering theory, a channel may be defined by c = (α, l, s, J), where the following

definitions apply:
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• α represents the two particles making up the channel; α includes mass (m and M),

charge (z and Z), spin (i and I ) with associated parities, and all other quantum

numbers for each of the two particles, plus the Q-value (equivalent to the negative of

the threshold energy in the center of momentum system).

• l is the orbital angular momentum of the pair, and the associated parity is given by

(−1)l.

• s represents the channel spin (including the associated parity); that is, s is the quan-

tized vector sum of the spins of the two particles of the pair: ~s =~i+ ~I

• J is the total angular momentum (and associated parity); that is, J is the quantized

vector sum of l and s: ~J = ~l + ~s.

Only J and its associated parity π are conserved for any given interaction. The other

quantum numbers may differ from channel to channel, as long as the sum rules for spin

and parity are obeyed. Within this document and within the SAMMY code, the set of all

channels with the same J and π are called a “spin group.”

In all formulae given below, spin quantum numbers (e.g., J ) are implicitly assumed

to include the associated parity. Quantized vector sum rules are implicitly assumed to be

obeyed. Readers unfamiliar with these sum rules are referred to Section II.C.1.a?? for a

mini-tutorial on the subject.

Let the angle-integrated cross sections from entrance channel c to exit channel c′ with

total angular momentum J be represented by σcc′ . This cross section is given in terms of

the scattering matrix Ucc′ as

σcc′ =
π

k2
α

gJα
∣∣e2iwcδcc′ − Ucc′

∣∣2 δJJ ′ , (2.1)

where kα is the wave number (and Kα = ~kα = center-of-mass momentum) associated with

incident particle pair α, gJα is the spin statistical factor, and wc is the Coulomb phase-shift

difference. Note that wc is zero for non-Coulomb channels. (Details for the charged-particle

case are presented in Section II.C.4.2.3.4) The spin statistical factor gJα is given by

gJα =
2J + 1

(2i+ 1)(2I + 1)
, (2.2)
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and center-of-mass momentum Kα by

K2
α = (~kα)2 =

2mM2

(m+M)2
E . (2.3)

Here E is the laboratory kinetic energy of the incident (moving) particle. A derivation of

this value for Kα is given in Section II.C.22.3.2.

The scattering matrix U can be written in terms of matrix W as

Ucc′ = ΩcWcc′Ωc′ , (2.4)

where Ω is given by

Ωc = ei(wc−φc) . (2.5)

Here again, wc is zero for non-Coulomb channels, and the potential scattering phase shifts

for non-Coulomb interactions φc are defined in many references (e.g., [1]) and shown in Table

2.1. The matrix W in Eq. 2.4 is related to the R-matrix (in matrix notation with indices

suppressed) via

W = P 1/2 (I −RL)−1 (I −RL∗)P−1/2 . (2.6)

The quantity I in this equation represents the identity matrix, and superscript ∗ indicates

a complex conjugate. The form of the R-matrix is given in Section II.A.12.1.1 in general

Section II.B2.2 for the versions used in SAMMY. The quantity L in Eq. 2.6 is given by

L = (S −B) + iP , (2.7)

with P being the penetration factor (penetrability) S the shift factor, and B the arbitrary

boundary constant at the channel radius ac. P and S are functions of energy E, and also

depend on the orbital angular momentum l and the channel radius ac. Formulae for P and

S are found in many references (see, for example Eq. (2.9) in [5]).

For non-Coulomb interactions, the penetrability and shift factor have the form

P → Pl(ρ) and S → Sl(ρ) , (2.8)
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where ρ is related to the center-of-mass momentum which in turn is related to the laboratory

energy of the incident particle (E). For arbitrary channel c with a particle pair α, orbital

angular momentum l, and channel radius ac, ρ has the form

ρ = kαac =
1

~

√
2mαMα

mα +Mα

M

m+M

√
(E − Ξα) ac , (2.9)

as shown in Section II.C.2 2.3.2. Here Ξα is the energy threshold for the particle pair α, mα

and Mα are the masses of the two particles of particle pair α, and m and M are the masses

of the incident particle and target nuclide, respectively.

Appropriate formulae2 for P , S, and φ in the non-Coulomb case are shown in Table

II.A.1 2.1. For two charged particles, formulae for the penetrabilities are given in Section

II.C.4 2.3.4. The energy dependence of fission and capture widths is negligible over the

energy range of these calculations. Therefore, a penetrability of unity may be used.

Table 2.1: Hard-sphere penetrability (penetration factor) P , level shift factor S,

and potential-scattering phase shift φ for orbital angular momentum l,

wave number k, and channel radius ac, with ρ = kac.

l Pl Sl φl

0 ρ 0 ρ

1 ρ3/(1 + ρ2) −1/(1 + ρ2) ρ− tan−1 ρ

2 ρ5/(9 + 3ρ2 + ρ4) −(18 + 3ρ2)/(9 + 3ρ2 + ρ4) ρ− tan−1 [3ρ/(3− ρ2)]

3
ρ7/

(225 + 45ρ2 + 6ρ4 + ρ6)

−(675 + 90ρ2 + 6ρ4)/

(225 + 45ρ2 + 6ρ4 + ρ6)
ρ− tan−1 [ρ(15− ρ2)/(15− 6ρ2)]

l ρ2Pl−1

(1−Sl−1)2+P 2
l−1

ρ2(l−Sl−1)

(1−Sl−1)2+P 2
l−1
− l φl−1 − tan−1 (Pl−1/(l − Sl−1))†

† The iterative formula for φl could also be defined by Bl = (Bl−1 +Xl)/(1−Bl−1Xl) where Bl = tan(ρ−φl)
and Xl = Pl−1/(l − Sl−1)

2To avoid ambiguity, it should be stated that below the channel threshold, that is, for (E − Ξα) < 0,
SAMMY uses the convention of Lane-Thomas, namely setting Pc = 0 and Sc = Re(Lc) = Lc, instead of using
an analytical continuation of the shift and penetrability function in the complex plane by computing the
expressions in Table 2.1 as a function of an imaginary ρ for which iPc(ρ) becomes real-valued, but separate
from Sc(ρ).
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Formulae for a particular cross section type can be derived by summing over the terms

in Eq. (II A.1)2.1. For the total cross section, the sum over all possible exit channels and

all spin groups gives

σtotal =
∑

incident
channels

c

∑
all

channels
c′

∑
J

π

k2
α

gα|δcc′ − Ucc′|2

=
π

k2
α

∑
J

gJ
∑

incident
channels

c

∑
all

channels
c′

(
δcc′ − Ucc′δcc′ − U∗cc′δcc′ + |Ucc′ |

2)

=
2π

k2
α

∑
J

gJ
∑

incident
channels

c

(1− Re (Ucc)) .

(2.10)

For non-charged incident particles, the elastic (or scattering) cross section is given by

σαα =
π

k2
α

∑
J

gJ
∑

c=incident
channel

1− 2Re (Ucc) +
∑

c′=incident
channel

|Ucc′|2

 . (2.11)

Similarly, the cross section for any non-elastic reaction can be written

σreactionα =
π

k2
α

∑
J

gJ
∑

c=incident
channel

∑
c′=reaction

channel

|Ucc′|2 . (2.12)

In particular, the capture cross section could be written as the difference between the total

and all other cross sections,

σreactionα =
π

k2
α

∑
J

gJ
∑

c=incident
channel

1−
∑

c′=all channels
except capture

|Ucc′ |2

 . (2.13)

(This form will be used later, in Section II.B.1.a, when the capture channels are treated in

an approximate fashion.)

2.1.1 R-Matrix and A-Matrix Equations

The R-matrix was introduced in Eq. 2.6 as

W = P 1/2 (I −RL)−1 (I −RL∗)P−1/2 , (2.14)
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but the formula for the R-matrix was not given there. If λ represents a particular resonance

(or energy level), then the general form for the R-matrix is

Rcc′ =
∑
λ

γλcγλc′

Eλ − E
δJ,J ′ , (2.15)

where Eλ represents the energy of the resonance, and the reduced width amplitude γ is

related to the partial width Γ by

Γλc = 2Pcγ
2
λc. (2.16)

Note that in Eq. 2.15 that energies and widths are given in laboratory frame of reference,

while the derivation in §2.1.2 is in center-of-mass (please see Eq. 2.60 for the relationship

of laboratory and center-of-mass parameters). The sum in Eq. (II A1.2)2.15 contains an

infinite number of levels. All channels, including the “gamma channel” for which one of the

particles is a photon, are represented by the channel indices.

The R-matrix is not the only possibility for parameterization of the scattering matrix.

In the R-matrix formulation, equations are expressed in terms of channel-channel interac-

tions. It is also possible to formulate scattering theory in terms of level-level interactions;

this formulation uses what is called the A-matrix, which is defined as

A−1
µλ = (Eλ − E) δµλ −

∑
c

γµcLcγλc. (2.17)

To see the relationship of the A-matrix to the R-matrix, we begin by multiplying both sides

of Eq. (II A1.4)2.17 by A and summing over λ:

∑
λ

A−1
µλAλν =

∑
λ

(Eλ − E) δµλAλν −
∑
c

γµcLcγλcAλν ,

or

δµν = (Eµ − E)Aµν −
∑
c

γµcLc
∑
λ

γλcAλν .

(2.18)

Dividing by (Eµ−E), multiplying on the left by γµc′ and on the right by γνc′′ , and summing

over µ puts this equation into the form
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∑
µ

γµc′ (Eµ − E)−1 δµνγνc′′ =
∑
µ

γµc′ (Eµ − E)−1 (Eµ − E)Aµνγνc′′

−
∑
µ

γµc′ (Eµ − E)−1
∑
c

γµcLc
∑
λ

γλcAλνγνc′′ ,
(2.19)

which can be reduced to

γνc′ (Eν − E)−1 γνc′′ =
∑
µ

γµc′Aµνγνc′′

−
∑
c

[∑
µ

γµc′ (Eµ − E)−1 γµc

]
Lc
∑
λ

γλcAλνγνc′′ .

(2.20)

Summing over ν puts this into the form

[∑
ν

γνc′ (Eν − E)−1 γνc′′

]
=
∑
µν

γµc′Aµνγνc′′

−
∑
c

[∑
µ

γµc′ (Eµ − E)−1 γµc

]
Lc
∑
λν

γλcAλνγνc′′ ,

(2.21)

in which we can replace the quantities in square brackets by the R-matrix, giving

Rc′c′′ =
∑
µν

γµc′Aµνγνc′′ −
∑
c

Rc′cLc
∑
λν

γλcAλνγνc′′ ,

=
∑
c

[δc′c −Rc′cLc]
∑
λν

γλcAλνγνc′′ .
(2.22)

Solving for the summation, this equation can be rewritten as

[
(I −RL)−1R

]
cc′′

=
∑
λν

γλcAλνγνc′′ . (2.23)

To relate this to the scattering matrix, we note that Eq. (II A.6)2.6 can be rewritten using

Eq. (II A.7)2.7 into the form
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W = P 1/2 (I −RL)−1 (I −RL∗)P−1/2

= P 1/2 (I −RL)−1 (I −RL+ 2iRP )P−1/2

= P 1/2
[
(I −RL)−1 (I −RL) + 2i (I −RL)−1RP

]
P−1/2

= P 1/2P−1/2 + 2iP 1/2 (I −RL)−1RPP−1/2

= I + 2iP 1/2 (I −RL)−1RP 1/2.

(2.24)

Comparing Eq. (II A1.10)2.23 to Eq. (II A1.11)2.24 gives, in matrix form,

W = I + 2iP 1/2γAγP 1/2. (2.25)

These equations are exact; no approximations have been made.

One common approximation should be discussed here: the “eliminated channel” ap-

proximation, for which one particular type of channel is treated in aggregate and assumed to

not interfere from level to level. This is most easily understood in the A-matrix definition,

Eq. (II A1.4)2.17; assuming no level-level interference for the gamma channels (for example),

this equation can be approximated as

A−1
µλ ≈ (Eλ − E)δµλ −

 ∑
γ=gamma
channels

γµγLγγλγ

 δµλ − ∑
c=particle
channels

γµcLcγλc. (2.26)

The quantity in square brackets corresponds to those channels for which the level-level

interference is to be neglected; that is, only the interactions within one level are important.

For gamma channels, L = S + iP reduces to L = i, so Eq. (II A1.13)2.26 becomes

A−1
µλ ≈

(
Eλ − E − iΓλγ/2

)
δµλ −

∑
c=particle
channels

γµcLcγλc. (2.27)

The bar over Γλγ is used to indicate the special treatment for this channel.

In this form, our expression for A is analogous to the exact expression in Eq. (II

A1.4)2.17 with two modifications: the additional imaginary term is added to the energy dif-

ference, and the sum over the channels includes only the “particle channels” (non-eliminated

channels). It is therefore possible to immediately write the R-matrix formula for the eliminated-

channel approximation as
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Rcc′ =
∑
λ

γλcγλc′

Eλ − E − iΓλγ/2
δJJ ′ , (2.28)

where the channel indices c and c ’ refer only to particle channels, not to the gamma

channels. This formula for the R-matrix is the Reich-Moore approximation and is the form

which is used in the SAMMY code. See Section II.B.1 for more about this formulation of

R-matrix theory.

2.1.2 Derivation of Scattering Theory Equations

Many authors have given derivations of the equations for the scattering matrix in

terms of the R-matrix. Sources for the derivation shown here are unpublished lecture notes

of Fröhner [FF02][6], presented at the SAMMY workshop in Paris in 2002, and Foderaro

[AF71][2]. This derivation is valid for only the simple case of spinless projectiles and target

nuclei, assuming only elastic scattering and absorption. For the general case, the reader is

referred to Lane and Thomas [AL58][1].

Schrödinger equation

The Schrödinger equation with a complex potential is

(
−~2

2µ
∇2 + V + iW

)
ψ = E(CoM)ψ, (2.29)

in which one can consider that V causes scattering and W causes absorption and the reduced

mass µ = mM
m+M

(m and M defined as before). Note that energies in §2.1.2 are in the

center-of-mass (CoM) frame. The wave function can be expanded in the usual fashion,

ψ (r, cos(θ)) =
∞∑
l=0

ul(r)

r
Pl(cos(θ)), (2.30)

for which the radial portion obeys the equation

d2ul
dr2

+

[
k2 − 2µ

~2
(V + iW )− l(l + 1)

r2

]
ul = 0, (2.31)

subject to the conditions that |ψ|2 is everywhere finite and that

ul(r = 0) = 0. (2.32)
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In the external region, r > a, the nuclear forces are zero (V = W = 0), so the solution

has the form

ul(r) = Il(r)− UlOl(r). (2.33)

Il represents an incoming free wave, and Ol represents an outgoing free wave. Ul is

the “collision function” or “S function” that describes the effects of the nuclear interaction,

giving both the attenuation and the phase shift of the outgoing wave:

|Ul|2 = 1 for W = 0,

|Ul|2 < 1 for W 6= 0.
(2.34)

Our goal is to determine an appropriate analytic form for Ul.

Orthogonal eigenvectors in interior region

For the interior region r < a , we define eigenfunctions wλl(r) and eigenvalues Eλ,

E
(CoM)
λ =

~2k2
λ

2µ
, (2.35)

for the wave equation without absorption (W = 0),

d2wλl
dr2

+

[
k2
λ −

2µ

~2
V − l(l + 1)

r2

]
wλl = 0, (2.36)

for which the boundary conditions are

wλl(r = 0) = 0 and
a

wλl(a)

dwλl
dr

∣∣∣
r=a

= Bl. (2.37)

Note that wλl(r) is real if the boundary parameter Bl is chosen to be real. The eigenfunctions

are orthogonal, since

∫ a

0

(
d2wλl
dr2

wµl − wλl
d2wµl
dr2

)
dr =

∫ a

0

d

dr

(
dwλl
dr

wµl − wλl
dwµl
dr

)
dr

=

[
dwλl
dr

wµl − wλl
dwµl
dr

]a
0

=
dwλl
dr

∣∣∣
r=a

wµl(a)− wλl(a)
dwµl
dr

∣∣∣
r=a
− [0]

=
Bl

a
[wλl(a)wµl(a)− wλl(a)wµl(a)] = 0,

(2.38)
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in which both equations of (II A2.9)2.37 have been invoked. The integral in Eq. (II

A2.10)2.38 can also be evaluated using Eq. (II A2.8)2.36, giving

∫ a

0

(
d2wλl
dr2

wµl − wλl
d2wµl
dr2

)
dr =

∫ a

0

([
−k2

λ −
2µV

~2

]
wλlwµl − wλl

[
−k2

λ −
2µV

~2

]
wλl

)
dr

=

∫ a

0

(
−k2

λwλlwµl + k2
µwλlwµl

)
dr

= −(k2
λ − k2

µ)

∫ a

0

wλlwµldr.

(2.39)

Equating Eq. (II A2.10)2.38 to Eq. (II A2.11)2.39 gives

(k2
λ − k2

µ)

∫ a

0

wλlwµldr = 0. (2.40)

For λ 6= µ, assuming no degenerate states, it therefore follows that

∫ a

0

wλlwµldr = 0 if λ 6= µ. (2.41)

The orthogonality of the eigenvectors is therefore established. We assume that these

wave functions are normalized such that

∫ a

0

wλlwµldr = δλµ. (2.42)

Matching at the surface

The internal wave function for the true potential (including the imaginary part iW )

can be expanded in terms of the eigenfunctions as

ul(r) =
∑
λ

cλlwλl(r) for r ≤ a, (2.43)

with

cλl =

∫ a

0

ulwλldr. (2.44)

This equation for cλl is derived by multiplying Eq. (II A2.15)2.43 by uλl(r) , integrating,

and applying Eq. (II A2.14)2.42.

Consider now the integral
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∫ a

0

(
d2ul
dr2

wλl − ul
d2wλl
dr2

)
dr, (2.45)

which can be expanded by use of Eqs. (II A2.3)2.31 and (II A2.8)2.36 to give

∫ a

0

(
d2ul
dr2

wλl − ul
d2wλl
dr2

)
dr

=

∫ a

0

([
k2 − 2µ

~2
(V + iW )− l(l + 1)

r2

]
ulwλl + ul

[
k2
λ −

2µ

~2
V − l(l + 1)

r2

]
wλl

)
dr

= (k2
λ − k2)

∫ a

0

ulwλldr +
2µ

~

∫ a

0

Wulwλldr.

(2.46)

Defining W λl as

W λl =

∫ a
0
Wulwλldr∫ a

0
ulwλldr

(2.47)

permits rewriting Eq. (II A2.18)2.46 in the form

∫ a

0

(
d2ul
dr2

wλl − ul
d2wλl
dr2

)
dr =

(
k2
λ − k2 + i

2µ

~2
W λl

)∫ a

0

ulwλldr. (2.48)

Integrating the left-hand side of this equation gives

∫ a

0

(
d2ul
dr2

wλl − ul
d2wλl
dr2

)
dr =

[
dul
dr
wλl − ul

dwλl
dr

]a
0

=

[
dul
dr
wλl − ul

dwλl
dr

]
r=a

=

[
dul
dr
wλl − ul

Bl

a
wλl

]
r=a

=

[
a
dul
dr
− ulBl

]
r=a

wλl(a)

a
,

(2.49)

in which we have again made use of the boundary condition of Eq. (II A2.9)2.37. Integrating

the right-hand side of Eq. (II A2.20)2.48 by applying Eq. (II A2.16)2.44 gives

(
k2
λ − k2 + i

2µ

~2
W λl

)∫ a

0

ulwλldr =

(
k2
λ − k2 + i

2µ

~2
W λl

)
cλl. (2.50)

Equating Eqs. (II A2.21)2.49 and (II A2.22)2.50 therefore gives
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[
a
dul
dr
− ulBl

]
r=a

wλl
a

=

(
k2
λ − k2 + i

2µ

~2
W λl

)
cλl,[

a
dul
dr
− ulBl

]
r=a

wλl
a

=
(
E

(CoM)
λ − E(CoM) + iW λl

) 2µcλl
~2

,

(2.51)

or

cλl =
~2wλl(a)

2µa
(
E

(CoM)
λ − E(CoM) − iW λl

) [adul
dr
− ulBl

]
r=a

. (2.52)

Inserting this into Eq. (II A2.15)2.43 gives

ul(r) =
∑
λ

wλl(r)
~2wλl(a)

2µa
(
E

(CoM)
λ − E(CoM) − iW λl

) [adul
dr
− ulBl

]
r=a

, (2.53)

which when evaluated at r = a , becomes

ul(a) =
∑
λ

~2w2
λl(a)

2µa
(
E

(CoM)
λ − E(CoM) − iW λl

) [adul
dr
− ulBl

]
r=a

, (2.54)

Rearranging, this becomes

ul(a) =

[
a
dul
dr
− ulBl

]
r=a

∑
λ

~2w2
λl(a)/2µa(

E
(CoM)
λ − E(CoM) − iW λl

)
=

[
a
dul
dr
− ulBl

]
r=a

∑
λ

γ2
λl(

E
(CoM)
λ − E(CoM) − iΓλl/2

) , (2.55)

in which the decay amplitude γλl is defined as

γλl ≡

√
~2w2

λl(a)

2µa
(2.56)

and the absorption width Γλl as

Γλl ≡ 2W λl. (2.57)

If we then define the R-function as

Rl =
∑
λ

γ2
λl(

E
(CoM)
λ − E(CoM) − iΓλl/2

) , (2.58)
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then Eq. (II A2.27)2.55 can be written in the form

ul =

(
a
dul
dr
− ulBl

)
Rl, (2.59)

in which everything is evaluated at the matching radius a. Note that the form of Eq. 2.58

(which is in the CoM frame) is the same as if it were in the laboratory frame of reference.

This is because of canceling terms in the numerator and denominator of the R-matrix, e.g.

E ≡ E(lab) =
M

m+M
E(CoM),

Eλ ≡ E
(lab)
λ =

M

m+M
E

(CoM)
λ ,

γ2
λ,l ≡ (γ

(lab)
λ,l )2 =

M

m+M
(γ

(CoM)
λ,l )2, and

Γγ,l ≡ Γ
(lab)
γ,l =

M

m+M
Γ

(CoM)
γ,l .

(2.60)

Due to this relationship, Eq. 2.58 can be used for CoM or laboratory frame parameters.

Conventional SAMMY parameterization is to use the laboratory frame.

Scattering matrix in terms of R-matrix (neutrons only)

Equation (II A2.31)2.59 can be converted into the usual R-matrix formulae by inserting

Eq. (II A2.5)2.33,

ul = Il − UlOl, (2.61)

yielding

Il − UlOl =

[
a

(
dIl
dr
− Ul

dOl

dr

)
−Bl(Il − UlOl)

]
Rl, (2.62)

in which everything is again evaluated at the matching radius a. Solving Eq. (II A2.33)2.62

for U gives

Ul

[
−Ol +Rl

(
a
dOl

dr
−BlOl

)]
= Il −Rl

(
a
dIl
dr
−BlIl

)
, (2.63)

or
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Ul =
Il −Rl

(
adIl
dr
−BlIl

)[
−Ol +Rl

(
adOl
dr
−BlOl

)] =
Il
Ol

1−Rl

(
a
Il

dIl
dr
−Bl

)
1−Rl

(
a
Ol

dOl
dr
−Bl

) . (2.64)

We define Ll as

Ll ≡
a

Ol(a)

dOl

dr

∣∣∣
r=a
≡ Sl + iPl. (2.65)

For spinless particles, I∗l = Ol, so that

a

Il(a)

dIl
dr

∣∣∣
r=a

= L∗l = Sl − iPl (2.66)

and

Il
Ol

=
O∗l
Ol

=
|O|e−iφ

|O|eiφ
= e−2iφ. (2.67)

Therefore Eq. (II A2.34)2.63 becomes

Ul = e−2iφ1−Rl(L
∗
l −Bl)

1−Rl(Ll −Bl)
, (2.68)

which is the usual form for the scattering matrix in terms of the R-matrix in this simple

case.

Relating the scattering matrix to the cross sections

The relationship between the scattering matrix U and the cross section σ is also de-

scribed by many authors; see, for example, [AF71][2]. Here we provide a summary for the

simplest case. The wave function for a spinless particle far from the scattering source can

be written as

ψ(r, θ) = eikz +
eikr

r
f(θ), (2.69)

where f has the form

f(θ) =
1

2ik

∑
l

(2l + 1) [Ul − 1]Pl(cos θ). (2.70)

The cross section is then given by
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dσ

dΩ
= |f(θ)|2 . (2.71)

For angle-integrated cross sections, the equation found by inserting Eq. (II A2 a.2)2.70

into Eq. (II A2 a.3)2.71 can be integrated to give

σ =

∫ [
− 1

2ik

∑
l

(2l + 1) [U∗l − 1]Pl(cos θ)

]

×

[
1

2ik

∑
l′

(2l′ + 1) [Ul′ − 1]Pl′(cos θ)

]
d(cos θ)dφ

=
1

4k2

∑
ll′

(2l + 1)(2l′ + 1)[U∗l − 1][Ul′ − 1]

∫ 2π

0

dφ

∫ 1

−1

Pl(cos θ)Pl′(cos θ)d(cos θ)

=
1

4k2

∑
ll′

(2l + 1)(2l′ + 1)[U∗l − 1][Ul′ − 1]2π
2

2l + 1
δll′

=
π

k2

∑
l

(2l + 1)|Ul − 1|2.

(2.72)

This is analogous to the “standard” scattering theory equation shown in Eq. (II

A.1)2.1.

2.2 Versions of Multilevel R-matrix Theory

Many representations of multilevel R-matrix theory have been developed over the years.

For a summary of the more common versions, the reader is referred to the works of Fröhner

[FF80, FF00][7, 4].

Four versions of R-matrix theory are available in SAMMY: the Reich-Moore approxi-

mation (Section II.B.1)2.2.1, the single-level (SLBW) and multilevel Breit-Wigner (MLBW)

approximations (Section II.B.3)2.2.3, and a variant on the Reich Moore which mimics the

full R-matrix (Section II.B.2)2.2.2. An option to include a direct capture component is also

provided (Section II.B.4)2.2.4.

The Reich-Moore approximation is the preferred method for most modern evaluations;

it is the default formalism for SAMMY runs. Fröhner, in fact, suggests that the Reich-Moore

approximation is universally applicable to all cases: “Experience has shown that with this

approximation [Reich Moore] all resonance cross section data can be described in detail, in
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the windows as well as in the peaks, even the weirdest multilevel interference patterns...It

works equally well for light, medium-mass and heavy nuclei, fissile and nonfissile.” [4](pg.

60). For most purposes, Reich Moore is indeed indistinguishable from the exact formulation.

Notable exceptions are situations where interference effects exist between capture and other

channels. For those cases, small modifications to the SAMMY input will permit the user

to mimic the effect of the non-approximated R-matrix; see Section II.B.22.2.2 for details.

Occasionally it is not possible to properly describe a cross section within the confines of

R-matrix theory, because the reaction includes a direct component. SAMMY has provisions

for the user to provide a numerical description of this component; see Section II.B.42.2.4 for

details.

Also available within SAMMY are both the SLBW and the MLBW formulations (Sec-

tion II.B.3)2.2.3; these are included for the sake of completeness, for comparison purposes,

and because many of the evaluations in the nuclear data files were performed with Breit-

Wigner formulae. However, it is strongly recommended that only Reich Moore be used for

new evaluations, for several reasons: MLBW is often inadequate; SLBW is almost always

inadequate. When it is correct, MLBW gives identical results to Reich Moore. “Ease of

Programming” is no longer a valid excuse for using MLBW, since the programming has al-

ready been accomplished. Similarly, a slow computer is no longer a legitimate excuse, since

modern computers can readily handle the more rigorous formulae.

Finally, it should be noted that SAMMY’s implementation of MLBW does not corre-

spond to the usual definition of MLBW. Instead, SAMMY uses the ENDF [ENDF-102][8]

convention in which only the elastic cross section is truly multilevel, and all other types of

cross section are single level.

2.2.1 Reich-Moore Approximation to Multilevel R-Matrix Theory

The Reich-Moore approximation [9] is based on the idea that capture channels behave

quite differently from particle channels. The particle-pair configuration for a capture channel

consists of a gamma “particle” plus a nucleus with one more neutron than the target nucleus.

For most physical situations, there are a multitude of such capture channels, whose behavior

can be treated in an aggregate or average manner. It is assumed that there is no net

interference between the aggregate capture channel and other channels, and the level-level

interference of gamma channels is negligible, so that terms describing such interference may
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be eliminated from the R-matrix formulae. The mathematical derivation of this “eliminated-

channel approximation” is discussed in Section II.A.12.1.1.

In the eliminated-channel approximation, the R-matrix of Eq. (II A.6)2.6 (for the spin

group defined by total spin J and implicit parity π) has the form

Rcc′ =

[∑
λ

γλcγλc′

Eλ − E − iΓλγ/2
+Rext

c δcc′

]
δJJ ′ , (2.73)

where all levels (resonances) of that spin group are included in the sum. Subscript

λ designates the particular level; subscripts c and c′ designate channels (including particle

pairs and all the relevant quantum numbers). The width Γλγ occurring in the denomina-

tor corresponds to the “eliminated” non-interfering capture channels of the Reich-Moore

approximation; we use the bar to indicate that this width is treated differently from other

“particle” widths.

The “external R-function” Rext
c of Eq. (II B1.1)2.73 will be discussed at the end of Section

II.B.1.d2.2.1.

The channel width Γλc is given in terms of the reduced-width amplitude γλc by

Γλc = 2γ2
λcPc(E), (2.74)

where Pc is the penetrability, whose value is a function of the type of particles in the channel,

of the orbital angular momentum l, and of the energy E. The reduced-width amplitude γλc is

always independent of energy, but the width Γλc may depend on energy via the penetration

factor. For fission and for gamma channels, Eq. (II B1.2)2.74 becomes

Γλc = 2γ2
λc (2.75)

that is, the penetrability is effectively 1. (Note: In this manual, the reduced-width amplitude

for the eliminated-channel capture width will be denoted by a bar above the symbol Γ.)

Cross sections may be calculated by using the above expressions for R, with L given by

Eq. (II A.7)2.7, to generate W , and from there calculating U and, ultimately, σ. However,

while Eq. (II A.6)2.6 for W is correct, an equivalent form that is computationally more

stable [10] is
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W = I + 2iX, (2.76)

where X is given in matrix notation by

X = P 1/2L−1
(
L−1 −R

)−1
RP 1/2. (2.77)

When the suppressed indices and implied summations are inserted, the expression for X

becomes

Xcc′ = P 1/2
c L−1

c

∑
c′′

[
(L−1 −R)−1

]
cc′′
Rc′′c′P

1/2
c′ δJJ ′ . (2.78)

The various cross sections are then written in terms of X.

All calculations internally within SAMMY are expressed in terms of so-called “u-

parameters,” as distinguished from “p-parameters,” which are the input quantities. The

u-parameters associated with the resonance p-parameters are as follows:

uEλ =

{ √
Eλ for Eλ > 0

−
√
−Eλ for Eλ < 0

(2.79)

uΓλc = γλc =

{ √
Γλc

2Pl(|Eλ − Ξc|)
if Γλc > 0

−

√
|Γλc|

2Pl(|Eλ − Ξc|)
if Γλc < 0 in the PARameter file,

(2.80)

in which Ξc is the energy threshold for the channel (Section II.C.2)2.3.2. It is important to

note that the partial-width parameter Γλc is always a positive quantity, while the reduced-

width amplitude γλc can be either positive or negative. Nevertheless, in the original SAMMY

input or output PARameter file (and also in the ENDF File 2 formats??), partial widths may

appear with negative signs. The convention is that the sign given in those files is associated

with the amplitude γλc rather than with the partial width Γλc.

As of Revision 8 of this document and Release sammy-8.0.0 of the code, the reduced-

width amplitudes and square root of resonance energy may be used as input to SAMMY;

see Table VI B.2?? for details. To use this option, include the command “REDUCED WIDTH
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AMPLITudes are used for input” in card set 2 of the INPut file. An output file SAMMY.RED

is created in this format whenever output file SAMMY.PAR is created.

Energy-differential cross sections

The observable cross sections are found in terms of X by first substituting Eqs. (II

A.42.4, II A.52.5, and II B1.32.76) into Eq. (II A.1)2.1, summing over spin groups (i.e.,

over Jπ ), and then summing over all channels corresponding to those particle pairs and

spin groups. If Xr represents the real part and X i the imaginary part of X, then the angle-

integrated (but energy-differential) cross section for the interaction that leads from particle

pair α to particle pair α′ has the form

σα,α′(E) =
4π

k2
α

∑
J

gJα
∑
c

[(
sin2 φc(1− 2X i

cc)−Xr
cc sin(2φc)

)
δα,α′

+
∑
c′

(
X i
cc′

2
+Xr

cc′
2
)]
.

(2.81)

(This formula is accurate only for cases in which one of particles in α is a neutron; however,

both particles in α′ may be charged.)

In Eq. (II B1 a.1)2.81 the summations are over those channels c and c′ (of the spin

group defined by Jπ) for which the particle pairs are, respectively, α and α′. More than

one “incident channel” c = (α, l, s, J) can contribute to this cross section, for example when

both l = 0 and l = 2 are possible, or when, in the case of incident neutrons and non-zero

spin target nuclei, both channel spins are allowed. Similarly, there may be several “exit

channels” c′ = (α′, l′, s′, J ′), depending on the particular reaction being calculated (e.g.,

elastic, inelastic, fission).

The total cross section (for non-Coulomb initial states) is the sum of Eq. (II B1 a.1)2.81

over all possible final-state particle-pairs α′, assuming the scattering matrix is unitary (i.e.,

assuming that the sum over c′ of |U2
cc′ = 1). Written in terms of the X matrix, the total

cross section has the form

σtotal(E) =
4π

k2
α

∑
J

gJα
∑
c

[(
sin2 φc +X i

cc cos(2φc)−Xr
cc sin(2φc)

)]
, (2.82)
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where again the sum over c includes only those channels of the Jπ spin group for which the

particle pair is α.

The angle integrated elastic cross section is given by

σelastic(E) =
4π

k2
α

∑
J

gJα
∑
c

[
sin2 φc(1− 2X i

cc)−Xr
cc sin(2φc)

+
∑
c′

(
X i
cc′

2
+Xr

cc′
2
)]
.

(2.83)

In this case, both c and c′ are limited to those channels of the Jπ spin group for which the

particle-pair is α; again, there may be more than one such channel for a given spin group.

Similarly, the reaction cross section from particle pair α to particle pair α′ (where α′

is not equal to α) is

σreaction(E) =
4π

k2
α

∑
J

gJα
∑
c

∑
c′

[
X i
cc′

2
+Xr

cc′
2
]

(2.84)

Here c is restricted to those channels of the Jπ spin group from which the particle pair

is α, and c′ to those channels for which the particle-pair is α′.

The absorption cross section has the form

σabsorption(E) =
4π

k2
α

∑
J

gJα
∑
c

[
X i
cc −

∑
c′

(
X i
cc′

2
+Xr

cc′
2
)]

. (2.85)

Here both the sum over c and the sum over c′ include all incident particle channels (i.e.,

particle pair α only) for the Jπ spin group.

The capture cross section for the eliminated radiation channels can be calculated di-

rectly as

σcapture(E) =
4π

k2
α

∑
J

gJα
∑
inc c

[
X i
cc −

∑
all c′

(
X i
cc′

2
+Xr

cc′
2
)]

. (2.86)

or may be found by subtracting the sum of all reaction cross sections from the absorption

cross section. In Eq. (II B1 a.6)2.86, the sum over c includes all incident particle channels

for the Jπ spin group, and the sum over c′ includes all particle channels, both incident and

exit, for that spin group.
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One-level two-channel case

For a simple one-level, two-channel case for which the shift factor is set to zero, the

various cross sections defined directly above can easily be expressed in terms of resonance

parameters. Users are reminded that SAMMY is by no means restricted to this simple case

and can be used with as many levels and as many channels as are needed to describe the

particular physical situation. Nevertheless, it is useful to examine the cross section equations

for this simple case: while these equations are a crude over-simplification for most physical

situations, there is often physical insight to be gained by examination of these equations.

For this simple case, the X matrix of Eq. (II B1.4)2.77 takes the form

X =
√
PL−1(L−1 −R)−1R

√
P

=

√P1

iP1
0

0
√
P2

iP2

 1
iP1
− γ21

D
−γ1γ2

D

−γ1γ2
D

1
iP2
− γ22

D

−1  γ21
D

γ1γ2
D

γ1γ2
D

γ22
D

√P1 0

0
√
P2

 , (2.87)

in which the subscript on the penetrabilities denotes the channel number (not the

angular momentum), the symbol D has been used for Eλ−E− iγ2
λγ, and the subscript λ has

been omitted from the reduced-width amplitudes for simplicity’s sake. This equation can be

rewritten as

2.2.2 Simulation of Full R-Matrix

2.2.3 Breit-Wigner Approximations

2.2.4 Direct Capture Component

2.3 Details and Conventions Used In Sammy

Note: Subject to change with inclusion of AMPX R-matrix engine!!!
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2.3.1 Spin and Angular Momentum Conventions

2.3.2 Kinematics

2.3.3 Evaluation of Hard-Sphere Phase Shift

2.3.4 Modifications for Charged Particles

2.3.5 Inverse Reactions (Reciprocity)

2.4 Derivatives

In order to make use of sophisticated fitting procedures such as Bayes’ equations (Sec-

tion IV ?? of this manual), it is necessary to know the partial derivatives of the theory

with respect to the parameters to be fitted (the “varied parameters”). The easiest method

for calculating derivatives of cross sections with respect to resonance parameters is to use a

numerical difference approximation, of the form

2.4.1 Derivatives for Reich-Moore Approximation

2.4.2 Derivatives for MLBW and SLBW Approximations

2.4.3 Details Involving Derivatives



CHAPTER 3

Experimental Conditions

3.1 Theoretical Foundation For Numerical Broadening

3.2 Doppler Broadening

3.3 Resolution Broadening

3.4 Self-shielding And Multiple-scattering Corrections To Cap-

ture Or Fission Yields

The theoretical capture, fission, and other cross sections may be calculated directly

from the equations in Sec. ?? using the Reich-Moore (or other) approximation to the mul-

tilevel R-matrix. However, in order to compare with experimental results, corrections must

often be made for the finite (noninfinitesimal) size of the sample.

Both “self-shielding” and “multiple-scattering” effects must be included in the calcu-

lation. These corrections are most often needed for capture experiments; however, they

may also be needed for fission, absorption, or other partial cross sections. For the rest of

this section, “capture” will be taken to indicate whichever type of cross section is under

investigation; the corrections described here apply in any case.

Derivation of the appropriate expressions for self-shielding and multiple-scattering cor-

rections, including details of the methods of calculation, is nontrivial and will not be pre-

sented here. Results of comparison tests with Monte Carlo calculations indicate good agree-

ment between Monte Carlo results and results obtained via SAMMY, as reported in [11].

See Section 10.13 for a description of the Monte Carlo code used for such comparisons.

The capture yield Y (E)can be written as the sum of four components, each of which

is described separately below; that is,

Y (E) = Y0(E) + Y1(E) + Y2(E) + Yn(E). (3.1)
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3.4.1 Self-Shielding

Self-shielding is the reduction in the observed capture cross section due to interactions

of incident neutrons with other nuclei in front of the current position. The probability that

capture will occur at depth z (within dz) can be written as

n

D
e−nσtz/Dσcdz, (3.2)

where n is the sample thickness in atoms/barn andD is the sample thickness in the same units

as z. Subscripts t and c denote total and capture cross sections, respectively. Integrating

over z (from 0 to D) gives the self-shielded capture yield

Y0 =
σc
σt

(
1− e−nσt

)
. (3.3)

(See the end of this section for a discussion of the normalization options for capture yields.)

3.4.2 Single Scattering

The scattering correction is the increase in the observed capture cross section due to

capture of neutrons that have been scattered out of the original beam path. Calculation of the

scattering effect is more complicated than the self-shielding because it involves the product

of (1) the probability of reaching a position (x, y, z) inside the sample, (2) the probability

of scattering from that position into solid angle Ω within dΩ, (3) the probability of those

scattered nuclei reaching position q within dq along that direction, and (4) the probability

of being captured at that location. This product is then integrated over the position q, over

solid angle Ω, and over the sample volume, giving the single-scattering result. If the z axis

is defined by the beam line, this expression can be reduced to the form

Y1(E) =
1

S

∫
dx

∫
dy
n

D

∫
dz e−( n

D
σtz)

∫
dΩ

dσ

dΩ
σ
′

c

n

D

∫
dq e−( n

D
σ
′
tq), (3.4)

in which primes indicate the evaluation at the scattered energy, rather than at the incident

energy of the neutron. The scattered energy is given by

E
′
= E

[
cos(θ)

1 + r
+

√
1

(1 + 1/r)2
− sin2(θ)

(1 + r)2

]2

, (3.5)
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where r is the ratio of the mass of the target nuclide3 to the mass of the neutron. (See

Section II.C.2 and especially Eq. (II C2 b.3) for a derivation of this equation.)

Explicit evaluation of the expression in Eq. 3.4 requires detailed knowledge of the

geometry of the sample and its positioning relative to the neutron beam, as shown in the

sketch in Figure III D.1. In the case where the sample is a round disk, with a flat surface

perpendicular to the beam, the expression can be reduced to

Y1(E) = Y1∞f + Y1∞b + Y1cf + Y1cb, (3.6)

where the subscripts f and b refer to forward and backward scattering, respectively.

The subscript ∞ indicates that this term assumes the sample extends to infinity in the

dimensions perpendicular to the beam; subscript c indicates that this term is the correction

for finite size.

The “infinite” terms in Eq. 3.6 are one-dimensional integrals,

Y1∞f (E) =
1

2

∫ 1

0

dµ
dσ

dΩ

σ
′
c

σ
′
t

(
1− e−nσt

σt
+
e−nσt − e−nσ

′
t/µ

σt − σ
′
t/µ

)
, (3.7)

and

Y1∞b(E) =
1

2

∫ 0

−1

dµ
dσ

dΩ

σ
′
c

σ
′
t

(
1− e−nσt

σt
+

1− e−n(σt−σ
′
t/µ)

σt − σ
′
t/µ

)
, (3.8)

in which µ = cos(θ). The “finite” corrections involve four-dimensional integrals of the form

Y1cf (E) =
1

2

∫ 1

0

dµ
dσ

dΩ

σ
′
c

σ
′
t

Qf (µ, σt, σ
′

t) (3.9)

and

Y1cb(E) =
1

2

∫ 0

−1

dµ
dσ

dΩ

σ
′
c

σ
′
t

Qb(µ, σt, σ
′

t). (3.10)

Here the three-dimensional integral Qf is given by

Qf (µ, σt, σ
′

t) =

∫
dz e−nσ

′
tD/z

∫
d2S

(
e−nσt(D−z)/(Dµ) − e−nσtL/D

)
(3.11)

3There may, of course, be several different types of target nuclide, each with a different mass. While
the equations in this section assume only one nuclide, the implementation in the SAMMY code includes
summations over all nuclides in the sample.
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RsR
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z
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Exit path for 
scattered neutron 
if not captured 
inside sample

Figure 3.1: Geometry for the single-scattering correction to capture or fission
yield, for a neutron incident on the flat surface of a cylindrical
sample.

and Qb by

Qb(µ, σt, σ
′

t) =

∫
dz e−nσ

′
t(D−z)/z

∫
d2S

(
e−nσt(D−z)/(Dµ) − e−nσtL/D

)
, (3.12)

where L is the actual path length, within the sample, available for travel by the scattered

neutron; note that L is geometry dependent. The integration over d2S in this expression for

Qf,b is over the beam cross section; the integration over z is over the thickness of the sample.

SAMMY evaluates Q on a separate grid and interpolates to produce the required values for

Eqs. 3.9 and 3.10.

Values for Q are generated in advance (in segment SAMPAR) and stored in a file

named SAMMY.SSM. This file may be renamed and reused for subsequent runs, as long as

the geometry remains the same.

3.4.3 More than one scatter

Derivation of the effect of two or more scatters followed by capture is accomplished in

a similar manner to the derivation of the single-scattering effect. The exact expression for

k scatters involves (3k + 3) embedded integrations; it is therefore necessary to make severe
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approximations in order to derive an expression that can be calculated in a finite amount

of time. The approximation currently employed by SAMMY is borrowed from Moxon [12],

based on a derivation by Case et al. [13]; an independent derivation was developed in

preparation for implementation into the SAMMY code. The approximation assumes that

after two scatterings, neutrons are uniformly distributed both in direction of motion and in

position within the sample4. To quantify this approximation, we assume that the escape

probability for a neutron after k scatterings (i.e., at energy E(k) ) depends only on the

energy; specifically, the escape probability is given by the formula

pescape
(
E(k)

)
=

1

nσ
(k)
t

[
1

2
−
∫ ∞

1

µ−3e−nσ
(k)
t µdµ

]
1 + 2nσ

(k)
t

1 +
2nσ

(k)
t

1+Z/R

, (3.13)

where R is the radius of the sample. With this approximation, one can recursively define a

function y via

yj−1 =

∫
dΩj

dσ
(j−1)
t

dΩj

(
σ(j)
c + yj

) (
1− pescape

(
E(j)

))
, (3.14)

in which the superscript denotes the energy at which the cross section is to be calculated.

The initial estimate for a neutron scattered k times is

yk−1 ≈ 2π

∫
dµk

dσ
(k−1)
t

dΩk

σ(k)
c

(
1− pescape

(
E(k)

))
. (3.15)

This function y can then be used to estimate the capture yield for two or more scatterings:

Y2(E) =
1

S

∫
dx

∫
dy
n

E

∫
dz e−

n
D
σtz

∫
dΩ

dσt
dΩ

yl
n

D

∫
dq e−

n
D
σ
′
tq . (3.16)

In this form the multiple-scattering capture yield has the same mathematical properties

as the single- scattering capture yield of Eq. 3.4. Similar computational techniques can

therefore be used to evaluate both quantities.

3.4.4 Alternative for more than one scatter

For very thick samples and/or very strong resonances, the crude approximation de-

scribed above for double-plus scattering may be woefully inadequate. For those situations,

4This approximation has the effect of decoupling 2k of the embedded integrals, so that they can be
performed separately from the others.



33

tabulated values can be use for Y2. The tabulated values are generated with a series of three

runs, first SAMMY with the command

PREPARE INPUT FOR MOnte carlo simulation, or simply

MONTE CARLO

Next, the SAMSMC code is run to perform the Monte Carlo calculation. Then SAMGY2

reads the output from SAMSMC, smooths the Y2 curve, and creates a file named SAMY2.DAT

that contains the tabulated Y2 values for use in the next SAMMY run. For that run, the

command

Y2 VALUES ARE TABULAted

is inserted into the INPut file, and the name of the file must be included in the input stream.

Only the values of Y2 are given in this manner; derivatives are still generated as though

the original form were used. Caution must be exercised when using this option, especially

when varying resonance parameters, since (1) the tabulated values of Y2 do not change unless

the entire process is repeated and (2) derivatives are inaccurate.

Simulation sim009 makes use of this option.

3.4.5 Neutron sensitivity

In capture experiments, not only gamma rays but also scattered neutrons reach the

detector. The detector is not always able to distinguish between the two; hence, it may be

necessary to make corrections for the neutron sensitivity of the detector. These corrections

are temporarily unavailable in SAMMY, pending further study.

3.4.6 Normalization and input options

Capture yield data may be normalized in a variety of ways; therefore, SAMMY allows

the user to choose which normalization is to be taken. The normalization generally referred

to as capture “yield” is the one shown in the equations in this section; this choice has the

property that values are in the range from 0 to 1. Another commonly used normalization

requires dividing by thickness n; in this case, the value approaches the capture cross section

in the limit of zero thickness. Finally, the data may be normalized as (1− e−nσt)σt, that

is, by multiplying the yield by the total cross section. To use these options, the appropriate

phrase must be included in the alphanumeric section of the INPut file:

NORMALIZE AS YIELD Rather than cross section
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NORMALIZE AS CROSS Section rather than yield

NORMALIZE AS (1-E)SIgma

No default is assumed for normalization; instead, SAMMY requires that one of the above

options be specified by the user.

The default mode in SAMMY is to not include self-shielding and multiple-scattering

corrections; therefore, to invoke these corrections, users will need to include one or more of

the following phrases in their INPut file.

For self-shielding but no multiple-scattering correction:

USE SELF SHIELDING Only, no scattering, or

SELF SHIELD

For self-shielding, single-scattering (with edge-effects), and no double-scattering correction:

USE SINGLE SCATTERINg plus self shielding, or SINGLE

For self-shielding, single-scattering (infinite slab approximation), and no double-scattering

corrections, two commands are required:

SINGLE and INFINITE SLAB

For self-shielding, single-scattering (with edge-effects correction), and multiple-scattering

corrections:

INCLUDE DOUBLE SCATTering plus single scattering, or MULTIPLE SCATTERING or

DOUBLE

For self-shielding, single-scattering (infinite-slab approximation), and multiple-scattering

corrections, two commands are needed:

DOUBLE and INFINITE SLAB

When finite-size corrections (for single scattering) are wanted, additional input is

needed to express the geometric properties of the beam and of the sample. These include

the dimensions of the sample, the cross-sectional dimensions of the beam if smaller than

the sample, and integers that determine the accuracy to which the functions Qf,b will be

calculated. Details are given in Table VI A.1, card set 11.

Examples using multiple-scattering corrections can be found in test cases tr039, tr052,

tr064, tr099, and others.

3.5 Other Experimental Corrections
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Fitting Procedure

4.1 Derivation Of Bayes’ Equations

4.2 Implementation Of Bayes’ Equations

4.3 Constructing The Parameter Set

4.4 Treatment Of Data Covariance Matrices

4.5 Miscellaneous Topics Related To Covariances
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Miscellaneous

5.1 Reconstructing Point-wise Cross Sections

5.2 Integral Quantities

5.3 Averaging The Cross Sections

5.4 Stellar-averaged Capture Cross Sections

5.5 Pseudo Cross Sections For Testing

5.6 Summed Strength Function
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CHAPTER 6

Input

6.1 The INPut File

6.2 The PARameter File

6.3 The DATa and Data CoVariance Files

6.4 Integral Data File

6.5 Interactive Input To Sammy

6.6 Other Input Files For Sammy
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CHAPTER 7

Output

7.1 Line-printer Output

7.2 Output To Be Used As Input

7.3 Plot Output

7.4 Complete Set Of Partial Derivatives For Resonance Parame-

ters

7.5 Compact Format For Parameter Covariance Information

7.6 Publication Aids

7.7 Other Output Files
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CHAPTER 8

Unresolved Resonance Region

As a first step towards expansion into the unresolved resonance region, Fritz Fröhner’s code

FITACS [14] has been obtained and inserted into SAMMY. FITACS uses Hauser-Feshbach

theory with width fluctuations. The adjustable parameters are neutron strength functions,

distant-level parameters, average radiation widths (at E = 0), and average fission widths

(at E = 0). The energy dependence of the radiation widths is specified via the giant dipole

model, of the fission widths via Hill-Wheeler fission barrier transmission coefficients, and

of the mean level spacing for s-waves via the Gilbert-Cameron composite formula. Mean

spacings for l > 0 are given via the Bethe formula. Moldauer’s prescription is used for

partial cross sections. Details of the theory are presented in Section 8.1.

Initially (for release M2 of the code), FITACS was incorporated into SAMMY (as

segments SAMFFF and SAMACS) in a limited fashion only. Internal changes were made, to

be consistent with SAMMY notation and to use dynamic dimensioning of arrays. The M + W

version of Bayes’ method has replaced the fitting procedure used in FITACS. Calculation of

penetrabilities was extended to all l values (FITACS had used only s, p, d, and f-waves). The

output included files from which plots can be made. Results were reported in SAMMY.PAR

in the same format as is used in the input file (as well as in more human-legible fashion in

SAMMY.LPT).

Subsequently, additional modifications, improvements, and new features have been

made in the SAMMY URR treatment:

• Partial derivatives with respect to varied parameters are calculated exactly rather than

approximately.

• A more efficient integration routine has been written for the Dresner integral, Eq. (VIII

A.5) ??.

• It is possible to include (and vary, if desired) a normalization for each data set.

• Elastic cross section data may be fitted.

39
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• There is no limit on the number or type of experimental data sets. Data may be kept

in separate files rather than appended to the parameter file.

• The output has been modified to conform more closely to SAMMY conventions.

• An “annotated” PARameter file, including key-word-based input, is the default input

option, and the only option available for output. (Files in the original format can still

be used for input, but options are limited with that format.)

• Different sets of average resonance parameters can be used in different energy ranges.

• Output can be produced in ENDF/B format, for both File 2 (resonance parameters)

and File 32 (covariance matrices). ENDF files cannot be used for input, because

the ENDF format requires a more limited theoretical description than does FITAC-

S/SAMMY.

• The fitting procedure can be performed sequentially, in similar fashion as in the resolved

resonance region. That is, output PARameter and COVariance files from the fit to one

data set may be used as input to another run which fits another data set. [Initially,

only simultaneous fitting of all data sets was permitted.]

• “No-Bayes” runs can be made: cross sections will be calculated from the resonance

parameters, but no fitting will be done.

Additions being considered for future revisions of the code include the following:

• Multiple nuclides in the sample

• An option to calculate multigroup cross sections and covariances

• An option to include integral quantities in the fit

• Extensions to the theory

• Additional ENDF capability (requiring ENDF format changes)

• A link between the resolved resonance parameters and those for the unresolved region,

in order to provide more consistent evaluated cross sections
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• Methodologies for retroactive generation of covariance matrices, similar to that used

in the resolved resonance region

Input for analysis of data in the unresolved resonance region is described in Section

VIII.B??. Output is described in Section VIII.C??. The relationship between ENDF pa-

rameters and SAMMY/URR parameters is discussed in Section VIII.D??. For an example

of the use of SAMMY/URR, see [15] and test cases 73, 88, 127, 133, 134, 142, and 145.

8.1 Equations For Unresolved Resonance Region

The formulae for cross sections in the unresolved resonance region, as implemented

in SAMMY, are presented in this section. The implementation is a modified form of that

provided by Fritz Fröhner in his FITACS code [14]. (Please note that any mistakes in these

formulae are attributable only to the author of this manual, not to Fröhner. The author is

indebted to Herve Derrien for significant contributions both to the development of the code

and to the composition of this section of the manual.)

Elastic cross section

The elastic cross section is given as the difference between the total cross section and

the sum of all the non-elastic partial cross sections. The total cross section is given by Eqs.

(VIII A.1) through (VIII A.4), and the non-elastic partial cross sections by Eqs. (VIII A.5)

through (VIII A.20).

Total cross section

The average total cross section, for a given spin and parity and incident channel c, may

be written in the form

〈σc〉 =
2πgc
k2
c

(1− Re 〈Scc〉) , (8.1)

where, as usual, gc is the spin factor and kc is the center-of-mass momentum. The average

scattering matrix 〈Scc〉 is given by

〈Scc〉 = e−2iφc
1− 〈Rcc〉L0∗

c

1− 〈Rcc〉L0
c

, (8.2)

and the average R-matrix can be written in the form
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〈Rcc〉 = R∞c + iπsc , (8.3)

with parameters defined as follows:

R∞c = distant-level parameter (in input quantity);

φc = hard-sphere phase shift, generated using matching radius a (an input quantity);

L0
c = (Sc−Bc)+iPc (see Section 2.1) with boundary condition Bc chosen such that Sc−Bc =

0;

sc = pole strength.

The pole strength is defined in terms of input quantities S̃c (the strength function, for which

we have introduced the tilde to avoid confusion with the shift factor used in the definition

of L0
c) and ac (the R-matrix matching radius) as

sc = S̃c
√
E/2ρ (8.4)

where ρ is the center-of-mass momentum kc multiplied by the channel radius ac. Please

note that many authors choose to report S̃c in units of 10−4![16]

Non-elastic partial cross sections

The non-elastic partial cross sections may be written in terms of transmission coeffi-

cients Tx as

〈σab〉 =
πga
k2
a

TaTb
T

∫ ∞
0

dt e−Tγ/T Π

(
1 +

2

νc

Tc
T
t

)−νc/2−δac−δbc
, (8.5)

where the quantities to the left of the integral sign are the Hauser-Feshbach expression, and

the integrand is the Moldauer prescription [17] for the width fluctuation correction factor.

(A derivation of this expression, including the assumptions under which it is derived, is

provided in Section ??.) Here a represents the incident channel and b the exit channel; νc

and Tc represent the number of degrees of freedom (multiplicity) and transmission coefficient,

respectively, for channel c. Subscript γ refers to photon channels. T is defined as the sum

over all channels:
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T =
∑
c

Tc . (8.6)

The transmission coefficient for neutron channels is given by

Tc = 1− |〈Scc〉|2 =
4πPcsc

|1− 〈Rcc〉Lc|2
, (8.7)

where c is an incident channel, P and L are as defined in Section 2.1, and the other quantities

are given above. For photon and fission channels, the transmission coefficients for spin J are

Tγ = 2π〈Γγ〉/DJ and Tf = 2π〈Γf〉/DJ , (8.8)

in which DJ is the mean level spacing for levels with this spin.

The J-dependence of the mean level spacing is set in SAMMY/FITACS via the Bethe

formula (e.g., [3]):

(DJ(E))−1 = (d(E))−1

{
e
−J2

2(σ(E))2 − e
−(J+1)2

2(σ(E))2

}
, (8.9)

where d(E) is independent of J , and σ is the spin cutoff parameter. The spin cutoff parameter

is related to the level density parameter a and the energy E by the formula

σ2 = (0.14592)(A+ 1)2/3
√
a(E +BE − PE) , (8.10)

in which BE represents the neutron binding energy (an input parameter) and PE the pairing

energy (also an input parameter). The value for a is determined from the input quantity D,

which is the mean level spacing of the l = 0 resonances at E = 0; note that D includes both

J = I − i and J = I + i, where I is the spin of the target nucleus and i = 1/2 is the spin of

the neutron. An expression for the inverse of D can be found from Eq. 8.9 to be

D−1 =
∑
J

(DJ(E = 0))−1

= (d(0))−1

{
e
−(I− 1

2 )2

2σ2 − e
−(I+3

2 )2

2σ2

}
;

(8.11)
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this expression is used to determine the value of σ2 and hence the value of the level density

parameter a.

The energy dependence of the mean level spacing is calculated with the Gilbert-

Cameron composite formula [18]. Let Ex represent the excitation energy of the compound

nucleus; this energy is equal to the sum of the incident neutron kinetic energy E and the

neutron binding energy BE (which is an input quantity). That is to say,

Ex = E +BE . (8.12)

The energy dependence for low excitation energies Ex < E0 , where E0 is a matching

energy, is given by the constant-temperature formula

D−1 ∼ C3

exp
[
C2

√
E0 − PE

]
(E0 − PE)3/2

exp

[
Ex − E0

2

(
C2√

E0 − PE
− 3

E0 − PE

)]
. (8.13)

In the code, the matching energy E0 is set at

E0 =

[
5

2
+

150

(N + Z + 1)

]
(8.14)

in unit of MeV, with N + Z being the mass number for the target nucleus. Values of the

constants C2 and C3 are given by

C2 =
√

4a and C3 =
1

12
√

2aq
, (8.15)

with q defined as

q = 0.14592(N + Z + 1)2/3 , (8.16)

where N + Z is again the mass number for the target nucleus and a is the level density

parameter.

At higher energies Ex > E0, the energy dependence of the mean level spacing is calcu-

lated via the Fermi-Gas formula

D−1 ∝ C3

exp
[
C2

√
Ex − PE

]
(Ex − PE)3/2

. (8.17)
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Note that the two formulae agree at the matching energy (i.e., at Ex = E0).

Radiation widths 〈Γγ〉 are assumed to depend only on parity π and on E. The energy

dependence is calculated with the giant dipole resonance model. Fission widths 〈Γf〉 may

vary with spin as well as parity and incident neutron energy E. Energy dependence is

calculated with the Hill-Wheeler fission barrier transmission coefficients [19]. For a given

Jπ, the energy dependence of the fission widths is taken to be

〈Γf (E)〉 = 〈Γf (0)〉 1 + exp [EHW/WHW ]

1 + exp [−(E − EHW )/WHW ]
, (8.18)

where the Hill-Wheeler threshold energy EHW and the Hill-Wheeler threshold width WHW

are input quantities. This equation may be written in more “standard” notation as

〈Γf (E)〉 = 〈Γf (0)〉 1 + exp [2π(Ef −BE)/~ω]

1 + exp [−2π(Ex − (Ef −BE))/~ω]
, (8.19)

where, as above, Ex is the excitation energy of the neutron and BE is the binding energy.

Also, Ef is the fission barrier height, and ~ω the width of the fission barrier.

Finally, a few words regarding the derivation of Eq. 8.5 are warranted. That derivation

is based on several assumptions:

1. The Moldauer prescription [17] for width fluctuations is used. That is, the width

fluctuation correction factor is introduced to compensate for the non-unity of the ratio

〈
TaTb
T

〉
/
〈T 〉
〈Ta〉〈Tb〉

. (8.20)

2. Partial widths obey a chi-squared distribution with νc degrees of freedom (where the

value of νc depends on the number of channels of this de-excitation); averages are

therefore weighted with this distribution. In the Moldauer prescription for width fluc-

tuations, simple channels have 1 < νc < 1.78; for lumped channels, νc is a function of

Tc.

3. Channels with the same transmission coefficients may be combined by introducing

multiplicities.

The integral of Eq. 8.5 is described by Fröhner as the “width fluctuation correction

or Dresner factor.” One (relatively modest) difference between SAMMY and the original
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FITACS coding is the algorithm for calculating the Dresner integral; in SAMMY, the coding

has been refined to increase both speed and accuracy of calculation by using a non-uniform

grid designed specifically for this task. (Note: Prior to release 7 of the code, the Moldauer

correction was inadvertently disabled in code. This has now been fixed.)

8.1.1 Derivation of Non-Elastic Average Cross Section

8.2 Input For Analysis Of Data In Unresolved Resonance Region

Two or more input files are required for analysis in the unresolved resonance region

(URR). The first is comparable to the usual SAMMY INPut file, which may contain as few

as three lines: Card set 1 of Table VIA.1?? (the title line), card set 2 (nuclide name, atomic

weight, and energy range), and (at least) one line for card set 3 (alphanumeric information).

Options for alphanumeric commands in the URR are

UNRESOLVED RESONANCE region

EXPERIMENTAL DATA ARe in separate files

ANNOTATED PARAMETER file for urr

NO ANNOTATED PARAMETer file for urr input

ENDF/B-VI FILE 2 IS wanted

PUT COVARIANCE MATRIx into endf file 32

COVARIANCE MATRIX FRom old run is used

GENERATE FILE 3 POINt-wise cross sections

DEBUG

DO NOT SOLVE BAYES Equations

USE ENERGY LIMITS AS given in the input file

PRINT PARTIAL DERIVAtives

INCLUDE MIN \& MAX ENergies when creating endf file

The first of these is required, as the SAMMY default is the resolved resonance region (RRR).

The other alphanumeric commands are optional; their effects are described below.

The second file, the URR PARameter file, contains the unresolved resonance param-

eters. In the URR, there are several differences from the usual SAMMY conventions: To

inform the code that a parameter is to be varied, FITACS assumes that, if the uncertainty

is given as zero for a given parameter, then that parameter is not varied. (Hence there is no
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means of providing a default value for uncertainty.) This procedure is in contrast with the

usual SAMMY procedure of assigning a value (generally 1) to a flag for each varied parame-

ter; in the future, the formats for input to the FITACS portion of SAMMY will perhaps be

modified to conform to SAMMY standards.

SAMMY permits several types of modifications to the original FITACS-style PARam-

eter file: (1) Experimental data may be kept in separate files. (2) Normalizations can be

included (and varied) for each data set. (3) ENDF File 2 and File 32 can be produced.

(4) ENDF File 3 can be produced. (5) The PARameter file itself may be “annotated” in

order to be more legible to humans. (6) Units may be specified for various quantities. (7)

Different parameters may be specified in different energy regions. (8) Direct inelastic and/or

direct capture components may be added. (9) Sequential analyses may be performed. (10)

The analysis may be restricted to an energy range smaller than that for which the data are

defined. Options (6) through (9) are available only with the annotated PARameter file.

Each of the 10 options is described separately below; details are given in Tables 8.1

and 8.2. Table ?? provides a guide for the various types of energy ranges encountered during

a URR analysis.

1. When the INPut file contains the phrase

EXPERIMENTAL DATA ARe in separate files,

experimental data are kept in separate file(s) rather than included as a portion of

the URR PARameter file. Files names for individual data sets are given on the lines

immediately following the INPut and PARameter file names in the interactive input

stream. See, for example, test case tr073 run y.

2. Normalizations can be included and varied (i.e., fitted) for each data set. That is, the

theoretical calculation of the cross section is modified by

Theory = norm× σcalculated, (8.21)

where norm is given by the formula

norm = a+ bEc (8.22)
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and a, b, and c are input parameters, specified in the PARameter file. Note that one

set of values for a, b, and c is given for each data set. Note also that there is no

possibility to specify b and c unless

EXPERIMENTAL DATA ARe in separate files.

See tr073 for examples.

3. When output in ENDF File 2 format is wanted, the phrase

ENDF/B-VI FILE 2 IS wanted

must be present in the INPut file. Also include the command

DEBUG

if you wish to create an annotated file SAMMY.NDX. This annotated file contains

comments that define which parameters’ values are given; except for the annotations,

this file is identical to the SAMMY.NDF.

One additional SAMMY input file must be provided; the name for this file is given in

the input stream after the name of the PARameter file (or after the COVariance file if

it exists) and before the name(s) of any data files. This NDF file provides information

regarding the specifics of the ENDF file to be created. The NDF file is in key word

format, and contains only the following parameters:

Z = charge

A = atomic number

Mat = ENDF material number

NUmber of energy points = number

Energy number 1 = value of energy-point

Only the one or two characters in capitals are required; others are optional. The value

is given following the equal sign. One or the other of NU...= and E...= must be

present. (If both are present, NU...= will be ignored.)

The number of energy points specifies at how many equally spaced points per energy

region the parameter values will be printed into the ENDF file. Values may also be

printed at Emin and Emax, the limits of the analysis, if the phrase
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INCLUDE MIN & MAX ENergies in endf file

is given in the INPut file. For example, for 3 points per region and 5 regions, a total

of 3× 5 + 2 = 17 sets of values would be given in the ENDF file.

If, instead of having a certain number of points for each energy range, specific values

of energy are wanted in the ENDF file, then the alternative E...= should be specified.

Subsequent energies are given one per line, with or without the key word E...= prior

to the value. These energy values should be the last entries in this file.

See test cases tr073 and tr127 for examples. Runs a, b, e, and f of tr127 use NU...=

key word, while run g uses the E...= key word.

To also obtain the associated covariance file (ENDF File 32), include the phrase

PUT COVARIANCE MATRix into endf file 32

in the INPut file. See test case tr128 runs j and k for examples.

4. ENDF File 3 output (point-wise cross sections, in file SAMMY.FL3) can be generated

when the command

GENERATE FILE 3 POINt-wise cross sections

is included in the INPut file. The energy grid for this cross section is as defined by

the input data sets. If the DEBUG command is also used, an annotated ENDF File 3

(SAMMY.FLX) output file is also produced. See test case tr073, runs n through t, for

examples.

5. Two modes, annotated and unannotated, are available for the URR PARameter file:

The unannotated mode is essentially equivalent to Fröhner’s original FITACS file

(which includes both parameters and data). Formats for this file are described in

Table 8.1; all numbers, both integer and real, are specified with F10 formats. To use

this mode, the INPut file must contain the command

NO ANNOTATED PARAMETer file for urr input

Test case tr073 has examples of this input mode.

The annotated PARameter file is described in detail in Table 8.2; this is the default

mode for SAMMY. With this option, some parameters are entered by key word; other
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parameter lists have headings to define which parameters are in the list. See, for

example, test case tr073 run g, or test cases tr128.

6. Units may be specified for various energy-related quantities by including the phrase

“in eV”, “in keV”, or “in MeV” in the appropriate location in the PARameter file.

(Note that, as always with SAMMY input, capitalization is irrelevant.) If units are

not specified, defaults are as given in Table 8.2 (i.e., MeV for binding energy and

pairing energy, eV for all others). The quantities for which units may be specified are

as follows:

excitation energies for inelastic states

binding energy

pairing energy

energy maxima for the different ranges (see (7) below)

energies for direct inelastic contribution (see (8) below)

See in particular tr128 run l (letter “l” not number “one”) for examples.

7. Different parameter values may be used in different energy ranges; see Table 8.2, card

sets 4-7, for input details. See test case tr128 for examples.

8. A direct inelastic component may be added to the inelastic and total cross sections,

and/or a direct capture component added to the capture and total cross sections. These

components are specified numerically on grids chosen by the user; SAMMY interpolates

linearly between grid points. See card set 11 of Table 8.2 for details. Examples are in

tr088 and tr134.

9. Although many data sets can be analyzed simultaneously in URR, SAMMY also per-

mits sequential runs similar to those used in the RRR. For details, see the description

of the SAMMY.COV file in the next section, §8.3. For examples, see test case tr073

runs a and g.

10. The default choice for energy range in the URR is to include all energies for which

data are available. However, the analysis may be restricted to a smaller energy range

by including the command
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USE ENERGY LIMITS AS given in the input file

in the INPut file. See test case tr073 runs j, k, l for examples.

Table 8.1: Formats for original PARameter file for treatment of the unresolved
resonance region

Card
Set

Line
No.

Description

1 1-4 First four lines are alphanumeric title

2 1 Number of iterations, fitting tolerance (essentially delta chi squared).
Note that integers are to be specified as real numbers. All formats are
F10.

2 Mass in amu, radius in Fermi (or use default), neutron binding energy in
MeV, pairing energy PE in MeV. Again, formats are F10; note that the
energy units are MeV, as opposed to the usual SAMMY standard of eV.

3 1,2,... Center-of-mass excitation energy (in eV), spin, and parity for the nth
target level (beginning with ground state). Repeat as many times as
needed.

Last (Blank)

4 1 Strength function S̃c, uncertainty, distant-level parameter R∞c , uncer-
tainty, radiation width 〈Γγ〉 in eV, uncertainty, mean level spacing D in
eV for l = 0
Note: Some authors choose to list strength function in units of 10−4[16]

2 Strength function, uncertainty, distant-level parameter, uncertainty, ra-
diation width in eV, uncertainty, for l = 1

3 Strength function, uncertainty, distant-level parameter, uncertainty, ra-
diation width in eV, uncertainty, for l = 2

4,5,... As above, for higher l values as needed
Last (Blank)

5 1 For the lowest J value for l = 0,
- Average fission width 〈Γf〉 (eV)
- Degree of freedom νf for fission width distribution
- Hill-Wheeler threshold energy EHW
- Hill-Wheeler threshold width WHW

- Uncertainty on the average fission width
2,3,... Repeat line 1 for each possible value of J for l = 0.
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4,5,... Repeat lines 1-3 for each possible value of J for l = 1, 2, ...

For a given spin J and parity (even or odd l), only one set of
values is actually used for 〈Γf〉 and the other parameters. Nevertheless,
all J and l must be included in this list. Only the values associated with
the lowest l value will be used for the calculations; the other values will
be ignored.

For example, the ground state of 235U is 7/2−.
- For l = 0, Jπ = 3−, 4−.
- For l = 1, Jπ = 2+, 3+, 4+, 5+.
- For l = 2, Jπ = 1−, 2−, 3−, 4−, 5−, 6−.
- The 3− and 4− values used in the calculations will be those given for
l = 0. The values given for Jπ = 3− and 4− with l = 2 will be ignored.

Last (Blank)

6 1 Type of cross-section data (TOTAl, CAPTure, FISSion, or INELastic)
2 Uncertainties are RELAtive or ABSOlute
3 Energy, cross section, and uncertainty for first data point. Normalization

and uncertainty (a and ∆a) for this data set.
4, . . . Energy, cross section, uncertainty. (Note: if RELAtive then these need

to be specified only for first data point; the others are assumed to be the
same.)

Last (Blank)

6x All Repeat card set 6 as many times as needed, in any order

7 1 The single word “NORMALIZATION”. (Card set 7 is present only if the com-
mand “EXPERIMENTAL DATA ARe in separate files” appears in card
set 3 of the INPut file.)

2 Type of cross section, normalization parameters a,∆a, b,∆b, c,∆c, where
the normalization for this data set is given by norm = a+ bEc

3,
etc.

Repeat Line 2 once for each data set. Normalizations must appear in the
same order in which the data sets appear. SAMMY will check to be sure
the data types are consistent.
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Table 8.2: Formats for annotated PARameter file for treatment of the
unresolved resonance region

Card
Set

Line
No.

Description

1 1,2,... Alphanumeric title, as many lines as desired. Printed but otherwise
ignored.

Last ----- (First four characters must be hyphens [minus signs]; this ends
the title. Other characters on this line are printed but ignored.)

2 1,2,... Key word = Value. Possible keywords here are
Key word Meaning Default
ITErations number of iterations 3
TOLerance fitting tolerance 0.005
RADius radius in F 1.23 AW1/3+0.8
AW (atomic weight) mass in amu (no default)

Only the letters in capitals are required; the values may be in any format.
Last (Blank)

3 0 “----” An optional line of minus signs may be inserted; this line will be
ignored by the code.

1 “ELAStic and inelastic states”.
Only the first four characters are necessary, others are optional.
Units of excitation energy are eV unless specified anywhere on this line
(after the first four characters) as “in eV”, “in keV”, or “in MeV”.

2,3,... Center-of-mass excitation energy, spin, and parity for the nth target level
(beginning with ground state). Format must be 3F10 (ten characters per
number, three numbers on a line, decimal points must be included).

Last (blank)

4 0 “----” Optional.
1,2,... Key word = Value. Possible keywords here are

Key word Meaning Default
BINding energy neutron binding energy (MeV) (none)
PAIring energy pairing energy (MeV) (none)

Only the letters in capitals are required; the values may be in any format.

To override the default units, insert a phrase “in eV”, “in keV”,
or “in MeV” after the key word and before the equal sign.
Examples: Binding Energy (in eV) = 6536000.
Pairing energy in eV = 1610000.

Last (blank)

5 0 “----” Optional.
1 “STReng del s distnt del d gamma width del g

bethed”
(Only first three characters are necessary. This line indicates that
strength functions, distant-level parameters, etc., are coming next.)
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2 Strength function S̃c, uncertainty, distant-level parameter R∞c , uncer-
tainty, radiation width 〈Γγ〉 in eV, uncertainty, mean level spacing D in
eV for l = 0. F10 formats.
Note: Some authors choose to list strength function in units of 10−4[16]

3 Strength function, uncertainty, distant-level parameter, uncertainty, ra-
diation width in eV, uncertainty, for l = 1

4 Strength function, uncertainty, distant-level parameter, uncertainty, ra-
diation width in eV, uncertainty, for l = 2

5,6,... As above, for higher l values as needed
Last (blank)

6 0 “----” Optional.
1 “FISsion width fnu ethr wthr del fission width”

(Only first three characters are necessary. This line indicates that fission
parameters are coming next.)

2 For the lowest J value for l = 0,
Average fission width 〈Γf〉 (eV)
Degree of freedom νf for fission width distribution
Hill-Wheeler threshold energy EHW
Hill-Wheeler threshold width WHW

Uncertainty on the average fission width
J, l

The first line contains the lowest J value associated with l = 0.
Formats are F10 for everything except the l-value, which is I5 (i.e., the
right-most column is # 65). Inclusion of J and l in the input file is
optional but recommended.

3,4,... Repeat line 2 for each possible value of J for l = 0
5,6,... Repeat lines 2-4 for each possible value of J for l = 1, 2, ... For a given

spin J and parity (even or odd l), only one set of values is actually used
for 〈Γf〉 and the other parameters. Nevertheless, all J and l must be
included in this list. Only the values associated with the lowest l value
will be used for the calculations; the other values will be ignored.

For example, the ground state of 235U is 7/2−.
For l = 0, Jπ = 3−, 4−.
For l = 1, Jπ = 2+, 3+, 4+, 5+.
For l = 2, Jπ = 1−, 2−, 3−, 4−, 5−, 6−.
The 3− and 4− values used in the calculations will be those given for
l = 0.
The values given for Jπ = 3− and 4− with l = 2 will be ignored.

Last (blank)

7 0 “----” optional line
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1 Key word = Value. Only one possible keyword is permitted here:
Key word Meaning Default
ENErgy maximum maximum energy in this region (eV) (none)

Only the letters in capitals are required; the values may be in any format.

To override the default units, insert a phrase “in eV”, “in keV”,
or “in MeV” after the key word and before the equal sign.
Examples: Energy maximum in MeV = 0.15.

4-7 all Repeat card sets 4-7, once for each energy region, as many times as
needed. Alternatively, repeat only line 1 of card set 7, in which case
the starting parameter values are assumed to be identical to those in the
previous energy region.

8 In either case, end with a line saying “END of resonance parameter

description”.
9 0 “----” optional line

1 Type of cross-section data (TOTAl, CAPTure, FISSion, or INELastic).

Card set 9 will be omitted from this file if the command
“EXPERIMENTAL DATA ARe in separate files” appears in the INPut
file.

2 Uncertainties are RELAtive or ABSOlute. (Only “RELA” or “ABSO” is
needed.)

3 Energy (eV), cross section (barn), uncertainty (barn if
ABSOlute,dimensionless if RELAtive) for first data point.
Norm and unc (a and ∆a) for this data set.
Format is 3F10.

4,5,... Energy, cross section, uncertainty
(Note: if RELAtive, then need specify only for first data point, rest are
assumed to be the same.)

Last (blank)

9x all Repeat card set 9 as many times as needed, in any order

10 0 “----” optional line
1 “NORMalization”. [Card set 10 may be present only if INPut file specifies

“experimental data are in separate files”.]
2 Type of cross section, normalization parameters a,∆a, b,∆b, c,∆c, where

the normalization for this data set is given by norm = a+ bEc

3,4,... Repeat once for each data set. Note that normalizations must appear in
the same order in which the data sets appear. SAMMY will check to be
sure the data types are consistent.

Last (blank)

10a 0 “----” optional line
1 “EARLier normalization”. [Card set 10a, an alternative to card set 10,

is to be used only if an earlier SAMMY run has produced a covariance
file.]
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2 N1, N2, ... Nlast, in [40I2] format. Here N1 is the ordering of the first
data set for this run, as it appeared in previous SAMMY runs; see test
case tr145 for illustrative examples.

Last (blank)

11 0 “----” optional line
1 “DIRECT Inelastic contribution”, or “DIRECT Capture

contribution”. Note that eight characters (rather than the usual
four) are required here.

2 Energy = value, Sigma = value. Both key words (and both values) must
be on the same line.

Key word Meaning
Energy Energy in (eV)
Sigma Direct inelastic cross section (b) at that energy

To use different units, insert a phrase “in eV”, “in keV”, or “in
MeV” after the key word “Energy”.

3,4,... Repeat line 2 as many times as required.
Note that card set 11 may be omitted if the contribution of the direct
inelastic cross section is negligible or unknown.

1
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8.3 Output From Analysis In Unresolved Resonance Region

As with the resolved resonance region, each SAMMY/URR run may produce several

output files:

1. The SAMMY.LPT file contains details of the calculations.

2. For runs which involve the solution of Bayes’ equations and hence the generation of

updated parameter values (a “Bayes run” as opposed to a “no-Bayes run” which simply

calculates cross sections), an output file SAMMY.PAR is provided in the annotated

form described in Table 8.2. (This file, of course, is quite different from the file by the

same name produced in a resolved resonance region run.)

3. For Bayes runs, a COVariance file SAMMY.COV is produced, which contains (among

other things) the final parameter covariance matrix; see below for more detail.

4. Files SAMMY.NDF and SAMMY.N32 contain the URR portion of ENDF File 2 and

32, respectively; these files are produced when the appropriate command is in the

INPut file.

5. Files SAMMY.NDX and SAMMY.N3X contain the same information as in SAMMY.NDF

and SAMMY.N32 respectively, but also include comment lines defining the parame-

ters whose values are given. Only the uncertainty values are given in SAMMY.N3X;

correlations are printed only in SAMMY.N32.

The binary COVariance file SAMMY.COV can be used as input to a subsequent SAMMY run

that uses the same R-matrix parameters but different data sets and different normalizations,

in a similar fashion to sequential runs in the RRR. There are slight differences, however,

in the usage of this COVariance file; no auxiliary program comparable to SAMAMR is

required here, as there is only one type of data-reduction parameter (the normalizations).

The user must simply rename and modify the SAMMY.PAR file to contain the appropriate

normalization parameters for the data sets about to be analyzed. The output PARameter

file will contain card set 10a of Table 8.2; PARameter files to be used as input will use either

card set 10 (for new data sets for which the normalizations have not yet been defined) or

card set 10a (to re-use normalizations already defined for the current data sets). See test

case tr145 for examples.
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To use an output SAMMY.PAR file as input to a new run without the accompanying

COV file, it is necessary to delete the first line of the file; this line reads as follows:

COVARIANCE MATRIX FRom old run is used

When the COV file is to be used (for sequential runs), keep this line in the PARameter file.

Test cases tr073, tr088, tr127, tr128, tr133, tr145, and others provide sample input and

output for URR calculations.
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[4] F. Fröhner, “Evaluation and analysis of nuclear resonance data,” OECD NEA, Paris,

France, Tech. Rep. JEFF Report 18, 2000.

[5] J. E. Lynn, “The theory of neutron resonance reactions,” 1968.
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