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Il. SCATTERING THEORY

Details of scattering theory have been well understood since the middle of the previous
century, when they were summarized in a review article by Lane and Thomas [AL58]. A wealth
of additional reference material is available to the student of scattering theory; only a few are
listed here. The text by Foderaro [AF71] provides a more elementary introduction to the subject.
One publication by Frohner [FF80] is based on lectures presented at the International Centre for
Theoretical Physics (ICTP) Winter Courses on Nuclear Physics and Reactors, 1978; this is a
comprehensive and useful guide to applied neutron resonance theory. It includes a variety of
topics, including preparation of data, various approximations to scattering theory, Doppler
broadening, experimental complications, data-fitting procedures, and statistical tests. Another
Frohner paper [FF00] is somewhat more theoretical, and covers many aspects of data fitting in
the resonance region.

The particular aspect of scattering theory with which we are concerned is the R-matrix
formalism. A summary of the underlying principles is given here.

R-matrix theory is a mathematically rigorous phenomenological description of what is
actually seen in an experiment (i.e., the measured cross section). The theory is not a model of
neutron-nucleus interaction, in the sense that it makes no assumptions about the underlying
physics of the interaction. Instead it parameterizes the measurement in terms of quantities such
as the interaction radii and boundary conditions, resonance energies and widths, and quantum
numbers; values for these parameters may be determined by fitting theoretical calculations to
observed data. The theory is mathematically correct, in that it is analytic, unitary, and rigorous;
nevertheless, in practical applications, the theory is always approximated in some fashion.

R-matrix theory is based on the following assumptions: (1) the applicability of non-
relativistic quantum mechanics; (2) the absence or unimportance of all processes in which more
than two product nuclei are formed; (3) the absence or unimportance of all processes of creation
or destruction; and (4) the existence of a finite radial separation beyond which no nuclear
interactions occur, although Coulomb interactions are given special treatment. [In practical
applications two of these four assumptions may be violated in one degree or another: (1) The
theory may be used for relativistic neutron energies, and corrected for relativistic effects;
nevertheless, non-relativistic quantum mechanics is assumed. (2) A fission experiment with
more than two final products is treated as a two-step process. That is, the immediate result of the
neutron-nuclide interaction is assumed to be limited to two final products, at least one of which
decays prior to detection.]

R-matrix theory is expressed in terms of channels, where a channel is defined as a pair of
(incoming or outgoing) particles, plus specific information relevant to the interaction between
the two particles. A schematic depicting entrance and exit channels is shown in[Figure 11.1.|Note
that entrance channels can also occur as exit channels, but some exit channels (e.g., fission
channels) do not occur as entrance channels. Two interacting particles are shown in the portion
of the figure that is labeled “Interior Region”; here the particles are separated by less than the
interaction radius a.
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In|Section I1.A) general equations of scattering theory are presented and their derivations
discussed. The fundamental R-matrix equations are presented. |Section II.A.1|gives a detailed
derivation of the equations for a simple case. $ection I1.A.2 shows the relationship between the
R-matrix and the A-matrix, which is another common representation of scattering theory.

The approximations to R-matrix theory available in the SAMMY code are detailed in
Eectlon I1.B.| The recommended choice for most applications is the Reich-Moore approximation,
described in |Section I1.B.1.| For some applications, the Reich-Moore approximation is
inadequate; for those cases, a method for using SAMMY’s Reich-Moore approximation to
mimic the full (exact) R-matrix is presented [Section I1.B.2| Two historically useful but now
obsolete approximations are single-level and multilevel Breit Wigner (SLBW and MLBW),
discussed in [Section II.B.3] Provisions for including non-compound (direct) effects are

discussed in[Section I11.B.4.

In Section I1.C) details are given for the SAMMY nomenclature and other conventions,
for transformations to the center-of-momentum system, and for the calculation of penetrability,
shift factors, and hard-sphere phase shifts in both Coulomb and non-Coulomb cases.

Figure 11.1. Schematic of entrance and
exit channels as used in scattering

theory. For the interior region (with
separation distance r <a), no assumptions
vV are made about the nature of the
interaction. In the figure, m, i, and z refer to
the mass, spin, and charge of the incident
I

particle while M, | and Z refer to the target
particle.  Orbital angular momentum is
denoted by | and velocity by v. Primes are
used for post-collision quantities.

Incident Channel

Vi v

Exit Channel

Interior Region
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1. A. EQUATIONS FOR SCATTERING THEORY

In this section, equations for scattering theory are presented but not derived. Specifics for
the R-matrix formulation of scattering theory are presented in which provides a
discussion of an alternative formulation (the A-matrix). Readers interested in the derivation of
the equations for scattering theory are referred to the Lane and Thomas article [AL58] for a
detailed derivation in the general case, or to|Section I.A.2| of this document for a simplified
version.

In scattering theory, a channel may be defined by ¢ = (a, I, s, J), where the following
definitions apply:

e o represents the two particles making up the channel; a includes mass (m and M), charge (z
and Z), spin (i and | ) with associated parities, and all other quantum numbers for each of the
two particles, plus the Q-value (equivalent to the negative of the threshold energy in the
center of momentum system).

« |is the orbital angular momentum of the pair, and the associated parity is given by (-1) .

e s represents the channel spin (including the associated parity); that is, s is the quantized
vector sum of the spins of the two particles of the pair:5 =i + I .

e Jis the total angular momentum (and associated parity); that is, J is the quantized vector sum
oflands: J =1 +5.

Only J and its associated parity = are conserved for any given interaction. The other quantum
numbers may differ from channel to channel, as long as the sum rules for spin and parity are
obeyed. Within this document and within the SAMMY code, the set of all channels with the
same J and = are called a “spin group.”

In all formulae given below, spin quantum numbers (e.g., J ) are implicitly assumed to
include the associated parity. Quantized vector sum rules are implicitly assumed to be obeyed.
Readers unfamiliar with these sum rules are referred to Section 11.C.1.a|for a mini-tutorial on the
subject.

Let the angle-integrated cross sections from entrance channel ¢ to exit channel ¢' with
total angular momentum J be represented by oc. This cross section is given in terms of the

scattering matrix U . as
2

0w = 15 Q|0 U | 8 (1A

C

where k, is the wave number (and K, =7k, = center-of-mass momentum) associated with
incident particle pair o, gj, IS the spin statistical factor, and w is the Coulomb phase-shift

Section I1.A, page 1 (R7) Page 11



difference. Note that w, is zero for non-Coulomb channels. (Details for the charged-particle

case are presented in(Section 11.C.4|) The spin statistical factor g is given by
2J +1

= I1A.2
Jaa (2i+1) (21 +1) ( )
and center-of-mass momentum K, by
2
K2 =(nk, ) ="M g (1 A3)
‘ ¢ (m+M )2

Here E is the laboratory kinetic energy of the incident (moving) particle. A derivation of this
value for K, is given in Section 11.C.2.]

The scattering matrix U can be written in terms of matrix W as

U,=0Q.W_. Q. , (IMA.4)
where Q is given by
Q =e' %) (I A5)

c
Here again, w. is zero for non-Coulomb channels, and the potential scattering phase shifts for
non-Coulomb interactions ¢ are defined in many references (e.g., [AL58]) and shown in
The matrix W in Eq. (Il A.4) is related to the R-matrix (in matrix notation with
indices suppressed) via
W =PY*(1 —RL)*(1 -RL" )P 2 | (11 A.6)

The quantity I in this equation represents the identity matrix. The form of the R-matrix is given
in Bection 11.A.1]in general and in Section I1.B|for the versions used in SAMMY. The quantity L
in Eq. (I1 A.6) is given by

L=(S—B)+iP , (I1A7)

with P being the penetration factor (penetrability) S the shift factor, and B the arbitrary boundary
constant at the channel radius a.. P and S are functions of energy E, and also depend on the
orbital angular momentum | and the channel radius a.. Formulae for P and S are found in many
references (see, for example, Eq. (2.9) in [JL58]).

For non-Coulomb interactions, the penetrability and shift factor have the form
P->PR(p) and S—S(p) . (IMA.8)

where p is related to the center-of-mass momentum which in turn is related to the laboratory
energy of the incident particle (E). For arbitrary channel ¢ with particle pair «, orbital angular
momentum |, and channel radius ac, p has the form

Section I1.A, page 2 (R7) Page 12



[1]

D a . (11 A.9)

1| 2m M M
—k a== AP E—
P=Ea \/(ma+Ma)(m+M) (

as shown in [Section 11.C.2.| Here Z_ is the energy threshold for particle pair a, m, and M, are

the masses of the two particles of particle pair o, and m and M are the masses of the incident
particle and target nuclide, respectively.

Appropriate formulae for P, S, and ¢ in the non-Coulomb case are shown in Table I1A.1.
For two charged particles, formulae for the penetrabilities are given in[Section 11.C.4.

The energy dependence of fission and capture widths is negligible over the energy range
of these calculations. Therefore, a penetrability of unity may be used.

Table Il A.1. Hard-sphere penetrability (penetration factor) P, level shift factor S, and
potential-scattering phase shift ¢ for orbital angular momentum I, wave number k, and
channel radius ac, with p = ka,

[ P S @
0 »p 0 p
1 plA+pd) -1/ (1+p?) p-tan™ p
2 p1@+3p +p? -(18+3p%) /(9 +3p°+p’) p-tan”[3p/ (3 - p°)]
3 p' /(225 +45p%) + -(675+ 90 p*+ 6 p*) / p-tan™[p(15-p?) / (15-6 p?)]
6p*+p°) (225 + 45 p*+ 6 p*+ p°)
4  p?/(11025 + 1575 p> +  -(44100 + 4725 p®+ 270 p* + 10 p®) / p-tan™[p(105 - 10 p?) /
135p* + 10p° + p° (11025 + 1575 p? + 135 p* + 10 p° + p°) (105 — 45 p? + pY)]
' pZF’;l pU=-S) | pra—tan™ (R, /(1-S,,))
2
(I - Sl—l) +R5 (I- SH)Z + Plz—l or
BI = (B|—1 + X|)
/(1_ B|—1X |)
with
B, =tan(p—¢,)
and

X, =(R)/1-5,)
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Formulae for a particular cross section type can be derived by summing over the terms in
Eq. (Il A.1). For the total cross section, the sum over all possible exit channels and all spin
groups gives

total __ T
o - Z Z Z K2 9. 5CC' _UCC'
incident all J a
channels  channels
c c'

T *
= kz z g, Z Z (§cc' _Ucc'é‘cc' _Ucc'é‘cc' + Ucc'
a J incident all
channels chanpels

C

:i—f; g, Y (l—Re(UCC))

incident
channels
c

2) (11 A.10)

For non-charged incident particles, the elastic (or scattering) cross section is given by

2

=320, ¥ |1-2Re(U, )+ Y U, (1 A.11)
ka J c=incident c¢'=incident
channel channel
Similarly, the cross section for any non-elastic reaction can be written
o= L5g, Y > U (1 A12)
ka J c=incident c'=reaction

channel channel

In particular, the capture cross section could be written as the difference between the total and all
other cross sections,

O_capture _ klz Z g, Z 1— Z ‘UCC'

J c=incident c'=all channels
channel except capture

2

(11 A.13)

(This form will be used later, in |Section II.B.l.aI when the capture channels are treated in an
approximate fashion.)

Section 1I.A, page 4 (R7) Page 14



I1.LA.1l. R-Matrix and A-Matrix Equations

The R-matrix was introduced in Eqg. (11 A.6)/as
W =P"?(I =RL)*(1 =RL )P V% | (11 A1.1)

but the formula for the R-matrix was not given there. If A represents a particular resonance (or
level), then the general form for the R-matrix is

Vac Vac
R, = 5, . (11 A1.2)
;EA—E v

where E, represents the energy of the resonance, and the reduced width amplitude y is related to

the partial width I" by
I,.=2P 75 - (I1 AL.3)

The sum in Eq. (Il Al.2) contains an infinite number of levels. All channels, including the
“gamma channel” for which one of the particles is a photon, are represented by the channel
indices.

The R-matrix is not the only possibility for parameterization of the scattering matrix. In
the R-matrix formulation, equations are expressed in terms of channel-channel interactions. It is
also possible to formulate scattering theory in terms of level-level interactions; this formulation
uses what is called the A-matrix, which is defined as

AL=(E,—E)S,, =D 7l 720 - (11 A1.4)

To see the relationship of the A-matrix to the R-matrix, we begin by multiplying both
sides of Eq. (11 A1.4) by A and summing over /.

ZA;;I A/IVZZ(E}L_E)a,u/IA},v_Z y/chczyic Aﬂ.v !
A c A

A

or (11 AL.5)
5;11/ :(E,u - E)Ayv _Z }/,uc LCZ]/E.C Aﬂ.v
c A

Dividing by (E, —E), multiplying on the left by , . and on the right by 7. , and summing
over u puts this equation into the form

Z]//JC'(E/J _E)_lé‘yv yors =Z yyc'(Ey _E)_l(E,u_E)A#v Yors
u u

_z 7ﬂc'(Ey _E)ilz yyc chj/}.cAAv 7/vc" '
7 c A

Section 11.A.1, page 1 (R7) Page 15
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which can be reduced to

7/Vc'( - yvc z}/,uc ,uv}/vc
(11 A1.7)
-1
_Z|:Z 7/yc'(Ey - E) 7//40 :| ch Vac A/Iv Yors
[ u A
Summing over v puts this into the form
|:Z]/vc E E 7vc:| z}//,zc ,uv]/VC
(11 A1.8)
-1
_Z|:Z y,uc'(Ey_E) 7;tc:| LCZ }/chﬂv}/vc" '
c ) Av
in which we can replace the quantities in square brackets by the R-matrix, giving
:Zypc' Aﬂv 7/vc"_chc CZ]/ZC Av )/VC
72%
(11 AL.9)
=Z|:5c'c c'c c}zy/ic ﬂvyvc
Solving for the summation, this equation can be rewritten as
[(I ~RL)" R} =SV A T - (Il AL.10)
ce” Av

To relate this to the scattering matrix, we note that| Eq. (Il A.6) [can be rewritten using
Eqg. (I A.7) into the form

W =P (1-RL)"(1-RL)pP™?
=PY2(1-RL) " (I -RL+2iRP)P?
= pY? [(| ~RL)"(1-RL)+2i(1-RL)" RP] p/? (IMAL.11)

-1

= PY?PY2 1 2iP¥2 (1 —RL) ' RPP™/2
) RPl/Z

=1+2iPY*(1-RL
Comparing Eq. (11 A1.10) to Eqg. (Il A1.11) gives, in matrix form,
W =1 +2iP"?yAyPY? | (11 A1.12)

These equations are exact; no approximations have been made.

Section I11.A.1, page 2 (R7) Page 16



One common approximation should be discussed here: the “eliminated channel”
approximation, for which one particular type of channel is treated in aggregate and assumed to
not interfere from level to level. This is most easily understood in the A-matrix definition,

Eq. (11 Al.4); assuming no level-level interference for the gamma channels (for example), this

equation can be approximated as

y=gamma c=particle
channels channels

A z(ErE)%—[ > 7wl m}%— > Vel o (1AL13)
The quantity in square brackets corresponds to those channels for which the level-level
interference is to be neglected; that is, only the interactions within one level are important. For
gamma channels, L = S+iP reduces to L= i, so Eq. (Il A1.13) becomes

A~ (B, ~E=iT,12)8,~ X 7L 7 - (1 AL14)

c=particle
channels

The bar over T, is used to indicate the special treatment for this channel.

In this form, our expression for A is analogous to the exact expression in
with two modifications: the additional imaginary term is added to the energy difference, and the
sum over the channels includes only the “particle channels” (non-eliminated channels). It is
therefore possible to immediately write the R-matrix formula for the eliminated-channel
approximation as

7//1c 7//10'
R, = = Oy I1 A1.15
* ;EZ—E—iFM/Z " ( )

where the channel indices ¢ and c' refer only to particle channels, not to the gamma channels.
This formula for the R-matrix is the Reich-Moore approximation and is the form which is used in
the SAMMY code. See|Section I1.B.1{for more about this formulation of R-matrix theory.

Section 11.A.1, page 3 (R7) Page 17



I1.A.2. Derivation of Scattering Theory Equations

Many authors have given derivations of the equations for the scattering matrix in terms of
the R-matrix. Sources for the derivation shown here are unpublished lecture notes of Fréhner
[FFO2], presented at the SAMMY workshop in Paris in 2002, and Foderaro [AF71]. This
derivation is valid for only the simple case of spinless projectiles and target nuclei, assuming
only elastic scattering and absorption. For the general case, the reader is referred to Lane and
Thomas [AL58].

Schraodinger equation

The Schrodinger equation with a complex potential is

_ 2
(;’n V2+V+inl//=EW , (11 A2.1)

in which one can consider that V causes scattering and W causes absorption. The wave function
can be expanded in the usual fashion,

w(r,cos6) = iu'gr)ﬁ(cose) , (11 A2.2)

for which the radial portion obeys the equation

d?u 2m ) [(1+1
drz' kz—?(V+IW)— (r2 )

u =0 , (11 A2.3)

subject to the conditions that || ? is everywhere finite and that
u (r=0)=0 . (11 A2.4)

In the external region, r > a, the nuclear forces are zero (V = W = 0), so the solution has
the form

u(r) = L(r)-Y,o(r) . (11 A2.5)

I; represents an incoming free wave, and O, represents an outgoing free wave. U, is the “collision
function” or “S function” that describes the effects of the nuclear interaction, giving both the
attenuation and the phase shift of the outgoing wave:

U, =1 forw =0 ,

and )
U)|" <1 forw =0 .

(I A2.6)

Our goal is to determine an appropriate analytic form for U,.

Section 11.A.2, page 1 (R7) Page 19



Orthogonal eigenvectors in interior region

For the interior region r < a, we define eigenfunctions w,, (r) and eigenvaluesE,

E, = , (11 A2.7)

d? I(1+1
v fr-zmy M, o e

=B . (11 A2.9)

Note that w;, (r) is real if the boundary parameter B, is chosen to be real. The eigenfunctions
are orthogonal, since

2 d? d
I(d Wa W,y — W, dV\iﬂ.]dr _ i(dwﬂ W, Wﬂ|jdr
0 r d dr
~ dwﬂI T
- l|
dr |, (11 A2.10)
_ dw

- [0]

r=a

|
1
=
Q
~
=
—~
QD
~
|
=
—~
QD
~
t_é
—
QD
~—~—
 I—
|
o

in which both equations of (Il A2.9) have been invoked. The integral in Eq. (11 A2.10) can also
be evaluated using Eq. (11 A2.8), giving
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t 2mvV 2mv
:j({—kf—Y}wﬂwﬂl { k? - = }Wﬂ,jdr
0 (I A2.11)
j( kiw,w,, +k2w, Wﬂ,)dr
0
IW W, dr
Equating Eqg. (11 A2.10) to Eq. (Il A2.11) gives
jw w, dr=0 . (11 A2.12)

For A= u, assuming no degenerate states, it therefore follows that

jw w, dr=0 if A=y . (11 A2.13)

ul

The orthogonality of the eigenvectors is therefore established. We assume that these wave
functions are normalized such that

jw w, dr = (I A2.14)

Mt

Matching at the surface

The internal wave function for the true potential (including the imaginary part iW ) can be
expanded in terms of the eigenfunctions as

r)=>c,w,(r) forr<a , (11 A2.15)

with

Cy = [y w, dr . (11 A2.16)

0

This equation for c, is derived by multiplying Eq. (Il A2.15) by u,(r), integrating, and
applying Eq. (11 A2.14).
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Consider now the integral

¢ (d, dw,,
J [ et

0

which can be expanded by use of [Egs. (I1 A2.3) and| (I1 A2.8) to give

J _d2u|W -u _dzw/“ dr
drz 4 7! dr?
0

r

(kf—kz)}[ulwﬂ dr + i—T_l'Wuledr .

Defining W, as
W, = qu, W, dr/J‘uI w,, dr
0 0

permits rewriting Eq. (11 A2.18) in the form

¢ (d d ?w _ N\ ¢
I(—drzl WM—ul—dr;'jdr:(kf—kzﬂi—TWﬂ]ju, w,, dr .
0

Integrating the left-hand side of this equation gives

¢ (du d 2w I dw, 1° dw
J‘ —2IW/1| _ul—zlI dr = %W —u— | = %WJJ —U—
) dr dr r ro, r

f (_{kz_;—T(VHW)—I(Ir—jl)}U' W, +“{kﬂz‘i_TV _w}%'}dr

(11 A2.17)

(I A2.18)

(11 A2.19)

(11 A2.20)

(11 A2.21)

in which we have again made use of the boundary condition of [Eq. (I A2.9)| Integrating the

right-hand side of Eq. (11 A2.20) by applying [Eq. (11 A2.16) gives

Section 11.A.2, page 4 (R7)
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2m = ¢
(kf—k2+|?wﬂnu,wﬂ dr =

Equating Egs. (I1 A2.21) and (11 A2.22) therefore gives

or

du
a—-u,B | =
| dr ], @
" du Z
a—'_uB | -2
| dr ], @

n*w, (a)

(kf _K? +i2h—TVVMjcM

(kf—k2+iil—TVVMjcM ,

(E,—E+iW,)

Cu=

Inserting this into

Eq. (Il A2.15)

u,(r):zl:wﬂ(r)

gives

du,
- o a —u,B,
2ma(E, ~E+iW, )| dr r

n*w, (a)

which, when evaluated at r = a , becomes

U|(a)=z

7 2ma

Rearranging, this becomes

ul(a):_

adu'
2ma(El—E+iVVM){ dr

RN EY

in which the decay amplitude y,, is defined as

and the absorption width T",, as

Section 11.A.2, page 5

{adu,_
(E,—E+iW, )| dr

2mc,,
/S

=a

—u,B,} ,

uIBI:|

Z [ n*w?, (a)/2ma]

742|

(E,—E+iW,)

_[n*w; (a)
Y = ma
[, =2W,
(R7)

Z‘4(E1—E+irl,/2)

(11 A2.22)

(11 A2.23)

(11 A2.24)

(11 A2.25)

(11 A2.26)

(Il A2.27)

(11 A2.28)

(11 A2.29)
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If we then define the R-function as

7§|
R, = , 11 A2.30
| ;(El—EHFM/Z) ( )

then Eq. (11 A2.27) can be written in the form

du,
u={a——r-uB R (11 A2.31)

in which everything is evaluated at the matching radius a.

Scattering matrix in terms of R-matrix (neutrons only)

Equation (Il A2.31) can be converted into the usual R-matrix formulae by inserting

Eq. (Il A2.5)

u=1-U>o , (11 A2.32)
yielding
dl do
||_Ulol:{a[d_r'—uld—r']—B,(l,—UIO,)}R, : (11 A2.33)
in which everything is again evaluated at the matching radius a. Solving Eq. (I1 A2.33) for U
gives
U, -0 +R aﬂ—B,OI =1,-R aﬂ—B,lI : (11 A2.34)
dr dr
or
|,—R|(a°(;'r'—5,|lj | 1—Rl[f“3';—3|j
U, = = ! : (11 A2.35)

_
—0+r[a%% 8o O g[2Y0 g
dr O, dr

We define L, as
__a do
~ Ofa) dr

= S, +iP . (11 A2.36)

r=a
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For spinless particles, 1, =0O,, so that

a dl . .
—| =L =S,-iR
L(a)dr|_ T
and
L=O_|*Z|O|e_”p:e—2i¢
O O |[O]e"

Therefore Eq. (11 A2.34) becomes

y :eﬁml—&(ﬁ—BJ
| 1-R

(11 A2.37)

(11 A2.38)

(11 A2.39)

which is the usual form for the scattering matrix in terms of the R-matrix in this simple case.
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I1.A.2.a. Relating the scattering matrix to the cross sections

The relationship between the scattering matrix U and the cross section o is also described
by many authors; see, for example, [AF71]. Here we provide a summary for the simplest case.

The wave function for a spinless particle far from the scattering source can be written as

w(r,0)=¢" eTf(H) , (1 A2a.1)
where f has the form
=L (21+1)[U, -1] P (cos ) . (11 A2 a.2)
2ik 5
The cross section is then given by
do 2
—=|f(0) . I1A2 a.3
TRAZ (1A223)

For angle-integrated cross sections, the equation found by inserting Eq. (Il A2 a.2) into
Eqg. (I1 A2 a.3) can be integrated to give

azj[ 2|1k2(2|+1)[u|*—1]3(c059)}
x[?lkz(zm)[u ~1]P (cos@)}d(cos@)d(p

- iz > (20+1)(2+1)[U; -1] Ul.—lﬁd(piﬂ(cos@)ﬁ.(cos@)d(cos&) (11 A2 a.4)
_ 4%;(2|+1)(2|'+1)[u,*—1][u 1 27[2%5“
= kiz . (2 +1)u, -1

This is analogous to the “standard” scattering theory equation shown in [Eq. (11 A.1).
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I1. B. VERSIONS OF MULTILEVEL R-MATRIX THEORY

Many representations of multilevel R-matrix theory have been developed over the years.
For a summary of the more common versions, the reader is referred to the works of Fréhner
[FF80, FFOO].

Four versions of R-matrix theory are available in SAMMY: the Reich-Moore
approximation (Section II.B.1)| the single-level (SLBW) and multilevel Breit-Wigner (MLBW)
approximations Eectlon II§§] and a variant on the Reich Moore which mimics the full R-
matrix_(Bection IT.B.2J. An option to include a direct capture component is also provided
(Section 11.B.4).

The Reich-Moore approximation is the preferred method for most modern evaluations; it
is the default formalism for SAMMY runs.

Frohner, in fact, suggests that the Reich-Moore approximation is universally applicable to
all cases: “Experience has shown that with this approximation [Reich Moore] all resonance
cross section data can be described in detail, in the windows as well as in the peaks, even the
weirdest multilevel interference patterns . . . It works equally well for light, medium-mass and
heavy nuclei, fissile and nonfissile.” [FF0O, page 60]

For most purposes, Reich Moore is indeed indistinguishable from the exact formulation.
Notable exceptions are situations where interference effects exist between capture and other
channels. For those cases, small modifications to the SAMMY input will permit the user to
mimic the effect of the non-approximated R-matrix; see for details.

Occasionally it is not possible to properly describe a cross section within the confines of
R-matrix theory, because the reaction includes a direct component. SAMMY has provisions for
the user to provide a numerical description of this component; see |Section 11.B.4 for details.

Also available within SAMMY are both the SLBW and the MLBW formulations
Section II.B.3]; these are included for the sake of completeness, for comparison purposes, and
pecause many of the evaluations in the nuclear data files were performed with Breit-Wigner
formulae.  However, it is strongly recommended that only Reich Moore be used for new
evaluations, for several reasons: MLBW is often inadequate; SLBW is almost always inadequate.
When it is correct, MLBW gives identical results to Reich Moore. “Ease of Programming” is no
longer a valid excuse for using MLBW, since the programming has already been accomplished.
Similarly, a slow computer is no longer a legitimate excuse, since modern computers can readily
handle the more rigorous formulae.

Finally, it should be noted that SAMMY’s implementation of MLBW does not
correspond to the usual definition of MLBW. Instead, SAMMY uses the ENDF [ENDF-102]
convention in which only the elastic cross section is truly multilevel, and all other types of cross
section are single level.
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I1. B. 1. Reich-Moore Approximation to Multilevel R-Matrix Theory

The Reich-Moore approximation [CR58] is based on the idea that capture channels
behave quite differently from particle channels. The particle-pair configuration for a capture
channel consists of a gamma “particle” plus a nucleus with one more neutron than the target
nucleus. For most physical situations, there are a multitude of such capture channels, whose
behavior can be treated in an aggregate or average manner. It is assumed that there is no net
interference between the aggregate capture channel and other channels, and the level-level
interference of gamma channels is negligible, so that terms describing such interference may be
eliminated from the R-matrix formulae. The mathematical derivation of this “eliminated-channel

approximation” is discussed in|Section 11.A.1]

In the eliminated-channel approximation, the R-matrix of [Eq. (11 A.6) (for the spin group
defined by total spin J and implicit parity x) has the form

7/),0 7&0‘ ext
R.= = +R.76,. |0, I1B1.1
cC ;EX—E—IF/I}//Z C cc JJ ( )

where all levels (resonances) of that spin group are included in the sum. Subscript 4 designates
the particular level; subscripts ¢ and ¢’ designate channels (including particle pairs and all the

relevant quantum numbers). The width fiyoccurring in the denominator corresponds to the

“eliminated” non-interfering capture channels of the Reich-Moore approximation; we use the bar
to indicate that this width is treated differently from other “particle” widths.

The “external R-function” R of Eq. (11 B1.1) will be discussed in bection 11.B.1.d. |

The channel width T",_ is given in terms of the reduced-width amplitude y, . by

r,=2y2P(E) , (11 B1.2)

c

where P. is the penetrability, whose value is a function of the type of particles in the channel, of
the orbital angular momentum |, and of the energy E. The reduced-width amplitudey,  is

always independent of energy, but the width T",.may depend on energy via the penetration
factor. For fission and for gamma channels, Eq. (11 B1.2) becomes

F/lczzyjc !

that is, the penetrability is effectively 1. (Note: In this manual, the reduced-width amplitude for
the eliminated-channel capture width will be denoted by a bar above the symbol y.)
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Cross sections may be calculated by using the above expressions for R, with L given by

Ea. (I A.7)| to generate W, and from there calculating U and, ultimately, c. However, while
Eq. (11 A.6) ffor W is correct, an equivalent form that is computationally more stable [NL92] is
W=1+2iX |, (11 B1.3)

where X is given in matrix notation by
X = PY2Lt (L1 -R) RPY? . (11 BL.4)
When the suppressed indices and implied summations are inserted, the expression for X becomes

Xoo = PP 2 [(L=R)* ] Ree RY2 5,50 (11 BL.5)

c

The various cross sections are then written in terms of X.

All calculations internally within SAMMY are expressed in terms of so-called
“u-parameters,” as distinguished from “p-parameters,” which are the input quantities. The
u-parameters associated with the resonance p-parameters are as follows:

JE, for E, >0

U, = (11 B1.6)
- —E, for E, <0 ,
r, :
———  ifr,, >0
d 2R (|E, -Z.)) ’ (1BLY)
an U, =73 = '
_ |F—M|H if I',. <0 inthe PARameter file ,
2P|(|Eﬂ_:c|)

in which Z_ is the energy threshold for the channell(Section II.C.Zj.

It is important to note that the partial-width parameter IT",. is always a positive quantity,
while the reduced-width amplitude y,. can be either positive or negative. Nevertheless, in the
original SAMMY input or output PARameter file (and also in the ENDF File 2 formats
[ENDF-102] ), partial widths may appear with negative signs. The convention is that the sign
given in those files is associated with the amplitude y,. rather than with the partial widthT" .

As of revision 8 of this document and release sammy-8.0.0 of the code, the reduced-
width amplitudes and square root of resonance energy may be used as input to SAMMY; see
Table VI B.2 for details. To use this option include the command “REDUCED W DTH
AMPLI Tudes are used for input”in card set2 of the INPut file. An output file
SAMMY .RED is created in this format whenever output file SAMMY .PAR is created.

Section 11.B.1, page 2 (R8) Page 32



I1. B. 1. a. Energy-differential cross sections

The observable cross sections are found in terms of X by first substituting Egs.

I A5 and| 1l B1.3) into [Eq. (Il A.1), |summing over spin groups (i.e., over J"), and then
summing over all channels corresponding to those particle pairs and spin groups. If X'

represents the real part and X' the imaginary part of X, then the angle-integrated (but energy-
differential) cross section for the interaction that leads from particle pair o to particle pair o' has
the form

O-a,a'(E) = 1_72[ Z 0,4 z [(Sin2¢c (1_2Xcic) _Xc[: Sin(2¢’c))5a,a
a J c
+ Z{X'ZJFXr2 } .

(11 Blal)

(This formula is accurate only for cases in which one of particles in o is a neutron; however, both
particles in o' may be charged.)

In Eq. (Il B1 a.1) the summations are over those channels ¢ and ¢’ {of the spin group

defined by J” } for which the particle pairs are, respectively, a and o'. More than one “incident
channel” ¢=(e,l,s,J) can contribute to this cross section, for example when both | =0 and

| = 2 are possible, or when, in the case of incident neutrons and non-zero spin target nuclei, both
channel spins are allowed. Similarly, there may be several “exit channels” c'=(a',|',s',J )

depending on the particular reaction being calculated (e.g., elastic, inelastic, fission).

The total cross section (for non-Coulomb initial states) is the sum of Eq. (Il B1 a.1) over
all possible final-state particle-pairs «', assuming the scattering matrix is unitary (i.e., assuming

that the sum over c' of |UCC.|2 =1). Written in terms of the X matrix, the total cross section has
the form

Goa(E) = 15 30, 3 [sin" g, +XI, cos 20)-Xsin (20)]  (1BLa2)
a J

c

where again the sum over c includes only those channels of the J”spin group for which the
particle pair is a.

The angle integrated elastic cross section is given by

eIastlc(E) = k2 ZgJa Z

(Il B1a.3)
[sinzgoc(l—ZXC‘C)—XJCsm (2¢,) +Z{XC‘C.2+XJC.2}}

In this case, both ¢ and c¢' are limited to those channels of the J”spin group for which the
particle-pair is «; again, there may be more than one such channel for a given spin group.
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Similarly, the reaction cross section from particle pair o to particle pair o' (where «' is not
equal to «) is
O-reaction(E) = ZgJa Z Z [XI 2 } . (“ Bl a4)

Here c is restricted to those channels of the J™ spin group from which the particle pair is a, and
c' to those channels for which the particle-pair is «'.

The absorption cross section has the form

4
O-absorption(E) = k_72Z- ZgJa Z |: cc Z {XI 2 Xcrcz}:| . (“ Bl 3_5)
a I

c c'

Here both the sum over ¢ and the sum over ¢’ include all incident particle channels (i.e., particle
pair o only) for the J™ spin group.

The capture cross section for the eliminated radiation channels can be calculated directly as

O oaprure (E) = i—f >0, D {XQC—Z{XQCHXC}Z}} , (11 B1 a.6)
a J

incc allc'

or may be found by subtracting the sum of all reaction cross sections from the absorption cross
section. In Eq. (Il B1 a.6), the sum over c includes all incident particle channels for the J™ spin
group, and the sum over ¢’ includes all particle channels, both incident and exit, for that spin

group.

Section 11.B.1.a, page 2 (R7) Page 34



11.B.1.a.i. One-level two-channel case

For a simple one-level, two-channel case for which the shift factor is set to zero, the
various cross sections defined in|Section 11.B.1.a|can easily be expressed in terms of resonance
parameters. Users are reminded that SAMMY is by no means restricted to this simple case and
can be used with as many levels and as many channels as are needed to describe the particular
physical situation. Nevertheless, it is useful to examine the cross section equations for this
simple case: while these equations are a crude over-simplification for most physical situations,
there is often physical insight to be gained by examination of these equations.

For this simple case, the X matrix of|Eq. (1| B1.4) takes the form
JPLY(L*-R)"RYP
_ﬂ -

iR

X

-1
A e oy
— — 1 1/2 ;
|P1 D D D D { /pl 0 :| (” Bl a|.1)

0
\/Ez yos i_7_22 Y172 7/_22 0 \/Fz

0 iP, D P, D D D

in which the subscript on the penetrabilities denotes the channel number (not the angular
momentum), the symbol D has been used for E, —E —i@j , and the subscript A has been omitted

from the reduced-width amplitudes for simplicity’s sake. This equation can be rewritten as

1

i 0 . ) . -1
X = iP1P2D \/Fl PZ(D_IP17/1) —IP1P2}/1}/2 |:712 7172} \/El 0
D | o L || -iPRyy, R(D-iR)| e A1l 0 R
JP
1
— 0 ., :
~ PP, \/31 Pl(D_|P272) IRP.717,
P1P2(D2_ipl712D_iP2722D) 0 1 iRP,77, PZ(D_iP1712)

y {712 717/2j| \/El 0
Y172 7/22 0 \/Ez

or
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X = 1 R
(D*-iP#D-iPyD)| o 1
JP.
Ry D-iRPyy; +iRPy 7, F’lDWz—iF’lF’znyiﬂF’lF’znyﬁ} JR oo
iRP. 7, + R0y, —IRRyy, IRRY 7 +Py;D-iRRy; || 0 [P,

_ 1 JR [ Py2D F’lDMz} {\/31 0 }
1

P,.Dyy, Py;D 0 \/Fz

_ 1 Pyt RR77,
(D-iPy~iPyi) |JRRA7 Py
or, finally,
. _ 1 e PP, 7.7,
(Eg—E_WyZ_iPﬁ/lZ_iPz?/zz) AP 77 Py, .
(11 B1 ai.2)
~ 1 Fl/Z F1F2 /2
(E,-E-il'/2) | JTr,/12 T,/2

in which T"is the sum of the partial widths ", + T, + T, .

In this form, X can be substituted into the equations for the various cross sections.
Assuming the second channel is a reaction channel,| Eq. (11 B1 a.2)| for the total cross section
becomes

4 . I'T E-E I, .
Gtotal(E) = k_72[ gJ SIn2 D + 4d1 Cos (2@0-%5"] (2¢c):|
© - (E-E,) (11 B1 ai.3)
2 I'T - r, .
== 1-|1-—2L|cos (2¢)—~—22"Lsin (2 ,
ki gJ I ( 2d j ( wc) d ( ¢c):|
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in which d has been used to represent |(E, ~E~il'/2)|" =(E~E,)"+(T/2)". Similarly, the
elastic cross section,|Eq. (nB1 a.3)|, can be expressed as

4 . rr
o-elastic(E) = F zgm Z{SanQJC (1—2 4d1)
a c

(I Blaid)
2 2
E-E,)T E-E,)T
_Msin(zgoc)_i_ 1_‘1_‘1 + ( /1) 1
2d 4d 2d
which reduces to
O-elastic(E) = 2_722: ng Z 1—COSZ(DC 1—rr1
ka J c 2d
(I Bl ai.5)
_sin2p (E-E,)r, I(F,+0,)
©od 2d
The reaction cross section, |Eq. (11 B1 a.4), becomes
2 2
ryr,r E-E,)JI,T
O-reaction(E) = 4_722- g 2 + ( /1) 12
k: 4d 2d _
(11 B1 ai.6)

_z9 LT,
k2] d '
and, finally, the capture cross section,|Eq. (11 B1 a.6), is
2 2
E-E,)T
O-capture(E) = 472.2g rrl_ rrl + ( /1) :
Kk’ 4d 4d 2d

{r rlrzj J{(E—EZ) rler (1 BLai7)

4d 2d

_ 4ng Frl_ F_12+F1F2 _ 79 Fll:y—
k? | 4d |4d 4d k2| d |

a
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11.B.1.b. Angular distributions

Angular distributions (elastic, inelastic, or other reaction) cross sections for incident
neutrons can be calculated from Reich-Moore resonance parameters. Following Blatt and
Biedenharn [JB52] with some notational changes, the angular distribution cross section in the
center-of-mass system may be written

do
dQCM ; B.,. (E)P (cosp) , (11 B1b.1)

in which the subscript aa' indicates which type of cross section is being considered (i.e., a
represents the entrance particle pair and o' represents the exit pair). P is the Legendre
polynomial of degree L, and f is the angle of the outgoing neutron (or other particle) relative to

the incoming neutron in the center-of-mass system. The coefficientsB, ,.(E) are given by

BLoo(E 4|<2 Z IIDINDIND) Z (2i+1)( 2I+1)

Jy J,  lysy Iy sy I,s,

(11 B1 b.2)

X G{Ilsll'ls'l.ll}{lzszl'zs'sz}L Re [(5010'1 _Uclc'1 ) (5020'2 _Uczc'2 ):| )

in which the various summations are to be interpreted as follows:
(1) sum over all spin groups defined by spin J, and the implicit associated parity

(2) sum over all spin groups defined by spin J, and the implicit associated parity

(3) sum over the entrance channels c, belonging to the J;, spin group and having particle pair a,
with orbital angular momentum I; and channel spins; [i.e., ¢, =(a,1,,s;, J;)]

(4) sum over the exit channels c', in J, spin group with particle-pair «', orbital angular
momentum|';, and channel spin s', [ie., ¢’ =(a"1",s", J;,)]

(5) sum over entrance channels c, in J, spin group where ¢, = (a,1,,5s,, J,)

(6) sum over exit channels c', in J, spin group where ¢', =(a'1,,s,, J,)

Also note that i and | are the spins of the two particles (projectile and target nucleus) in particle-
pair a.

The geometric factor G can be exactly evaluated as a product of terms
(11 B1 b.3)

{lysqlys1 3 Hlos,185 3L A|151|'15'1§31 A'zszl'zs'z;Jz D|151|'15'1|252|'25'2;|—J1J2 !

where the factor A, ( ..., is of the form

Al s, = \/(ZI +1) (20+1) (23,+1) A(1,;5,) A(1, ;%) . (11BLb.4)
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The expression for D is

Tysylysyl,s,lys'yildd, — (2L+1) AZ(JlJz L) AZ(
xW(1,3;1,3,,5, L) w(l',J
y n! (-1)
(n=1 )t (n=1,)! (n—L)!

in which n is defined by

I1,L) A%(101 L)

L, 8hL) 8, 53132( 1)

0 0 =

(11 B1 b.5)

2n =L+, +L

: (11 B1 b.6)
D is zero if l,+l+L is an odd number. A similar expression defines n’. The A% term is given by

A% (abe) = (a+b—c)! ((aa+—bb++ccz!1)(!—a +b+c)! |

(11 B1b.7)

for which the arguments a, b, and ¢ are to be replaced by the appropriate values given in
Egs. (11 B1 b.4) and (11 B1 b.5). The expression for A® (abc) implicitly includes a selection rule
for the arguments; that is, the quantized vector sum must hold

a+b=C or [|a-b|<c<a+b (11 B1 b.8)
with ¢ being either integer or half-integer. The quantity w in Eq. (11 B1 b.5) is defined as
kmax _1 K+1+3;+1 5+, k 1|
w(l, J,1,3,, sL) = (3 (k+1)
(i (k=(L+3,+8))! (k=(1,+ 3, +5))!
1

C =+, + D)) (k=(3,+3, L))"
1
k)t (L+J,+s+L—k)! (I,+J,+s+L—k)!

(11 BLb.9)
X
(I1+Jl+l 4 d, -

(and similarly for the primed expression), where kmin and kmax are chosen such that none of the
arguments of the factorials are negative. That is

kmin

kmax

max{ (I, +J,+s), (L+J,+s), (L+L,+L), (J,+J,+

(L3, ), L+, s), (brleL), " sba
min{ (L+J,+1,+J,), (L+J,+s+L), (l,+J,+s+L)
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Single-channel case

For some situations, these equations can be greatly simplified. When the target spin is zero
and there are no possible reactions (no fission, no inelastic, no other reactions), then each spin
group will consist of a single channel (the elastic channel). In this case, the coefficients
B,.. (E) reduce to

1
BLaa(E) = 4k2 z z z z G{|151|151‘]1}{|252|252‘]2}L

Jp Jy a=(ahsd) c=(alys;d;) (“ Blb 11)
. .

“ (20, +1) (21, +1)

Re[ (1-U,,) (1-U..) | .

where the existence of only one channel requires that the primed quantities of|Eq.(Il B1 b.2)|(be
equal to the unprimed (e.g., @« =a'). The geometric factor G becomes

G{|151|131J1}{|252|252J2}|— = A|151|1513J1 A|252|2523J2 D|151|151|252|252;|—31J2 ! (” Bl b12)
in which the factor A reduces to the simple form

A, = (21+1) (2J,+1) A (1 d;s) (11 B1Db.13)

and the expression for D reduces to

Disishshs:Lys, = (2L+1) A*(J,3,L) A*(L1,L)
(11 B1b.14)
n!

= | (n=1)! (n—I-z)!(n—L)! ’

xW2(1, 3,1, 3,,5,L) 6,

in which n is again defined as in Eq. (11 B1 b.6)|
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I1. B.1.c. Specifying individual reaction types

Early versions of SAMMY permitted users to specify “inelastic”, “fission”, and “reaction”
data. However, the tacit assumption was that all the exit channels are relevant to the type of data
being used. If, for example, three exit channels were specified as (1) inelastic, (2) first fission

channel, and (3) second fission channel, then any calculation for “inelastic”, “fission”, or “reaction”
data types would automatically include all three exit channels in the final state.

Hence, in early versions of SAMMY, true inelastic cross sections (for example) would be
calculated only if all of the following conditions were met:

1. Either “inelastic”, “fission”, or “reaction” was specified as the data type in the INPut file, card
set 8.

2. The exit channel description was appropriate for inelastic channels: The INPut file noted that
penetrabilities were to be calculated (LPENT =1 on line 2 of card set 10.1) and also provided a
non-zero value for the excitation energy.

3. No fission channel (or other exit channel) was defined in the INPut file (and PARameter file).

Beginning with release M5 of the SAMMY code, it is now possible to include only a subset
of the exit channels in the outgoing final state. The third condition in the list above is no longer
necessary, but is replaced by another (less restrictive) condition:

3. Exit channels that are not inelastic have a flag (“1” in column 18 of line 2 of card set 10.1 or
card set 10.2 of the INPut file), denoting that this channel does not contribute to the final state.

(Similar considerations hold, of course, for any other reaction type, not only for inelastic.)

With release 7.0.0 of the SAMMY code in 2006, a more intuitive input is possible. When
channels are specified using either of the particle-pair options (see card set 4 or 4a of Table VIA.1),
then the data type line (card set 8 of Table VIA.1) may be used to specify the name(s) of the particle
pair(s) to be included in the final-state reaction. Specifically, beginning in the first column of
card set 8, include the phrase

FINAL-state particle pairs are
or
PAIRS in final state =

(Only the first five characters are required, the others are optional.) Elsewhere on the same line,
give the eight-character designation of the particle pair(s) to be included in the final-state reaction.
Only channels involving those particle pairs will be included in the final state; any channels not
involving those particle pairs will not be included. (Caution: The particle pair name must be exactly
as it appears in the INPut file, including capitalization.)
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The same two command lines may be used for angular distributions with specific final states,
provided the phrase “ANGULar distribution” is given later on the same line.

See test case tr159 for an example which includes three reactions, one being (n,a) and the
other two inelastic (n,n"). Various options for input are given in this test case.

Run “k” of test case tr112 shows an example for the angular distribution of a reaction cross
section.
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11.B.1.d. External R-function

When generating cross sections via R-matrix theory, it is important to include contributions
from all resonances, even those outside the energy range of the data. Tails from negative-energy
resonances (which may correspond to bound states) and from higher-lying resonances can contribute
significantly to the “background” of the R-matrix and must therefore not be omitted. There are
infinitely many of these resonances, so approximations must be made.

The usual approximation is to use pseudo or dummy resonances to approximate the effect of
the infinite number of outlying resonances. The energy associated with a dummy resonance must be
outside the energy region for which the analysis is valid.

For discussion regarding two different philosophies for determining appropriate choices of
dummy resonances, see Leal et al. [LL99] and Frohner and Bouland [FFO1].

Any number of additional possibilities exist for approximating the contribution of the
external resonances to the tail of the R-matrix. A logarithmic parameterization of the R-function is
implemented in SAMMY: ; note that this is properly denoted as a function rather than a matrix,
because it is diagonal with respect to the channels. The form used in the code is

RCeXt(E) = ﬁcon,c + Elin,c E + ﬁq,c E 2 - Slin,c( cup - Ecdown)

E— Ecdown

_(Scon,c+ Slin,c E) In|:

Any or all of the seven free parameters may be varied duringa SAMMY analysis (see Table VI B.2,
card set 3, and card set 3a). Note that R is strictly real in this parameterization.

The u-parameters (i.e., the parameters on which Bayes’ equations will operate, as described
in Section IV.C) associated with the external R-function are given by

u(Efm)=EP u(Er) =EX
U(Regne ) = Reon U(Rine)=R

lin,c

u (Scon,c) = \/ Scon,c u (Slin,c) = SIin,c

u(R,.)=R

q.C q.c

(11 B1d.2)

Of the current ENDF formats [ENDF-102], only new LRF = 7 format permits this type of
parameterization of the R-function. The more commonly used LRF = 3 format (the so-called Reich
Moore format) allows only the dummy-resonance option.
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11.B.2. Simulation of Full R-Matrix

While SAMMY does not yet have the ability to calculate the full (unapproximated) R-matrix
of Lane and Thomas [AL58], it is possible to use the Reich-Moore approximation in such a way that
it mimics the full R-matrix with a high degree of accuracy. This is necessary, for example, in cases
where there are interference effects between the (incident) neutron channel and a gamma channel —
that is, for some low-mass nuclides.

The Reich-Moore approximation involves an aggregate treatment (“excluded channels™) for
the gamma widths (capture widths). Therefore, to approximate the full R-matrix, one sets the Reich-
Moore gamma width to a very small number and uses an exit channel to define the actual gamma
channel:

1. Setthe SAMMY gamma-channel widths to a very small number, perhaps 0.001.

2. Define an exit channel to be the actual capture channel and assign appropriate values for the
widths. Quantum numbers for this channel will be the same as those for fission channels (in
particular, set LPENT = 0).

3. When calculating capture cross sections, set the IFEXCL flag to 1 for all other (non-gamma) exit
channels. (See|Section 11.B.1.¢ and card set 10.1 or 10.2 of Table VIA.1 for details.) When
calculating other reaction cross sections, set the IFEXCL flag to O for the reaction channels of
interest, tol for the capture channels, and to 1 for any other reaction channels to be excluded.

When utilizing this option, SAMMY users should take care that results are not unduly
influenced by the approximation in step 1 above. To test this, make radical changes in the value
used for the gamma widths (e.g., set the value to 100.0 or 10°) and recalculate the cross section.
Note that it is not possible to set these values to zero; doing so results in numerical overflow
problems (because computers do not know how to calculate zero divided by zero).

Comparisons between cross sections calculated by SAMMY and those generated by the R-
matrix code EDA [GH75] using the same R-matrix parameters have shown agreement to ~5
significant digits [INDCO03]. Some of the runs for those comparisons are now assembled into
SAMMY test case tr125.

Test case tr110 shows an artificial but extreme example of a situation in which use of the
Reich-Moore approximation gives very different results from those obtained via the full R-matrix.
For this example, there are two resonances with parameter values as shown in ; plots of
the curves calculated with those parameters are shown in As evident from the figure,
the Reich-Moore curve lies between the two extreme R-matrix curves which show constructive
(dashed curve) and destructive (dot-dash curve) interference.
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Table Il B2.1. Parameter values used to illustrate Reich-Moore vs. full R-matrix calculations

Sign
A Energy (MeV) T,6V) T,@EV) xI, (V)
Reich Moore T i0 10 10000

2 1.1 1.1 11000

Pseudo-full R-matrix # 1 1 1.0 1078 10000 1.0
””” 2 11 10® 110000 11

Pseudo-full R-matrix # 2 1 1.0 1078 10000 1.0
””” 2 11 10®  11000. = -11

& Remember that the value given in the SAMMY PARameter file is not the partial width I" (which is always a positive

number); rather, it is the sign of the reduced-width amplitude y multiplied by the partial width I". Hence, the negative

WI entry of this table is actually associated with the reduced-width amplitude for the capture channel. See
for further discussion.

Figure 11 B2.1. Reich-Moore approximation vs. full R-matrix for
artificial example of test case tr110.

10

910 980 1050 1120 1180

> Solid line = Reich Moore
— - — P Dot-dash = full R-matrix # 1
— — = =p Dash = full R-matrix # 2
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Different treatments for different capture channels

Occasionally it may be convenient to treat certain gamma widths individually while treating
most gamma widths in aggregate fashion. This can be accomplished by defining “particle” channels
for the individual widths (as described above), and using the Reich-Moore capture channel
(eliminated width) for the aggregate width.

To calculate the capture cross section in this situation, it is not sufficient to specify the data
type as “CAPTURE”, because that would give only the contribution from the aggregate width. To
obtain the contribution from the individual widths, specify the data type as “REACTION” or
(preferably) as “FINAL state pairs =" followed by the exact names specified for the gamma-channel
particle-pairs. (See card sets 4 and 8 of Table VI 8.1 and Section 11.B.1.c for details.)

To calculate the complete capture cross section, use “FINAL state pairs =" for the data type,
and add the command line

ADD ELI M NATED CAPTUre channel to final state

This will cause SAMMY to add the contributions from the individual capture channels plus the
contribution from the aggregate channels.

The formula used to calculate the capture cross section is similar to Eq. (11 B1 a.6), with
only the non-capture exit channels included in the summation over c',

Ceaprure (E) = iz Y 2| Xem X XX (11 B2.1)

2
ka J c ¢'= non-capture
exit channels
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11.B.3. Breit-Wigner Approximation

In addition to the preferred Reich-Moore formalism, SAMMY also offers the option to
calculate cross sections using either the multilevel Breit-Wigner (MLBW) or the single-level
Breit-Wigner (SLBW) [GB36]. This has the advantage that the calculation occurs more rapidly
because fewer computations are required; however, it also has the disadvantage that unphysical
cross sections may be generated. Use of this option is discouraged for new analyses; the option
is included within SAMMY for completeness’ sake, to permit use of SAMMY with most ENDF
resonance parameter information, and to facilitate comparisons with older codes such as
SIOB [GD78].

Formulae for MLBW and SLBW cross sections are presented in|Section I1.B.3.a; these

are identical to those used in ENDF files [ENDF-102], although they are not necessarily
programmed in this fashion. Formulae for derivatives are given in|Section 11.D.2

The reader should be aware that the ENDF version of MLBW (and hence, SAMMY’s
version of MLBW) does not correspond to the usual definition of multilevel Breit Wigner.
Instead, only the elastic cross section is calculated with the multilevel formula; other partial cross
sections for the MLBW format are actually single-level.

A note regarding broadening: Historically, the Breit-Wigner formulations had the great
advantage that the cross sections could be Doppler broadened analytically, using the high-energy
approximation to the free-gas model of Doppler broadening (Section I11.B.3).  Results were
written in terms of y and y functions, and computation was relatively rapid. However, with the
advent of modern computers, more accurate cross sections and more accurate Doppler-
broadening computations can be accomplished rapidly, without resorting to these rather crude
approximations. In SAMMY, Doppler and resolution broadening are accomplished numerically,
in the same manner for MLBW and SLBW cross sections as for Reich-Moore cross sections, as
described in Section 111 of this manual.
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11.B.3.a. Single and multilevel Breit-Wigner cross sections

The MLBW elastic (scattering) cross section may be written in the form

o elastic :%Z gJZ{(l—COS 2(0)(2—21—‘,1cr4 /dﬂj
J c g

+2sin2p> ', (E-E,)/d, (11 B3 a.l)
A

{ZFM(E—Ea)/dJZ +(;cmrz/2dzj2} :

p

in which the summation over c includes only incident (i.e., neutron) channels. For SLBW, the level-
level interference terms in this equation are dropped; that is, the summations over 1 in the last line
are outside, rather than inside, the parentheses. The total width I'; in Eq. (11 B3 a.1) is given by

[,=)T,+T, . (11 B3 a.2)

in which the sum over c includes all particle channels (i.e., over all channels except the eliminated
capture channel). Partial widths I, and T, are related to amplitudes y,, and 7, , as in the Reich-

Moore approximation, by
L =277, P,

[ fson = 242 (11 B3 a.3)
and r, =27,

(Note that we have again adopted the convention that the gamma channel be denoted by a bar over
the symbol, even though it is not really treated differently from particle channels in the Breit Wigner
approximations.) The denominator d, in Eq. (I1 B3 a.1) represents

d,=(E-E,) +(T,/2)" . (11 B3 a.4)

For both MLBW and SLBW, the fission cross section is given by

O_fission :lzz gJZZZFMFM‘ ’ (“ B3 3.5)
k J c ¢ 1 dl

in which the sum over c includes only incident (neutron) channels, d, is again given by
Eq. (11 B3 a.4), and the sum over ¢” includes all exit channels. Caution: In principle, Eq. (11 B3 a.5)
could be used to describe any reaction channel, where term “reaction” encompasses any non-elastic,
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non-capture channel. However, the only reaction channel permitted in ENDF is fission; for SLBW
only one fission channel is permitted, and for MLBW two fission channels may be used. In addition,
ENDF allows only one neutron channel (i.e., only one entrance channel). Because SAMMY’s Breit-
Wigner options were created solely for use with ENDF evaluations (for comparison purposes),
similar restrictions apply to the use of the Breit-Wigner approximations in SAMMY . (For the more
general case involving other reactions such as inelastic, (n,p), (n,o), or fission with more than two
channels, use the Reich-Moore approximation as discussed in|Section 11.B.1.c.)

The Breit-Wigner form for the capture cross section is

o oapure :%Z g, ZZ FZ(;FM , (11 B3 a.6)
J c 2 A

where, again, the sum over c includes only incident (neutron) channels. Total and absorption cross
sections are given by the appropriate sums of the other three cross sections,

O_total — O_elastic +Gfission +Gcapture (“ B3 3.7)

and
O_absorptlon :UfISSIOH +O_capture ) (“ B3 3.8)

As noted in Section I1V.C, it is the u-parameters on which Bayes' equations operate. The u-
parameters associated with the MLBW and SLBW resonances are defined similarly to those for
Reich-Moore resonances:

u(E,)=+|E,| . (11 B32a.9)
where the negative sign is chosen if E, <0,

W) =750 (11 B3 a.10)
and
u(T,)=7, - (11 B3a.11)

(The reduced-width amplitudes y, and y,, may be either positive or negative. However, the sign is

irrelevant in the Breit-Wigner equations, for which the reduced-width amplitudes enter only as
squared quantities.)

The matching radius a. may also be varied (i.e., treated as a u-parameter) with the Breit-
Wigner approximations.
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11.B.4. Direct Capture Component

An externally generated direct capture component may be added to the appropriate cross
section types (capture, absorption, and total) by including the phrase

ADD DIRECT CAPTURE Component to capture, total, and absorption cross section

in the alphanumeric command section of the INPut file. When this command is present, the direct
capture component for at least one of the nuclides is provided as a numerical function of energy, ina
separate file (the “DRC file”). SAMMY will linearly interpolate as needed between the energy
points given.

The format of the DRC file is as follows:

First line: key word “NUCIide Number”, followed by an equal sign “=", followed by the
nuclide number as specified in the PARameter file.

Second line:  energy (eV), value of direct capture component (barn), in 2F20 format.

Third line: repeat second line as many times as needed.

Last line: blank.

These lines may be repeated for each nuclide as needed. Not all nuclides need to be included, but
those which are included should be given in the same order as in the PARameter file. (For example,
give the direct capture component for nuclides number 2, 4, and 7, rather than 4, 7, and 2.)

The actual value of the direct capture component added to the capture (and total and
absorption) cross section for any given nuclide is the product of the value determined from the DRC
file and a constant (energy-independent) coefficient whose value is specified as miscellaneous
parameter DRCAP. See Table VI B.2 for details.

Test case tr076 contains examples.
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11.C. DETAILS AND CONVENTIONS USED IN SAMMY

Details of cross section evaluation are often a matter of convention: for example, should
one use I-s or j-j coupling for spin assignments? The spin conventions used in SAMMY are
described in|Section I1.C.1.

Section I1.C.2| describes the conversion of energy and momentum from the laboratory
reference system to the center-of-mass system.

The method used for computing sin2¢ and cos2¢, where ¢ is hard-sphere phase shift, is
described in[Section 11.C.3)

Modifications are needed to the cross section equations when a channel contains two
charged particles. These are described in[Section 11.C.4.

When data from an inverse reaction are used in an evaluation, modifications to either the
measured data or the R-matrix parameters are needed. These are described in Section 11.C.5. |

Section 11.C, page 1 (R7) Page 55



11.C.1. Spin and Angular Momentum Conventions

For any analysis or evaluation, the analyst bears ultimate responsibility for including the
proper spin-group definitions.

This is not the responsibility of the SAMMY program nor of the SAMMY author. SAMMY
will issue warnings for obvious errors, but it is the responsibility of the user to notice and heed those
warnings. It is also the responsibility of the user to ensure that the set of spin groups is complete;
program SAMQUA, described in Section X.J, can be used for guidance in that effort.

It is worthwhile to discuss what is meant by “complete.” Clearly, it is neither necessary nor
possible to include all legitimate values of all of the quantum numbers (I, s, and J), because an
infinite number of spin groups is available. Generally, one should include low values of I, | =0
being always required and | = 1, 2, 3, ... being included when the experimental data require their
inclusion. Foreach I, the user should determine (using SAMQUA or by hand) all possible s-values
leading to all possible J-values. In general, all such channels and spin groups should be included in
the analysis. When the hard-sphere phase shift values are sufficiently large that there is a noticeable
contribution to the cross section from the hard-sphere phase shift, all such channels must be
included. On rare occasions, there may be one resonance (or several) whose high I-value dictates the
presence of a particular channel in a particular spin group, but for which the hard-sphere phase shift
is negligible for all energies of interest in this experiment. In this case, it would be reasonable to
omit other channels and spin groups with this same I-value, without degrading the quality of the
evaluation.

The spin and angular momentum conventions used in SAMMY (and in its predecessor
MULTI [GA74]) are described in [Table I C1.3. Recall that the word “channel” refers to the
physical configuration (e.g., the particular particles involved) as well as to the quantum numbers
given here. For example, an incident channel might consist of a neutron (intrinsic spin i = %)

impinging on a target (sample) whose spin is I, so that the channel spin is s, where § =i + 1 . The
relative orbital angular momentum of this channel (neutron plus target) is I, and total spin is J, where
J =5+1 . Forelastic scattering, the exit channel is the same as the entrance channel. For areaction
such as (n,p), the exit channel contains a proton (spin i' = %2) and another nuclide (spinl"); the
channel spinis s', where §'=i'+1". The relative angular momentum proton-nuclide system is I',
and the total J must satisfy J =5+".

Readers unfamiliar with vector sum rules are referred to{Section 11.C.1.affor a short summary
of the basic principles.
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Table 11 C1.1. Spin and angular momentum conventions used in SAMMY @

FORTRAN name

Value or

Symbol used in SAMMY Meaning range of values
iori' Intrinsic spin of incident or "2 for neutron;
outgoing particle in general,
integer or
half-integer
lorl' SPINI Spin of target [i.e., sample]  Integer or
or residual nuclei half-integer
lorl' LSPIN (channel 1, group Orbital angular momentum  Non-negative
number) or in incident or outgoing integer
channel
LSPIN (whatever channel,
group number)
sors' CHSPIN (channel 1, group  Incident or outgoing S=1+i or
number) or channel spin, equal to the
vector sum of the spins of S T4
CHSPIN (whatever the two particles in the
channel, group number) channel
J SPINJ (group number) (1) Spin of resonance J=1+5%
=1'+§'

(2) Spin of excited level in
the compound nucleus

(3) Total angular
momentum
quantum number

% Note: The channel spin's (s') was denoted by j () in early versions of this manual.
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The spin statistical factor g; appearing in the equations for cross section (see Section I1.A)|is
given in terms of the spins i and | of the two particles in the entrance channel and the totai spimJof
the particular channel; that is

(2J+1)
= I1ClL.1
97 i) (21 10) ed
in the general case, and
(23 +1)
= — I1CL.2
9 2(21 +1) ( )

when the incident particle is a neutron or proton.

A few words of discussion about the use of these quantum numbers in SAMMY are
warranted here, to avoid possible confusion:

(1) Values for the spin i of the projectile and spin | of the target particle are specified in the
particle-pair definitions, card set 4 of the INPut file (see Section VI.A). Values for spins i’ and I’
(for exit particles) are also given in card set 4.

(2) With older input formats, incident spin i is assumed to be 2 unless otherwise specified
(in card set 3). |is given as SPINI in card set 10.1. Values for spins i and | ' are not specified.

(3) Projectile spiniand target spin | are required for evaluation of the spin statistical factor g,
and in calculation of the channel spins. Exit particle spins are used to calculate channel spin s' but
are otherwise unused.

(4) Channel spins sand s' are used as channel descriptors in the output (LPT or 10 file; see
Section VII). SAMMY will issue a warning statement (but not abort) if these values are inconsistent

(if, for example, § =i +1).

(5) The orbital angular momentum | is used for generating penetrabilities, shift factors, and
potential phase shifts.

(6) To the extent that it is possible (depending on which input format is used), SAMMY will
warn of inconsistent spin or parity values, and abort when obvious errors occur. Users should read
through the SAMMY .LPT file, especially at the beginning of an evaluation, to check for warning
messages.

(7) Finally, users are urged to review the discussion in the first two paragraphs of this
section, to read and heed the suggestions in Section X1 (especially those under the heading “Step 2.
Preparation of INPut and PARameter files”), and to make use of the auxiliary code SAMQUA when
preparing the spin group information.
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11.C.1.a. Quantum vector algebra

For a complete description of sum rules for quantum vectors, the reader is referred to
textbooks on elementary quantum mechanics. Here we simply state the vector sum rules without
detailed explanation.

Let @ be a quantized vector. The value of this vector, generally written either a or| a | , 1S

either a positive half-integer or a positive integer. That is to say, a can have any of the values 0, 1/2,
1, 3/2, 2, 5/2, etc. For example, the spin of a neutron or proton is 1/2, and the spin of an alpha
particle is 0. The orbital angular momentum | for a pair of particles is integral, | =0, 1, 2, 3, etc.

Given two quantized vectors & and b , and let ¢ =a+b be the sum of the two vectors. The
possible values for c are then

la-b| <c<a+b , (lClal)

where the allowed values of ¢ are separated by one unit. Examples are shown in TTable 11 C1 a.1
Values of a and b are in the left-most column and the uppermost row; values for c are in the other
cells of the table. Because Eq. (I1 C1 a.1) is symmetric with respect to a and b, entries are made
only in the lower triangular half of the table.

Each spin vector has an associated parity, which can be positive or negative. For example,
protons, neutrons, and alpha particles have positive parity; many nuclides have negative parity. The

parity associated with angular momentum | is (—1)I . Parity is conserved when two vectors are

added; the product of the parities of the two components is the parity of the resulting vector. A
vector which is formed as the sum of two positive-parity vectors will have positive parity, a vector
which is formed as the sum of two negative-parity vectors will have positive parity, and a vector
which is formed as the sum of one positive-parity vector and one negative-parity vector will have
negative parity. In other words, if a and b have the same parity, ¢ has positive parity. Iffaandb
have different parity, ¢ has negative parity.
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Table 11 C1 a.1. Allowed values for the sum of two quantized vectors

o |[» |1 |32 |2 | 5/2 | 3 | 7/2 | 4 |or2 |
0o |o 5'
12120, 1: :
1 |1 12 0, : :
32 1, 2 5 :
32321, 212, ‘0 :
: 302, 1, -
5/2 12, 3 ¢
2 |2 :3/2, -1, 12, -0, 1,
5/2 12,  3/2, 2, 3,
3 5/2, 4
712
5/2[5/2:2, 3:3/2, -1, 1/2, 0, 1,
; 512, 2, 312, 12, 3,
/2 3, 4 :5/2, 4,5
1712, :
:9/2
3 |3 :is5/2, ‘2 3/2, 1, 2, ‘12 L0, 1,
712 3, 5/2, :3, 4, 3/2, 2, 3,
4 2712, 5 1 5/2, 14, 5,
9/ 2 : 2712, )
-9/ 2, :
11/2
712 |7/2:3, 4 52, 2, 1312, 1, 2, -1/2, 0, 1,
: 712, 3, 15/ 2, 3, 4, :3/2, 2, 3,
'9/2 4,5 17/2, 5 6 5/ 2, 4, 5,
19/ 2, 7/ 2, 6, 7
11/ 2 9/ 2,
11/ 2,
13/2
4 |4 “7/2, °3, 5/2, ‘2,3 32, 1, 2, -1/2, L0, 1,
9/2 4, 72, 4,5 52 3, 4, 32 -2, 3,
5 19/2, 6 712, 15,6, 52 L 4, 5,
S 11/ 2 9/ 2, -7 712 -6, 7,
11/2, -9/ 2, '8
13/ 2 L 11/2, -
- 13/ 2,
15/ 2
9/2|9/2 4, 5:7/2, 13,  :5/2 2, 3, ‘3l2 -1, 2, 1/ 2, -0,
: "9/2, 4, 712, 4, 5, 15/2, "3, 4, 3/ 2, "1,
-11/2 .5, 6 -9/2, 6, 7 71 2, -5, 6, 5/°2, - 2,
S 11/ 2, 9/ 2, 27, 8 712, 3,
13/2 11/2, - 9/ 2, 4,
13/ 2, 11/2, 5,
15/ 2 13/2,  :6,
15/2, 7,
17/ 2 . 8,
9
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11.C.2. Kinematics

The center-of-mass (COM) momenta, K =7k (initial) and K'=#k' (after the
interaction), needed in the formulae for cross sections (see Section 11.A)|may be found in terms
of laboratory energies E and E' by utilizing conservation of energy and momentum. The
interaction is shown schematically in Figure Il C2.1, in both the laboratory (lab) and COM
systems.

In this section we summarize the relevant equations relating the various momenta,
energies,_and angles involved in the description of the reaction. Details of the derivations are
given inSection 11.C.2.a.

Figure 11C2.1. Schematic of particle pairs for kinematics calculation.

Lab, after

Lab, before

p
m—
(d

~0) -

COM, after

COM, before
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Nomenclature: The two particles have mass m and M before the interaction (i.e., in the
incident channel); the exit channel may contain completely different particles. The initial
momentum of the incident particle is p ; the target particle is stationary (momentum G =0); in

the COM, the initial momentum of the incident particle is K =hk, and the target particle’s

momentum is —K . Primes refer to values after the interaction (in the exit channel). Quantities
measured during an experiment are incident laboratory energy E = p*/2m, laboratory energy of
the exiting particleE'= p'?/2m’, and laboratory angle & relative to the incident direction. All
other quantities will be specified in terms of these quantities.

Equation numbers in the rest of this section relate to the derivation in the following
section.

The Q-value, Eq. (I1 C2 a.6),|is defined as

Q=m+M_m—M" (11 C2.1)

and is related to the laboratory threshold energy ,|Eq. (11 C2 a.24), |here denoted by = , via

_m+M
M

[1]

Q . (11 C2.2)

The initial momentum K in the COM,| Eqg. (11 C2 a.2)l is given by

K=#k = M N2mE (1nca.3)
m+M

and the final COM momentum K',|Eqg. (Il C2 a.8)| by

2mM’ M _
K':\/(m'TLM') e EE] (11 C2.4)

The laboratory energy of the outgoing particle, |Eq. (ncz a.25)| is equal to

. M’ M 2 N\ —_
o CEBYCET) {;/,Uﬁ/l—;/ (1-22) } [E-7] (Il C2.5)

in which g =cosé, and vy is given in Eg. (11 C2 a.26) as

pommmyM _E (11 C2.6)
M'M m+M E-=
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The relationships between the COM and lab angles are, [from Eqgs. (11 C2 a.29)|and

(11 C2 a.31)
v=—y(1- )+ p 1-7* (1- 1) (11 C2.7)

and u=—2r (11 C2.8)

J1+7%+2pv

where v =cos £ and g is the COM angle. The transformation of angle-differential cross sections
from COM to lab involves the derivative of v with respect to x, as given by Eq. (11 C2 a.33):

dv :(Wﬂ/ 1—72(1—ﬂ2))2

E 1-5? (1—,112)

(11 C2.9)

See|Section II.B.1.b| for details on the calculations of angular distributions with the Reich-Moore
formulation of R-matrix theory.

In older versions of input to the SAMMY code (when particle-pair_input is not used), the
excitation energy can be specified either in the laboratory system (as in|Eqg. (Il C2.2)) or in the
center-of-mass system (as—Q); SAMMY will make the appropriate conversions. The default is

laboratory. Users who wish to override the default (or who wish to keep a reminder handy)
should include (in INPut file) the phrase

CM NON- COULOVB EXCI Tati on energi es, or
LAB NON- COULOVB EXCltation energies

as needed for the non-Coulomb case and

CM COULOVB EXCI TATI On energi es, or
LAB COULOVB EXCI TATI on energi es

for use with charged-particle channels.

When using the key-word particle-pair input option (card set 4 of Table VI A1), it is
possible to specify the Q-value (equivalent to the negative of the center-of-mass excitation
energy) rather than the excitation energy. It is recommended that Q-value rather than excitation
energy be given, to avoid any ambiguity when more than one nuclide is present in the target.

Within SAMMY, the conversion factors from laboratory energy to COM momenta are
calculated in subroutine Fixrad in segment/subdirectory “old” (and also used in segment “new”)
and stored in an array “Zke” which must then be multiplied by the square root of the energy
(minus the adjusted Q value) to give k or k'. Appropriate numerical constants are included to
facilitate conversion from units of eV (for energy) to inverse Fermi (for wave number, which is
momentum divided by 7). Values for constants are described in Section I)X.A of this report.
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11.C.2.a. Derivation of kinematics equations

Let V represent the velocity of the center-of-mass (COM) system relative to the
laboratory system. Before the interaction, the relationships between the velocities are

+V  and O:—%+\7, (11 C2a.1)

3 |
3| X

from which we can solve for V and K in terms of p:

and K=—M_5 . whichimplies V=—P _ (1 C2a2)
m+M (m+M)

V =

§|7<1

The total energy in the lab must equal the energy in the COM plus the energy of the
COM. Before the interaction, this gives us

Elab = Eof coMm + Ein coM
(1nNc2a.3)
2 m+M)V 2 2 2
p_+m+|\/|:( ) KK e
2m 2 2m  2M

which is clearly true, as can be seen by substitution of the expressions in Eq. (Il C2 a.2) into
(I1 C2 a.3). We are using non-relativistic energies but nevertheless including the masses because
they may be different before and after the interaction. Within the COM, conservation of energy
requires that the initial and final energies are equal:

Ein com — E Iin com
K 2 ) ' - (I C2a.4)
—+—+m+M = + +m+M"' .
2m  2M 2m'  2M'
Solving for K" in terms of K gives
12 2
K2 (i+Mij = KT(i+ﬁj+(m+M—(m'+M')) or
m m
(I C2a.b)
K?(m+M' K2(m+M
| = +(Q)
2 \mM 2\ mM
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in which we have defined the Q-value as
Q=m+M-m-M" . (11 C2a.6)

Rewriting Eq. (11 C2 a.5) using the value for K from Eq. (11 C2 a.2) gives

L KZ(mJFMijQ}

m+M" | 2mM
amM' [ M )’ (m+M

= + I1C2a.7
m+M' {pm+M} (ZmMj Q} ( )

' v [ A2
:ZmM p° M 10
m+M" | 2m (m+M)

This can also be written as
K'2 = 2m'M'
m+M!'

M
{E(m+M)+Q} , (11 C2 a.8)

in which E is equal to the kinetic energy of the incident particle in the laboratory system,
_ P
E=— . (1c2a.9)

This definition of E is used throughout this manual; cross sections are always specified in terms
of this energy unless otherwise noted explicitly.

The transformation from COM to laboratory gives values for momenta after the
interaction. Again, we add velocities, similar to Eq. (Il C2 a.1), using Eq. (11 C2 a.2) for V :

K.y K, P (11 C2 a.10)
m' ' " (m+M)
(An analogous set of equations holds for the second particle,
9 __ K y__K,_»p (11 C2 a.11)
M' M M (m+M)

but we shall not be concerned with this particle now.)

Section 11.C.2.a, page 2 (R7) Page 68



Setting 2 =cosé and v =cos S, we can write Eq. (11 C2 a.10) in terms of components

pcosezK cos,b’+ p and pS|nq:Ksm,B+o (11 C2a.12)
m' m' (m+M) m' m'
or
] 1 mlp ] 2 ] 2
=K'v+ and 1-p4° =K'\ 1- , I1C2a.13
pu=K'v (M M) p'y v ( )

in which we have set x=cosé@ and v =cosf. Squaring and adding the two equations in
(Il C2 a.13) gives

({252 -

) (INCc2a.14)
1 2 1 4,2 ' 2
(K V] + K'y1-v +2KV p N p |
m' m' m' (m+M) ((m+M)
or
12 12 ' 2
plZ = K|2+ |2K Vp + p 2 (“C2a15)
m m* m(m+M) (m+M)

Replacing K'v with its equivalent from Eq. (11 C2 a.13) puts Eg. (I1 C2 a.15) into the form

12 12 ] 2
P~ _K° 20 Jy,oMPL, P , (11 C2 a.16)
2
m+MJ (m+M)

which can be rearranged as
] 12 2
012 = Kl2+(2mm+i/|ﬂ)pl_(::+l\5l))2 , (11 C2 a.17)

Solving for p' in terms of other quantities gives
m' m Y m' Y
L + 2, 2 2+K12
P m+M PA \/(m+Mj bx (m+Mj P
2
m' 2( 2 m+M 2
+ -1)+ K .
m+M{pﬂ \/p (ﬂ ) ( m' j }

(Consideration of the p = 0 limit confirms that this choice of sign for the radical is appropriate.)

(11 C2 a.18)
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From Eq. (Il C2 a.7), we know K" in terms of p. Therefore, to simplify Eq. (11 C2 a.18),
we define &£ as

_(_m P
5_(m+|v|j|<' . (11 C2 a.19)

Using this definition of £, Eq. (11 C2 a.18) can be put into the form

mTM{py+\/p2(u2—1)+§2p2 }

o (11 C2 a.20)

p':

The quantity outside the curly brackets is exactly equal to K'; making this substitution gives

p':K'{§y+,/1—§2(l—y2) } . (I C2a.21)

The laboratory energy of the outgoing particle can then be found as

2r:-= ;mz {5 ui|1-8(1-17) }2 , (Il C2a.22)

or, using Eq. (11 C2 a.8) for K",

M’ 2 M
E'= { +,/ 1= (1= } E + : I1C2a.23
o vER AR (1-22) EVISL ( )
It is customary to define the laboratory threshold energy, here denoted by =, as
= E_m:AMQ . (11 C2 a.24)

Interms of =, Eq. (Il C2a.23) for E' becomes

£ M M

T M (me M) {éuﬂ/l—fz(l—uz) } [E-E] . (11 C2 a.25)
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Equation (11 C2 a.19) for & can also be written in terms of =, using Eq. (11 C2 a.8), as

2
o)
2mE , , ,
52 - m+M = lﬂﬂi . (11 C2 a.26)
2m'M’ £ M +Q M'M m+M E-E
m+M:' (m+M)
Next, i e transformation of angle from laboratory 8 to COM £ and vice
versa. From Eqg. (11 C2 a.13) we have
1 1 m' p 1 1
p'u=K'v+ =K'v+K'¢ (I C2a.27)
(m+M)

in which we have made use of Eq. (I1 C2 a.19)| Substituting Eq. (11 C2 a.21) into this equation

gives
py=K'gﬂ+J1—§%L1f)}ﬂ=KwHJC§ | (11 C2 a.28)
v=—&(1- )+ 1-E2(1- 1) . (11 C2 a.29)

This equation can be inverted to give u in terms of v as follows:

which reduces to

[v+§(1—y2)}2=y2[l—§2(1—,u2)} ,
Vz+2§V(1_lu2)+§2(1_2#2+ﬂ4)=#2_§2ﬂ2+§2ﬂ4 ,

y2(1+§2+2§v)=v2+2§v+§2 ’ (11 C2a.30)
s VE42Ev+E?
(1+&7+2¢v)
or, finally, as
pe—Y*e (Il C2a.31)

J1+E2 428y
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The transformation of cross section from COM to lab requires the derivative of v with
respect to y; this is found from Eq. (11 C2 a.29):

)

du du

=2+ | 1-87 (1-p?) + £ “5 (11 C2 a.32)
N £

2ug1-& (1= g ) +1-¢7 (1—u )+u g

1-&°(1- )

giving, finally, the expression for the derivative

a (wer1me(1-a))

dv _ (11 C2 a.33)
du 1—52(1—/12)
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11.C.2.b. Kinematics for elastic scattering
In the case of elastic scattering, primed quantities are exactly equal to unprimed, and the
Q-value is zero. The equations of Section 11.C.2 therefore simplify to the forms shown here.

The initial momentum K in the center-of-mass (COM) system is found from|Eq. (11 C2.3)
to be

K=tk=—"_ /2mE | (11 C2 b.1)
m+M

and the final COM momentum K" is found in Eq. (11 C2.4) to be

K=—M_ PmE . (11C2b.2)

m+M

The laboratory energy of the outgoing particle is found fromlEqs. (11 C2.5) and (11 C2.6) |to be

E':[ij {my+\/|\/|2_m2(1_ﬂ2) }TE , (11 C2 b.3)

with g =cosé.

The relationships between the COM and lab angles, Eqgs. (11 C2.7) and (Il C2.8)| become

v:—%(l—yz)w\/l—(%j (1-42) (I C2 b.4)

My +m
H= 2 2
JMZ 4+ m? +2mMy

and : (11 C2 b.5)

where v =cos g and g is the COM angle. The derivative of v with respect to y, Eq. (11 C2.9), is

d_v= (,um-i-\/ Mz—mz(l—,uz))2
du J MZ-m? (1 42°)

(11 C2 b.6)
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11.C.3. Evaluation of Hard-Sphere Phase Shift

Formulae for the hard-sphere phase shift (otherwise known as the potential-scattering phase
shift) are given iff Table IT A1 for non-Coulomb interactions. What is actually needed in SAMMY
is not, however, the phase shifts ¢ themselves but rather cos(2¢) and sin(2¢). Since evaluation of ¢
requires the inverse tangent function, results for cos(2¢) and sin(2¢) are more readily generated
with fewer computer round-off errors by using trigonometric relationships to generate formulae for
cos(2¢) and sin(2¢) directly.

For all I, it is clear from Table 11 A.1 that ¢ may be written in the form

p=p-X , (11 C3.1)
where
X =tan™ f (11 C3.2)

and f is a different function of p for each value of I. From Eq. (Il C3.1), using elementary
trigonometric relationships, we find

COSp = COoSp CcosX + sinp sin X (11 C3.3)

and
sinp =-cosp sinX + sinp cosX . (11 C3.4)

Thus, cos (2 ¢) becomes

cos(2¢) = 2cos’p—1=2c0s’ p cos’ X (L+tanp tan X )* —1

cos’ p (11 C3.5)

=2
1+ 2

(1+ f tan p)2 -1

Similarly, sin(2 ¢)can be written

2cospsing = 2cos’ p cos® X (1+tan ptan X ) (—tan X +tan p)

2 I1C3.6
= Z(ios—f’zo(1+ftanp)(—f+tanp) : ( )
J’_

sin(2¢p)

Equations (11 C3.5) and (11 C3.6) are the form used in SAMMY to evaluate the hard-sphere
phase shift terms for non-Coulomb situations.
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11.C.4. Modifications for Charged Particles

The penetrabilities Py, shift factors S;, and potential-scattering phase shifts ¢, defined in
Table Il A.1|apply only to non-Coulomb interactions such as those involving incident neutrons.
Often, however, the two particles in a channel will both have a positive charge; examples are the exit
channels for (n,a) or (n,p) interactions, and the incident channels in the inverse (reciprocal)
measurements (o,n) and (p,n). In this case the expressions for penetrabilities, shift factors, and
phase shifts must be modified to include the long-range interaction; see, for example, the discussion
of Lane and Thomas [AL58].

An extension for SAMMY to include Coulomb penetrabilities, shift factors, and phase shifts
was developed by R. O. Sayer [RS00] (and modified by the SAMMY author) and used first for
analysis of *°0 data [LL98, RS00]. FORTRAN routines used for this purpose are a modified version
of the routine COULFG of Barnett [AB82].

Additional changes were required to calculate the cross sections for incident charged
particles; details are given in Section 11.C.4.a] Because the Coulomb interaction is long range, only
the angle-differential cross sections are calculable; the angle-integrated cross sections are infinite.

Expressions for Py, Sy, and ¢, for particle pair « involve the parameter 77, , which is defined as

2
:Zazaelua

, 11 C4.1
n’k, ( )

up

where z and Z are the charge numbers for the two particles in the particle pair. The reduced mass

4, 1s defined in the usual manner as
i, :mt—Ma , (11 C4.2)
m, +M,

where m_ and M are the masses of the two particles in channel a. The center-of-mass (COM)

momentum 7k, is defined in the same manner as in Eq. (11 C2 a.8), as

2m,M, M

h’k? =
“ (m,+M,)(m+M)

(E-Z) . (11 C4.3)

In Eq. (11 C4.3), the masses of particles in the incident channel are denoted without subscripts; these
masses may be different from the masses in particle pair a. If the excitation energy is given in the
COM system, this expression takes the form

2m M M m+M
hk?: = a__a E - = . I1C4.4
2 (ma+Ma)(m+M)( [ Y }J (Ircad)
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In the SAMMY input, the user can specify the value of the excitation energy either in the
laboratory system [as in Eq. (11 C4.3)] or in the COM system; SAMMY will make the appropriate
conversions. The default is laboratory. Users who wish to provide COM values should include the
phrase “CM COULOMB EXCITATION ENERGIES” as needed.

The reaction Q-value is the negative of variable =.,,,= ECHAN (in the COM system) in

card set 10.1 or 10.2 of Table VI A.1. When using the particle-pair input, card set 4 or 4a of
Table VIA.L, it is possible to give the Q-value directly; this is the recommended input format.

Recall that a channel is defined by the particle pair (with mass, spin, and charge for each of
the two particles, plus the Q-value) plus the spin quantum numbers I, s, and J. Quantities defined
above in Egs. (11 C4.1) through (11 C4.4) depend only on the particle pair o and not on the spin
quantum numbers. Other quantities (below) depend also on the value of I.

If ac is the channel radius for this channel, we again define p as

p =k, a, (11 C4.5)

The penetrabilities B (7, p), shift factors S, (7, p), and phase shifts ¢, (77, o) are then calculated as

functions of F, (17, p) and G, (#,p), the regular and irregular Coulomb wave functions, respectively.
The equations are as follows:

0 p OA G,
P=" S, o and cosg, =4 (11C4.6)
I P |
where
A =F’+G} . (I C4.7)

In Egs. (11 A.1) and (11 A.5), the Coulomb phase-shift difference w; is required for charged-
particle interactions. From Lane and Thomas [AL58], this quantity has the value

0 =0

¢ itan’l (77_0‘) 10
n=1 n

(11 C4.8)

Finally, we note that an alternative version of the Coulomb functions is available in
SAMMY. This alternative, modified from files provided by Hale [GHO02], requires longer run time
but appears to be more accurate at low values of p (and corresponding high values of ). SAMMY
will automatically switch to the more accurate version when it discerns the need. To invoke this
alternative for all calculations, include the phrase “USE ALTERNATIVE COULomb functions” in
the INPut file.
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11.C.4.a. Charged-particle initial states

To derive the equations for the angle-differential cross sections for charged-particle
incident channels, we begin with the Lane and Thomas [AL58] expression [page 292, Eq. (2.6)].
When this expression is corrected (for a missing complex conjugate, a missing minus sign, and
missing delta functions), summed over the exit channel spinss’', and averaged over the incident
channel spins s, the resulting equation for the angle-differential cross section is

do
dQCM

ZBLaa COSﬁ) %‘Ca (ﬂ)‘zé‘aa'

a

\/729J R{—{ ZIWMZ_U“JC P(cos,b’)}

(I C4al)

Jsl

Here we have again used the convention that ¢ = {a,l,s,J}. For the charged-particle case, the

definition of BLM.(E) is modified slightly from the non-Coulomb case tEq. (11B1 b.2)1 to give

L= 2L T % ¥

J l1sy Iy sy (PEP) PEP)

1
LR PR S (PEPIPEPRIS IR (Zi +1)(2| +1)

(11 C4 a.2)

x G

x Re| (€5, U, ) (€76, . Ul )| -

In the final line of Eq. (Il C4 a.2), the quantity c; is substituted for the expression {a,ll,sl, Jl},

cofor {a,l,,5,,d,}, ¢, for {&'1",s",3,},and c', for {a"1",,5",,J,} . The geometric term G in

Eq. (11 C4 a.2) is the same as for the non-Coulomb case and is defined in [Egs. (11 B1 b.3) to
(11 B1 b.10){ Notation for summation indices is the same as in the non-Coulomb case.

What is different here is the presence of the exponential involving the Coulomb phase-
shift difference w,, defined in|Eq. (11 C4.7)| Also, the scattering matrix contains the wy, in the
definition of Q; the Sommerfeld parameter 7, in[Eq. (IT C4.1)) is defined as

_1Z¢€%p,

= I1C4a3
77(1 hzka ( )

Section 11.C.4.a, page 1 (R7) Page 79



The additional terms in Eq. (11 C4 a.1) involve the function C_, which is defined as

B L ) ﬁ —2in, In [sin(?ﬂ
C, = mna cosec (zje : (11 C4a.d)

It is this term which is infinite at #=0 (forward scattering) and which causes the (angle-
integrated) elastic-scattering cross section to be infinite.

Center-of-mass vs Laboratory
Angular distribution cross sections are sometimes reported as if measured in the center-
of-mass system rather than in the laboratory system; hence, SAMMY can calculate either

version. To specify which is wanted, insert one of the phrases

USE CENTER OF MASS Cross sections
USE LABORATORY CROSS sections

into your INPut file (see Tables VI A.1 and VI Al.2). Center-of-mass is the default.
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11.C.5. Inverse Reactions (Reciprocity)

Occasionally a user may wish to include data from an inverse reaction in the same
evaluation as the forward reaction. For example, for an evaluation of the °O resonance
parameters, Sayer [RS00] wanted to include *°O(n,a)*C data. No such data existed, but
3¢ (a,n)**0 data were available.

Unfortunately SAMMY does not have the capability of including reciprocal data in the
same evaluation (using the same resonance parameters). SAMMY was designed with the intent
of treating one incident particle (originally a neutron) and many different types of nuclides
within the target. Other codes (e.g., EDA [GH75]) were designed with a different philosophy:
to simultaneously treat all interactions leading to the same compound nucleus. Eventually the
SAMMY author hopes to add similar capabilities to the SAMMY code.

Meanwhile, two alternatives are available: (1) The SAMMY user can convert the data
using reciprocal relationships, and include the converted data within his or her evaluation. (2) If
there is no need for simultaneous” fitting, resonance parameter values can be converted to those
appropriate for the reciprocal reaction. Either of these two can be accomplished by application
of the principle of detailed balance.

To convert the cross section from the A'(a', a) Areaction to the A(a,a') A' reaction, we
first consider the center-of-mass (COM) system, in which the energies are easily related by

Ecow = E'cou— Q - (11 C5.1)

Elementary kinematics (as illustrated in|Figure Il C5.1)| gives the conversion to the laboratory
values E and E',

M M’ M
E = E , E' =—mE", =-— I I1 C5.2
COM m+M coMm m.+M. Q m+M lab ( )
and algebra then gives
M m+M'
E'=(E-E . I1 C5.3
( Iab) m+M M. ( )

* By “simultaneous” is meant either (1) truly simultaneous or (2) “sequential using the covariance matrix from one
SAMMY run fitting one data set as input to another run fitting another data set.” See Section IV of this manual for
details of both possibilities.
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Figure 11 C5.1. Schematic of kinematics for inverse reactions.

Lab, inverse reaction

Lab, forward reaction
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The R-matrix for the A'(a',a)A system must have the same value (at comparable energies) as
the R-matrix for the A(a,a’) A’ system. Hence

7'/107'/10"
R' .=
;E;—E'—ir'ﬂy/z

_ Z VeV aer _ Vackacr -R
M m+M'] . Z:E —E-il. /2 &

Y E' —|(E-E —ir'. /2 * = Ay
* [( 'ab)m+|v| M } A7

(11 C5.4)
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In order for the equality on the bottom line of Eq. (Il C5.4) to hold, the unprimed resonance
parameters must be defined as follows:

E,=E%0Q+E . Fe=T"%0a ., 7//1c:7'/1c\/a ' (I1C5.5)

m+M M’
q = { v } [m'+M'} (11 C5.6)

(for ¢ = any channel, for example neutron, fission, or capture). These equations may be used to
convert the resonance parameters.

where

To convert the experimental data, recall that there is a multiplicative kinematic factor of
1/K?, where K is the momentum of the incident particle in the COM frame. For A'(a',a)A, this

term is

1 m+M' ?
K 12 = ZET]I(M ,)Z)E, ! (“ C57)
and for A(a,a’) A", the term is
1 m+ M ?
K2 (ZmM Zé ' (11 C58)

The experimental cross sections must be multiplied by the ratio of these two values, and
appropriate energy substitutions made.

Another multiplicative factor that must be adjusted is the spin statistical factor, which
also reflects the parameters of the incident channel. Since the compound nuclear spin J is the
same in either system, the correct multiplier is the ratio of the two:

pnayn  (20+1)(21'+12)
C(2i+1)(21+1) (11C59)

gJ:A'(a‘a)A

With these changes, the cross section for the A(a, a') A'reaction may be written in terms of the
cross section for the A'(a’,a)A reaction as

i+ +)m'M 2 (m+M) E .
aA(aa'>A'(E)_(2i+1)(2|+1) mM? (m+M )’ g Orwan(E) - (1C510)
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11.D. DERIVATIVES

In order to make use of sophisticated fitting procedures such as Bayes’ equations
(Section IV of this manual), it is necessary to know the partial derivatives of the theory with
respect to the parameters to be fitted (the “varied parameters”). The easiest method for
calculating derivatives of cross sections with respect to resonance parameters is to use a
numerical difference approximation, of the form

oo _ G(P-I—AP)—G(P)

ZZ , I1D.1
oP AP ( )
or, to avoid problems from the asymmetry of that approximation,
P+AP)—oc(P-AP
9o _o(P+AP)-o(P-AP) (11D.2)

oP 2AP

Numerical methods, however, are neither as accurate nor as efficient or rapid as analytic
derivatives. For that reason, SAMMY uses analytic derivatives wherever possible. In particular,
derivatives of cross sections with respect to resonance parameters are all calculated analytically.

To reiterate: SAMMY does NOT use numerical derivatives of the form (11 D.1). When a
numerical derivative is absolutely necessary, the form (11 D.2) is used. For R-matrix parameters,
analytic derivatives are always used. (The only exception to this rule is for charged-particle shift
factors and penetrabilities, for which calculations of both the functions and the derivatives
require numerical techniques.)

The R-matrix equations are expressed in terms of the reduced-width amplitude y rather
than the partial width I". In the SAMMY code, the amplitudes are the parameters to be varied.
In general, SAMMY distinguishes between “u-parameters” and “p-parameters”.  The
u-parameter is the variable whose value is sought by the fitting procedure. The p-parameter is
the parameter whose value is given in the SAMMY input and output files. There is a well-
defined relationship between the two, but the relationship is not necessarily one to one. For
example, the value for the neutron width specified in the input PARameter file (see Table VI B.2
in Section VI.B) is related to three parameters, any or all of which might be varied:

Fln = 2P|(,0)]/§n !

p, =ka, , (nD.3)
M
and hk, = J2mE
L m+M A

Here y,, a,, and E, all may be varied parameters. In the SAMMY input, varied parameters are
indicated by a flag, whose value (0, 1, or 3) indicates how that parameter is to be treated. The
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convention is that a flag on I' denotes the status of the y parameter, because the other two (the
radius and the energy) are separately flagged.

Throughout this document, when the varied u-parameter is different from the flagged p-
parameter, the equations relating the two are given explicitly. For the R-matrix (in all its various
guises), the u-parameter associated with the resonance energy is

u(g,) = £y|E,| . (11D.4)

where the negative sign is chosen if E; is negative, and the u-parameter associated with the width
IS

u(rzc):?/zc . (11D.5)

In the following sections, equations are given for the derivatives of the cross section with
respect to the R-matrix parameters for the Reich-Moore approximation dSection 11.D.1) and for

the Breit-Wigner approximations (Section 11.D.2)). Additional details are in[Section 11.D.3|
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11.D.1. Derivatives for Reich-Moore Approximation

The derivative of the cross section with respect to a resonance parameter is found by making
use of the chain rule:

OR
6_0': v awm auwr 4 , (|| Dl.l)

o, = ou oR, oW, oU

uv
O<T

T

where the index J has been suppressed, since it is fixed for a given parameter u. Each term in this
expression is evaluated separately.

Derivatives of cross sections with respect to the scattering matrix U, derivatives of U with
respect to W, and derivatives of W with respect to R are found inSection I1.D.1.a] Derivatives of R
with respect to resonance parameters are given in Section 11.D.1.b|

Derivatives of the cross sections with respect to the channel radius require additional terms
beyond those in Eq. (Il D1.1), because the radius is also used to determine the hard-sphere phase
shift. These derivatives are discussed in[Section II.D.1.c|

Derivatives of R with respect to the variables of the logarithmic parameterization of the
external R-function (defined in(Section II.B.l.d} are given in |Section 11.D.1.d
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11.D.1.a. Derivatives with respect to R-matrix

For resonance and R*™ parameters, the derivative of the cross section may be written as

90 _ 3 IR OWer OUsr 00 (1 D1 a.1)

u, ¢4 ou, AR, OW,, oU

e

ef

where the index J has been suppressed, since it is fixed for a given parameter u. Indicesc, d, e, and
f denote channels. The restriction ¢ < d indicates that the sum includes, for example, only terms

with indices c, ¢, and not terms with indices c, ¢, (for ¢, #c,); this restriction results from the
symmetry of R and W (or X) with respect to interchange of indices.

Each term in the expression (11 D1 a.1) will be evaluated separately, starting with the right-
most term. All except oR/ou are evaluated in this section; oR/du is discussed in subsequent
sections.

The derivatives of cross section with respect to the real part of U can be expressed as

ou’ U aUT AU au"T  aU  au”

0o _ 900U , 90U _ o0 00 _ 2Re[a—6} . (ID1a2)

where the asterisk implies complex conjugate, and U and U™ are treated as independent entities.
Similarly the derivative with respect to the imaginary part of U is given by

ou' oU oU'  au” au! oU oU

*

do _ 00 30 U _ .d0 .o _ —Z'm{s_ﬂ' (11 D1a3)

It follows that the derivative of the cross section with respect to U can be written as

99 _ Re| 97|, im| 22| 2 L0000 (11 D1 a.4)
oU oU oU 2lou" oU'
ing Eq. (11 D1 a.4), values for the partial derivative of ¢ with respect to U are found from
s. (I A.8) to (Il A.11)}| which give
total
o _ "85 (11 D1 a.5)
oU,; k
60—040: 7z'g *
= —F(@f—uef) , (11 D1 a.6)
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6(70”1, 77:g . ,
= —U, fora'zaqa, (I'D1a.7)
oU k

ef
and

oo @ _ g
o, kP

u., . (11 D1 a.8)

ef

Derivatives of a complex variable (such as U) with respect to another complex variable
(such as W) may be generated directly, without separately considering the real and imaginary parts
of each variable; this is demonstrated explicitly in|Section 11.D.3, Here, we make use of this result
to evaluate oU / oW and oW/ OR.

Derivatives of Ugs with respect to W, are formed directly from Eq. (11 A.4), which may be
expressed as

U, =W, Q, , (1 D1a.9)

ef

so that

- 0.0, . (11 D1 a.10)

Derivatives of W with respect to R are formed from Eqgs.|(I1 B1.3) and (11 B1.4) which we
rewrite as

W=1 + 2iX = |+2i(ﬁL‘l(L-l—R)'1RJ5)

| + 2iVPLY (L' -R) [R-L*+LY]VP

(ID1la.11)
-1 -1
=1 + 2i/PLY (L' -R) [R-L" VP +2i/PL (L' -R) [L*]VP
= 1 - 2ifPLP + 2iVPLY (LT -R) LWP .
Explicitly displaying the indices, Eq. (Il D1 a.11) takes the form
W, = 1 - 25, RPL* + 2R LY, L' [P, (11 D1 a.12)
where we have set
Yef:[(L‘l—R)_lJ . (11 D1 a.13)
ef
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In [NL80, Appendix A] and also in of this manual, we show that the derivative of Y

with respect to R is given by

o,
GRC; = Yechf + Yechf (1_5cd) ' (“ D1 a14)

Substitution of this expression into the derivative of Eq. (11 D1 a.12) gives

oW
Py R: = 2i \/Ee L;1 |:Yechf +Yechf (1_5cd) i| L;l \/Pif ' (“ D1 a15)

Alternatively, we may write

o X
aR: = P L VY + VYoo (1-6) L P (11 D1a.16)

which is the more practically useful form in SAMMY.
Derivatives of R with respect to u depend upon which particular u-parameter is being

considered. Parameters of the external R-matrix, resonance parameters, and channel radii are
described in the next subsections.
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11.D.1.b. Derivatives with respect to resonance parameters

From Eq. (11 B1.1), the derivatives of the real and imaginary part of R with respect to the

resonance u-parameter associated with the resonance energy are

aRe[Rﬂv]

e - 27,7 4E: | [{—(EA—E)ZJr(ﬁy)Z}/dj} (11 D1b.1)

and

M) e E e empa] . aoibg

The derivatives of R with respect to the u-parameter associated with the eliminated capture width
can be written as

ORe[R,, |

07, = |:_471,u7/ﬂ.v77/1}/j||:{(El_E)yﬂ.zy}/dj] (11D1b.3)
and
oIm[R,, | B I
5 - [zm V. 7M][{(EA—E) (7)) }/dl} . (11 D1 b.4)

The derivatives for the particle widths are

ORe[R,, |

07,1, - [7“’ (1+5ﬂ")] I:(Eﬂ B E)/dz:l (11 D1 b.5)
and

olm R, .

%ﬂ} B [“v (1+5w)] [75,0d,] (11 D1 b.6)

In the expressions above, the denominator term d is defined as
d,=(E,~E)+7," . (11 D1 b.7)

In each of these equations, the first square bracket contains an energy-independent factor; in
the code SAMMY, this factor (times 2) is evaluated outside the energy loop in subroutine BABB
and is stored as BR(uv,i) for the derivative of the real part of R, with respect to the i parameter,
and Bl(uv,i) for the derivative of the imaginary part of R,,. The quantity in the second square
bracket is energy dependent but channel independent. Therefore, it must be generated for each
energy and is temporarily stored as UPR(i) and UPI(i) in subroutine ABPART.
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One legacy from early versions of SAMMY should be explained in some detail.

To avoid problems arising from the computer’s limited precision, and to minimize computing
time, partial derivatives for non-s-wave (I > 0) resonances are truncated to zero far away from the
resonance. The working definition of “far away” is 20 times the sum of the partial widths for that
resonance, plus 3 times the sum of the Doppler- and resolution-broadening widths, that is, far
beyond the region where a resonance should produce any noticeable effect. Specifically, the
derivative of the cross section at energy E is set to zero for resonance level 4, if

[E-E,[>20[ Y ', +T,, [+3(D+r) (11 D1b.8)

for resonances with |1 > 0, where [[) represents thel Doppler and r the resolution width. Moreover, the
contribution to the imaginary part of R is set to zero whenever the distance from level A is greater
than 100 times that specified in Eq. (Il D1 b.8). (The contribution to the real part of R is never
assumed to be negligible.)

For s-wave resonances (I = 0), the user has the option of setting derivatives equal to zero
beyond a certain distance, where the distance is twice that specified for non-s-waves. To invoke this

option, include the command
USE S- WAVE CUTOFF

in the INPut file. CAUTION: Though the cross-section segment in SAMMY may run slightly faster
with the cutoff option invoked, results will not be as accurate. Use of this option is not encouraged.

With the advent of modern computer systems, use of the non-s-wave cutoff feature is no
longer a necessity. Furthermore, use of this cutoff may lead to problems; in particular, inaccuracies
have been noted in the calculation of uncertainties on multigroup averages.

The command
USE NO CUTOFFS FOR Derivatives or cross sections

can be used to eliminate the non-s-wave cutoff. It is recommended that, prior to completion of an
analysis, the SAMMY user compare results obtained with and without the cutoff, to determine
whether results are sufficiently accurate with the cutoff invoked.
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11.D.1.c. Derivatives with respect to channel radius

Derivatives with respect to channel radius a require modification of the procedure outlined in
Section 11.D.1.1, since phase shifts ¢ and penetrabilities P also depend on channel radius (sometimes
called “matching radius”). All dependence on a is via p, where

p=ka , (N"D1cl)

and momentum 7k in the center-of-mass reference frame is described in k is the
wave number in units of inverse length. The derivative of the cross section with respect to the radius
can be written

do _ 0o 0p _ K oo

— . (IND1c.2)
ca Op oa op

Our problem therefore reduces to finding do/op .

The derivative of the cross section with respect to p may be formed from Eqg. (11 A.1):

*

UCCI + (5cc‘ _U(:Jc*) aUCC':|
op op

oRe(U... L oU,,
= 2_722-90 5CC'L - Re UCJC—CC )
k op op

From the definitions of Q and ¢, 'Eqs. (IMA.4) and (I A.5)|, the partial of U with respect to p may be
written as

(11 D1c.3)

Ve _ .00, o,

8\Ncc' -
Uu. +Q Q. - iU

L w . . w (11 D1c.4)
op op op
Equation (11 D1 c.3) can therefore be written as
0o, 0
e _ 2% o 15 Re| 2120y 42 Mo
op ks op op
(11 D1 c.5)

.| (0 op,. .
_Re| U | i e e |y s Ve [ [L
op Op op
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or

oo.. op
Pee _ Z—ch 5. Re| -2i 2+ OWe,
ke 6,0

op op
(IID1c6)
0 o,
_Re| QW | <i| Zo 4 P law o0 Ve o | |1
op Op op
Because Q¢ Q¢ = 1, this simplifies to the form
0o, 0 oW,
UCC — 2_722-9(: Re §CC,Q§ 2 ¢C cc
op k¢ op op
(11 D1¢c.7)

. 0 op,. oW.__.
—W_.| i e [0 W +—— :
op Op op

Derivatives of hard-sphere phase shifts ¢ are formed by direct differentiation of the

formulae in [Table 11 A.1[for non-Coulomb and of the equations in[Section I1.C.4 for Coulomb.

The derivatives of W are found in similar fashion to the derivatives with respect to resonance
parameters, beginning with Eq. (11 D1 a.11)}

Mo~ g, 1 T 1 2i6, L7 Deai T
op 8,0 op Op
aP |: -1 1:| 1
L~ -R L. /P.

s mﬁ(q)(@ 6ch[( e

op Op

+2i P L [( L - )1}&( c j (11 D1 c.8)
=

. _ -1 _, OP.
- 2R (L-R) L 2JT

r 2T RL (LR W (%n aPC"J

cc" % 8,0

x Lt [(L‘l—R)_l} IR .

¢’
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This expression can be greatly simplified by setting

9. =L [(L‘l - R)l} LR -PLS, (11 D1 ¢.9)
which gives
J
My Bly g L
P L e OF (11 D1 c.10)
+2i Y 9P (@H@J S
dp  Op

Derivatives of penetrabilities P; and shift factors S; are found by direct differentiation of the
formulae inor non-Coulomb and[Section 11.C.4 for Coulomb. Derivatives of the cross
sections with respect to p are then found by substituting results from |Eq. (11 D1 c.10) |into
[Eq. (I1D1¢.7)]
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11.D.1.d. Derivatives of logarithmic external R-function

Derivatives of R™ with respect to the u-parameters are found from

(11 B1 d.2) to be of the form

and

Section 11.D.1.d, page 1

aRé!Xt S'con,c +Slin,c Ecup
PEX E”-E ’
aRé!Xt S'con,c +Slin,c Ecdown
OE éjown - E— Ecdown !
R
— =1,
aRcon,c
R
al:_zlin,c - ,
655)« _ ,
OR, .
aR ext up
c =_2 Sconc In EC—dE ,
0 Scon,c ' E- ECOWH
aR ext up
“ = —(EX-E")-EIn BB dE .
asIin,c E- Ecown

(R7)

Egs. (11 B1 d.1){ and

(11 D1d.1)

(11 D1d.2)

(11 D1 d.3)

(11 D1 d.4)

(11 D1 d.5)

(11 D1 d.6)

(11 D1 d.7)
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11.D.1.e. Derivatives with respect to p-parameters

As described in internally SAMMY operates in terms of the u-parameters,
these being the parameters whose values are to be fitted via Bayes’ equations (see Section 1V).
The u-parameters are related, but not necessarily equal, to the parameters whose values are given
in the INPut and/or PARameter files, which are denoted as p-parameter.

When only the SAMMY code is used for calculations, there is no confusion arising from
switching between u- and p-parameters. The transformation from u- to p-parameters also poses
no difficulties in communicating parameter values between SAMMY and other codes (e.g., via
ENDF files). However, in communicating uncertainty, covariance, or sensitivity (partial
derivative) information, care must be taken to ensure that transformations are properly made.

In particular, the transformations involving the resonance energy and the partial widths
must be calculated carefully.” The p-parameter for a particle width or example, is related to
the corresponding u-parameter y via the transformation [see [Eq. (11 B1.7

rlc
(Il D1e.1)

U, =7 =% m :

where P in this equation is the penetrability (with the appropriate angular momentum | for this
channel) evaluated at E;, the energy of the resonance.

From Eqs. (I A.8) and (11 A.9)[ P has the form

R=R(p) with p=pa (|E,~5[) (1 D1e.2)

in which £ is a mass factor given explicitly in Eq. (Il A.9), a. is the channel radius, and
= represents the threshold energy. The £ sign in Eq. (Il D1 e.1) is as given in the PARameter
file (Table VI B.2). E; is another p-parameter, for which the corresponding u-parameter is

JE; for E, >0

u, = (Il D1 e.3)

" |-J~E, forE,<0
from Eq. (11 B1.6)

In the following discussion, most subscripts are omitted, for simplicity’s sake. Equations
for negative-energy resonances are indicated within square brackets.

* In early versions of SAMMY, these transformations were done incorrectly. These mistakes have been corrected in
release R7 of this manual and in sammy-7.0.0 and subsequent releases of the code.
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Consider a function f of the two u-parameters y and u (which we take to be the u-
parameter associated with the resonance energy). This function might be the cross section, or
some other function such as transmission or average cross section. The equations of
transformation to the two p-parameters I" and E, are given above. The derivatives of f with
respect to the p-parameters are therefore

of _arof  auof 0l L)
or T oy  or ou

and
of _ oy of  ouof
OE, OE, 0y OE,ou

(I D1e.5)

The partial derivatives of the u-parameters with respect to the p-parameter I can readily be found
from Egs. (11 D1 e.1) and (Il D1 e.3) as

o oyt lpwe 101 7 (11 D1 e.6)
oT 2P 2 2\2P T  2r
and
Mg (l1D1e.7)
or

The derivative of u with respect to E; is relatively straight forward:

o _lga, 1
ok, 2 ° 2u  2E,

5 L . (I1D1e.8)
Yoo = - == L ifE, <0|.
OE, 2 2u 2E,
The derivative of y with respect to E; is somewhat more complicated, having the form
Or = + r (_ijpmd_Pa_p =7 1 /Lia_p = — P op , (11 D1 e.9)
OE, 2\ 2 dp CE, 2\2P P CE, 2P CE,

in which we have defined P' to be dP/dp. From Eq. (Il D1e.2), forE, > =, it follows that

oy 7P’ ) yP'p
= — = — . Il D1 e.10
oE, 2P 2\/(51_5) 4P (E,-E) ( )
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Similarly, for E, <=, we find

oy yP' 0 5y - 1P pa(-1)
O, 2P OE, =) =% 2/-(E, -2
S (11 D1 e.11)
pr (S P p
BT ~(E,-E) 4P (E,-E)
Equations (11 D1 e.4) and (Il D1 e.5) can therefore be rewritten as
a _ NI 0 (11 D1 e.12)
or 2T oy
and
o __ P p O ud (I D1 e.13)
OE, 4P (E,-E) oy  2E, éu

Similarly, if the function f is defined in terms of p-parameters, the derivatives of f with
respect to the u-parameters are given by

a _ a + ok, o (11 D1le.14)
oy 87/ or Oy OE,

and

a _ o @i . (11 D1e.15)
ou  ouor ou ok,

That is, the inverse transformation (from p-space to u-space) requires the use of the partial
derivatives of p-parameters with respect to the u-parameters. These derivatives have the form

or 2T

— = +2P 2y = +4Py = — | (11 D1 e.16)
oy 4
B _o (11 D1 e.17)
oy
and
O, _,, _ 2 [@Z_ZUZZEi if E, } . (ID1e.18)
ou u ou u
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The partial derivative of I" with respect to u requires special care to evaluate correctly. For
u’ =E, > Z, this derivative has the form

a_F:2@2:2P7dP6p ( )
ou 8u7/ P dp adu P ou
(I1D1e.19)
P' pa2u P U -E E,
=]t = J— — = F_ ——
P2 (uV-E8) P ( 4_5) P(Ez_d)u
If 0< E, =u® <=, this partial derivative takes the form
2
aa_F=2E]/2=2id_Pa_p_ __(ﬂa (u _':))
u ou P dp du
- _ pa—(u*-Z)(~u
_pP pal) o pay(woE) () 0101 e20)
Pof-(w-z) P g
P p E,
=1 — — .
P (E,-E) u
[Finally, if 0> E, =—u?, then
2 1
O _50P 2Py dP dp _ rii(ﬁa —(—uz—E))
ou ou P dp du P ou
- v Bauy/ (U +E
_pP_pa) L pf - ) (Il D1 e.21)
P (u2+:) P (— (—u —:)
-r2_»r E
P(E,-E) u '

in a form which is compatible with the other versions.]

Substituting Egs. (11 D1 e.16) through (Il D1 e.19) into Egs. (11 D1 e.14) and (Il D1 e.15)

gives
or _ 2r ot 0 (11 D1 e.22)
oy y oI

and
ot _ P _p E0f | 2E Of (Il D1 e.23)
ou P(E,-E) u or u OE,
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Using the formulae in Egs. (11 D1 e.22) and (Il D1 e.23), it is possible to demonstrate that
the second transformation is the inverse of the first. That is, if one substitutes the expressions for
of / oI" and of I0E, from Egs. (11 D1 e.22) and (Il D1 e.23) into Egs. (11 D1 e.12) and (Il D1 e.13),
or vice-versa, the resulting equations are identities.

Consider, now, the definition of the covariance matrix associated with a particular set of
values. The covariance matrix associated with the u-parameters is denoted (as in Section V) as
matrix M, where

M;; =(du, ou;) (1 D1 e.24)

in which du; represents a small increment in the value of parameter u; , and the angle brackets
represent the “expectation value.” Diagonal elements of this matrix are the square of the
uncertainties on the parameter values; off-diagonal elements describe the connectedness between
different parameters.

To communicate SAMMY results to ENDF files, it is necessary to generate the
covariance matrix associated with the p-parameters (here this matrix is denoted by Q). This
matrix is generated by making use of the relationship between a small increment in a p-
parameter and a small increment in each of the u-parameters:

sp, =Y LPesy (11 D1 e.25)
— Ou,
so that Q becomes
Q ={opop) = 3 LPeisusu) P Il D1 e.26
o= (Fpom) = 3 —e(ousu) =t (11 D1 &.26)
[} i i

! J

The expansion of this covariance matrix for the two-parameter example discussed above will not
be given here, but is proposed as an exercise for the student.

Reminder: It is the p-parameters (not the u-parameters) that are listed in the SAMMY
PARameter files (input and output) and in the SAMMY output file (SAMMY.LPT). Likewise, it
is the p-parameters” which are listed in ENDF File 2.** Therefore, the covariance matrix
elements given in ENDF File 32 must correspond to the Q matrix defined above; that is, the
covariance matrix listed in ENDF File 32 must be the appropriate covariance matrix for the
resonance parameters.

* For the LRF=7 format, an option exists to list the reduced width amplitudes y rather than the partial widths I". In
this case, no transformation from u- to p-parameter space is necessary for the partial widths, but only for the
resonance energies.

** Caveat: When a reduced-width amplitude is negative, it is not ' but G = —T that is listed in the ENDF file.
ENDF covariance matrices are expressed in terms of G, not T
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When the cross section is calculated as a function of the u-parameters, a small increment

in the calculated cross section is given by

5a=Z§T“5un

Therefore the covariance matrix C; for the cross section is found from

ole 0o
C;=(d0,50)) = <Z [a—ua‘unj Z[a—ulaum

n m

. oo,
=3 9% (sy, 6u,) 20
m ou. ou,,
_y 9y 99
~ou " ou,

(11 D1 e.27)

)

(Il D1 e.28)

in which M is again defined as the covariance matrix for the u-parameters. In order to print the
covariance matrix resonance parameters for the p-parameters into the ENDF formats, it is
necessary to transform the parameter covariance matrix from M to Q. That transformation is

made by inserting the formulae

Jo;, _ op, 0o
ou, . ou, 0p,
and
GO'J _ Z % 60‘J
ou, T ou, 0P,
into the previous expression, Eq. (11 D1 e.28), yielding
C. = Z do; 0Py op ao_]
" op, ou,  "Mou, o
n,m,k,l pk un um pl
or
0o oo,
Ci' = ! Q —1L !
‘ ; op ' op
where Q is given by
0P, op
= M —
Qu ; ou "M ou

(11 D1 e.29)

(11 D1 €.30)

(11 D1 e.31)

(11 D1 e.32)

(11 D1 e.33)

For the case in which only one elastic width contains an energy-dependent penetrability,
the p-parameter covariance matrix must be modified for all elements involving a width having

energy-dependent penetrability.
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11.D.2. Derivatives for MLBW and SLBW Approximations

From the form of the cross sections in Egs. (11 B3 a.1), (Il B3 a.5), and (Il B3 a.6), we note
that there are only four expressions in which the resonance energies or widths occur. These
expressions are denoted as follows:

A, =T, (E-E,)/d, , (11 D2.1)

A, =T,L, Id, , (11 D2.2)

A, =T, T,./d, |, (11 D2.3)

and A.=r,TI,/d, , (I D2.4)
where d is given by as

d,=(E-E,) +(,/2)" . (11 D2.5)

Equation (11 D2.4) is actually redundant, since

Ager = Z Ageen T Poer - (11D2.6)

As discussed in|[Section 1.0, the assumption in the SAMMY code is that the u-parameters
are independent and the p-parameters are derived quantities. Thus we need only evaluate partial
derivativesof A,.,, A,.,, and A,_, with respect to the u-parameters (i.e., with respect to the partial-

width amplitudes and to the square root of the resonance energy). These derivatives may be written
as follows:

Alc/i
=2JE,T",.|-1+2(E-E,) /d,}/d, | (11 D2.7)
ot~ VET{- )18

aAZ(:}L

a\/__w_rmrh (E-E,)/d? , (11 D2.8)

a'A\SCC A

a\/f_4\/7rurm (E-E,)/d? | (11 D2.9)

Section 11.D.2, page 1 (R7) Page 107



a'A\l cA

= =-2y7, I, (E-E,)l,/d} | (11 D2.10)
7/1}/
oA _
24 =27, T,.{2-T,,T,1d,}/d, | (11 D2.11)
87/ﬂy
oA, ...
iCM :_277/1yrzcrzc'r,1/d/12 J (11 D2.12)
67//1;/
16}
8A1M = Zrﬂc (E - Ei){5cc“ _Fﬂc Fﬂc" /(Zd/l )}/{7/1 c" dﬂ} , (“ D213)
Vacr
oA _
P = = Zr/lc rﬂy { 500" _Flc ric" /(Zdﬂ )}/{71 c" di} ! (“ D214)
7/1c"
and
oA,...
- 3cc"2 _ 21_‘/10 FM' {500" + 5(:'0" _1“/1 Fic" /(Zdl )}/{710 dl} , (“ D215)
7/10“

All other derivatives are zero.
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11.D.3. Details Involving Derivatives

In this section are presented some of the algebraic details relating to the partial derivatives.
We first consider the derivative of one complex variable with respect to another, and then the
derivative of the inverse of a matrix quantity. Both are needed in Section/11.D.1.a,

Derivative of one complex variable with respect to another

Given any two complex variables A= A" +iA' and B=B" +iB', where A is an analytical
function of B, the derivative of the components of A with respect to the components of B may be
expressed as follows:

oA =Re oA =Re% oB =Rea—A : (11 D3.1)
oB' oB' oB oB' oB
oA :Rea—AzRea—Aa—B:Rea—A(i)z—lma—A , (11 D3.2)
oB' oB' 0B 0B’ oB oB
A _m A BB _ A , (11 D3.3)
oB' oB' OB B’ oB
and
B im A im BB _mnRi)—re? (1l D3.4)
oB' oB' 0B oB' oB oB
Also, the usual chain rule applies:
OA" _ OA" OB" oA oB'
oC" oB"oC" oB'oC'
(11 D3.5)
= Re[%j Re(@j + —Im(%j Im(@j = Re[%@} ,
oB oC oB oC 0B oC
OA" _OA"B' OA' oB'
oC oB" oC' oB' oC (11 D3.6)

@) B () S

Section 11.D.3, page 1 (R7) Page 109



oA OA' OB’ +8A‘ oB'
oC" oB"oC" oB'aC’

(11 D3.7)
(GAJ (GBJ [aAj (GBJ {aA 68}
Im Re Re Iml— || = Im| ——| ,
oB oC oB oC oB oC
and
oA'  OA' 0B’ +aA‘ oB'
© 4 a(;:A " aCaB oA OB oA 0B (I1b3.8)
= Im( j —Im(—j + Re(—j Re(—j = Re| — .
{ oB oC OB oC oB ac
Derivative of the inverse of a matrix
In Eq. (D1 a.13),| the quantity Y is defined as
Yer =[( L - R)l} . (11 D3.9)
ef
To find the derivative of Y with respect to R, we first note that
ZYana;f = (11 D3.10)
so that the derivative is zero; that is,
aYa;1
0 = z ea ab z
a cd
(11 D3.11)
oY,

" S dut-0u)]

The quantity in curly brackets comes from the symmetry of the R-matrix and from the stipulation
that only unique matrix elements are to be considered [c<d, e<f in Eé ill D1 15 and

Eq. (I D1a.1)]. Multiplying both terms by Y, ,, summing over b, and rearranging give
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oY,

Z@R - ZYal;lef = ZYea {5ac5bd + 0,40, (1_5cd )}Ybf ,
a cd b a,b

a

or, finally,

This is the derivative used in

Section 11.D.3, page 3

oY.,
zé—é‘af =Yechf +Yechf (1_5cd) )

cd

oY
OR .,

Eq. (11 D1 a.14).

oYYy Y, Y, (16,

(R7)

(11 D3.12)

(11 D3.13)
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