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11.C.2.a. Derivation of kinematics equations

Let ¥ represent the velocity of the center-of-mass (COM) system relative to the
laboratory system. Before the interaction, the relationships between the velocities are

P_K. v ad 0=_K.,p (1 C2a.l)
m m M
from which we can solve for ¥ and K in terms of p:
I7:£ and K:iﬁ ,  which implies y-—P (Ic2a.2)
M m+M (m+M)

The total energy in the lab must equal the energy in the COM plus the energy of the
COM. Before the interaction, this gives us

Eyy = Eycom + Eicom
(1nncz2a.3)
2 +M)V? K? K°?
p_+m+M:(m ) TS S V% :
2m 2 2m 2M

which is clearly true, as can be seen by substitution of the expressions in Eq. (Il C2 a.2) into
(11 C2 a.3). We are using non-relativistic energies but nevertheless including the masses because
they may be different before and after the interaction. Within the COM, conservation of energy
requires that the initial and final energies are equal:

5 ) ) ) (1N C2a.4)
K—+K—+m+M: + +m'+M
2m 2 2m' '
Solving for K" in terms of K gives
12 2
KZ (i+Mij = %(l+%j+(m+M—(m'+M')) or
" " (11 C2 a.5)
K*(m+M"  K?(m+M
rorsll +(0)
2 \m'M 2\ mM
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in which we have defined the Q-value as
O=m+M-m'-M" . (11 C2a.6)

Rewriting Eq. (11 C2 a.5) using the value for K from Eq. (Il C2 a.2) gives

K2 2m'M' _Kz(m+Mj+Q}

m+M" | 2mM
omM' [ [ M O\ m+M

- + I1C2a.7
m'+M' {pm+M} (ZmMj Q:l ( )

g a2
ZZmM p M 10
m'+M" | 2m (m+M)

This can also be written as

2 2m'M’ M
K T [E(m+M)+Q} , (I C2a.8)

in which E is equal to the kinetic energy of the incident particle in the laboratory system,
E=2 (11 C2 a.9)

This definition of E is used throughout this manual; cross sections are always specified in terms
of this energy unless otherwise noted explicitly.

The transformation from COM to laboratory gives values for momenta after the
interaction. Again, we add velocities, similar to Eq. (Il C2 a.1), using Eq. (11 C2 a.2) for V' :

Ky K b (I C2 a.10)
m' ' "o (m+ M)
(An analogous set of equations holds for the second particle,
9 _ K.y;_ K, P (11 C2 a.11)
M M M (m+M)

but we shall not be concerned with this particle now.)
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Setting 2 =cosé and v =cos S, we can write Eq. (11 C2 a.10) in terms of components

pcosé':Kcos,b’+ p and psmq:K5|n,B+o (11 C2 a.12)
or
pu=Kv+——L and pJ1-47 =Kk"J1-v* | (11 C2 a.13)
(m+ M)

in which we have set x=cosé@ and v =cosf. Squaring and adding the two equations in
(Il C2 a.13) gives

"
, (I C2a.14)
1 2 ] _ 2 f 2
(K vj . K'\(1-v LKV p (b |
m' m' m' (m+M) \ (m+M)
or
12 12 ' 2
p K, 2Kvp , P (11 C2 a.15)
m m m (m+M) (m+M)

Replacing K 'v with its equivalent from Eq. (11 C2 a.13) puts Eqg. (I1 C2 a.15) into the form

12 12 ' 2
A S {P'/J— =L }+ P, (11 C2 a.16)
m' m' m(m+M) m+ M (m+M)
which can be rearranged as
] 12 2
Pl = KPR . mTp (11 C2 a.17)

(m+M)" (m+M)

Solving for p' in terms of other quantities gives
m' m' Y m' Y
v I | L 2,2 (M 2, g2
P m+Mpﬂ (erMj pH m+M P

T {p“\/Pz(ﬂz —1)+(m;f”j21<-2 } |

(Consideration of the p = 0 limit confirms that this choice of sign for the radical is appropriate.)

(11 C2 a.18)
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From Eq. (Il C2 a.7), we know K' in terms of p. Therefore, to simplify Eq. (Il C2 a.18),
we define &£ as

5:( ’fMjKﬁ . (11 C2 a.19)
m

Using this definition of £, Eq. (11 C2 a.18) can be put into the form

— {P,U+ (12 -1)+&72p? }

e [T |

(11 C2 a.20)

The quantity outside the curly brackets is exactly equal to K'; making this substitution gives

p':K'{§y+,/1—§2(1—y2) } . (I C2a.21)

The laboratory energy of the outgoing particle can then be found as

12 12
EF'==

L I;m.{fﬂh/l—ggz(l—ﬂz) }2 , (1 C2a.22)

2m

or, using Eq. (11 C2 a.8) for K,

] Ml 2 2 2 M
= {§y+,/1—§ (1-22) } [E(m+M)+Q} . (1C2a2))

It is customary to define the laboratory threshold energy, here denoted by =, as

m+M
== — ) 11 C2a.24
I 0 ( )

Interms of =, Eq. (Il C2a.23) for £' becomes

\ M’ M 2 | -
B T D) {§y+,/1—§ (1-42) } [E-E] . (I C2a25)
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Equation (11 C2 a.19) for & can also be written in terms of =, using Eq. (11 C2 a.8), as

2
( mM) 2mk ! “M' E
g2 = mt - mmny” B (11C2a26)
2 M [ M, M'M m+M E-Z
m'+M' (m+M)

Next, we consider the transformation of angle from laboratory § to COM g and vice
versa. From Eq. (11 C2 a.13) we have

. . m'p . .
=K'v+————=K'v+K , 11 C2a.27
p'u (e AD) ¢ ( )

in which we have made use of Eq. (I1 C2 a.19). Substituting Eq. (11 C2 a.21) into this equation

gives
p',u=K'{f,u+‘/1—§2(l—,u2) },u=K'V+K'§ | (11 C2 a.28)
v=—&(1- )+ 1-E2(1- 1) . (11 C2 a.29)

This equation can be inverted to give u in terms of v as follows:

which reduces to

[v+§(1—y2)}2=y2[l—§2(1—,u2)} ,
Vz+2§V(1_lu2)+§2(1_2#2+ﬂ4)=#2_§2ﬂ2+§2ﬂ4 ,

y2(1+§2+2§v)=v2+2§v+§2 ’ (11 C2a.30)
s VE42Ev+E?
(1+&7+2¢v)
or, finally, as
pe—Y*e (Il C2a.31)

J1+E2 428y
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The transformation of cross section from COM to lab requires the derivative of v with
respect to y; this is found from Eq. (11 C2 a.29):

)

d,u d,u

=2+ | 1-87 (1-p?) + £ “5 (11 C2 a.32)
\/1 5

2ug1-& (1= g ) +1-¢7 (1—u )+u g

1-&°(1- )

giving, finally, the expression for the derivative

o (mer1me 1))

v _ (11 C2 a.33)
du 1-&%(1- 1)
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