
Section XIII.A, page 1 (R7) Page 627

Section XIII.A, page 1 (R7) Page 627

XIII.A. DYNAMIC ALLOCATION OF ARRAY STORAGE

Because SAMMY was developed prior to the advent of FORTRAN 90, which supports
dynamic storage allocation, SAMMY uses its own scheme for dynamic allocation of array storage.
This scheme should be effectively invisible to the most SAMMY users. On porting the code to a
new machine, minor modification may be needed: If the total memory on your machine is larger or
smaller than the default value, you may need to change the total array size during the “configure”
part of the installation process. See Section XIII.F to learn how this is done.

Historically there have been many advantages to using dynamic allocation of array storage.
First, core requirements are kept to a minimum, since only the array length actually needed is
allocated and temporary arrays are released when no longer needed. Secondly, because allocation is
made during the execution of a program, substantial changes in the dimensions for a specific case do
not require recompilation of the program. Finally, when recompilation is needed (when the
maximum array space requirement must be changed), only a few routines need to be recompiled.

The SAMMY scheme for dynamic allocation of array storage is best illustrated with a simple
example. Let us suppose that two vectors V1 and V2, both of length N, are to be initialized, added,
and stored in V1, after which V2 is no longer required. A program to perform these operations is
given in Table XIII A.1. Mnemonic names can be used in the usual manner in all subroutines,
provided arrays are input to the subroutines through argument listings.

Table XIII A.1. Illustration of dynamic allocation of array storage

PROGRAM MAIN
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(-12345:12345)
NSIZE = 12345
N = 50
IV1 = IDIMEN (N, 1, ‘V1 N, 1’) #Allocate storage for V1
IV2 = IDIMEN (N, 1, ‘V2 N, 1’) #Allocate storage for V1
CALL SET (A(IV1), A(IV2), N) #Initialize V1 and V2
CALL ADD (A(IV1), A(IV2), N) #Add V1 = V1 + V2
I = IDIMEN (IV2, -1, ‘I I, -1’) #Release storage for V2
. . .
I = IDIMEN (0, 0, ‘I 0, 0’) #Request that IDIMEN print out the
STOP # maximum length used
END
SUBROUTINE SET (V1, V2, N)
DIMENSION V1(N), V2(N)
READ (11) V1
READ (11) V2
RETURN
END

SUBROUTINE ADD (V1, V2, N)
DIMENSION V1(*), V2(*)
DO I=1,N
 V1(I) = V1(I) + V2(I)
END DO
RETURN
END

Section XIII.A, page 2 (R7) Page 628

Section XIII.A, page 2 (R7) Page 628

What follows is a brief description of the scheme currently in use in SAMMY for dynamic
allocation of array storage. Most users of the code will not need to be concerned with the remainder
of this section. The information is included here for completeness’ sake, and for the benefit of
anyone who may need to modify the code.

The current scheme is essentially the same as in previous releases of the SAMMY code,
though different in detail. All arrays required by the computer program are stored in one array A,
dimensioned A(-n:n) where n is a large number. [Use of this form, rather than the more common
A(n), makes use of the negative integers and thus effectively doubles the maximum size of the array
available with the largest possible 8-byte (32-bit) integer (231-1 = 2 147 483 647, since the 32nd bit is
used for the sign). For a very few applications, this large size is needed and can be accommodated
on computers with sufficient memory.] The precise value to be used for n is machine dependent.
The SAMMY default is 65 million, but this can be overwritten when the code is configured for a
specific machine, as described in Section XIII.F.

As shown in Table XIII A.1, allocation of space in this array is accomplished via a call to
FUNCTION IDIMEN, which keeps track of the last location allocated, and appends the new array to
that position. When an array is no longer needed, its space is released via another call to IDIMEN.
At the end of each segment, IDIMEN is called one more time to report the maximum size actually
used in that segment. IDIMEN also issues a warning if more than 2n words are required in the array
A(-n:n), and then aborts the run.

Three arguments are used for IDIMEN (m1, m2, a3): The third, a3, is an arbitrary
alphanumeric phrase used by the author for debugging. The second, m2, tells IDIMEN what to do
with the first, m1. If m2 > 0, an array of size m1 is allocated. If m2 < 0, everything in A(-n:n)
beyond position A(m1) is released for reuse. If m2 = 0, the total amount of storage used since the
previous such call is reported (written into the SAMMY.LPT file).

Users familiar with the array storage system in earlier versions of SAMMY will note some
differences in the 7.0.0 release of the code, especially with respect to the array sizes printed in the
SAMMY.LPT file.

First, the storage requirement for segment XCT will generally be twice the size for the same
segment in previous versions of the code; nevertheless, the largest requirement (for all segments)
remains approximately the same. At the beginning of segment XCT, the new array-storage system
allots all of the storage (for theory and derivatives, original and Doppler broadened, for example)
needed to store intermediate results. SAMMY reuses those same storage locations as it goes from
segment to segment. For a typical run including both Doppler and resolution broadening, after
completion of segment FGM (Doppler), the “original” array positions will be re-used to hold the
resolution-broadened values.

In the old version of the code, only the arrays needed in segment XCT were defined in XCT;
these were then written to a temporary file and the space released. Then in FGM, space was
allocated for the original arrays and for the Doppler-broadened arrays; the original values were read
in from the temporary file. When the FGM calculations finished, the Doppler-broadened values
were written to a temporary file and the space (for all these arrays) was released. This process was
repeated in every module of the code.

Section XIII.A, page 3 (R7) Page 629

Section XIII.A, page 3 (R7) Page 629

Hence, the new system uses essentially the same total storage space but eliminates the reads
and writes to the temporary files. Total time for a SAMMY run is therefore decreased. (Future
development will likely eliminate nearly all of the temporary files. For more on the use of
temporary files, see Section XIII.B.)

As indicated above, SAMMY allocates the array space for storing the values and derivatives
at the beginning of segment XCT. However, it does not allocate all array space needed for all of the
processes involved in calculating those values and derivatives. Thus, for example, the SSM segment
(which calculates self-shielding and multiple-scattering corrections) requires many auxiliary
calculations, for which it needs extra array space.

