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111.C.3.a. Components of the RP1/GELINA / nTOF resolution function

1. Electron burst

The electron burst from the RPI linac may be described by a Gaussian function in time, of the
form:

(1) =——e™ (Il C3 a.1)

where 2+/In2/w= p is the full width at half max of the burst. Normalization is unity for this
function.

2. Target plus detector

The RPI transmission resolution function, which represents the combined components for the
“bounce target” and transmission detector, has been found by RPI researchers [BM96] to be best
described by the sum of a chi-squared function with six degrees of freedom plus two exponential
terms. A similar function (with different values for the parameters) describes the bounce target plus
capture detector.

The original RPI function had constant values for A; and As. The GELINA and nTOF
resolution functions proposed by Gunsing [FG05] use energy dependent values of the A; and As
parameters.

Specifically, the RPI resolution function has the form

1, ()= Ab{(t;/;) et A [AzefA’“(M“) N A4e—A5(t+t0):|x (t)

(111 C3 a.2)
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in which the function X (t) is zero if the quantity within the square brackets (the sum of the

exponential terms) is negative, and unity otherwise. Likewise the * function is assumed to have
zero value when the exponent is positive (i.e., when t+7 <0 ). The value of A is chosen to give an
overall normalization of unity for this function. Parameters A, 1, A, A3, and As are functions of
energy, the specific forms being, respectively,

A(E)=A,+A, ln(E)+A2[ln(E)]2 +AEM (I C3 a.3)
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r(E)=re ™ +re " F +7r,+7,E7 (IITC3 a.4)

and
A (E) _ { a6 +a,e % +a,+a,EY } a (111 C3 a.5)

where i represents 1, 3, or 5, and o is 1 for i = 1 but may be either unity or JE fori=3or5. All
other quantities in Eq.(IIT C3 a.2) are independent of energy.

As many as five exponential terms may be included in the sum over i; it is implicitly
assumed that the coefficients of the exponentials (B,; ;) and the coefficients of time within the

exponentials ( B,;) are positive numbers. These terms were added in an early attempt to provide a

useful form for the GELINA and nTOF resolution function; they have been retained in order to
permit additional flexibility for the analyst.

3. Time-of-flight channel width

The time-of-flight channel width may be modeled as a rectangular distribution of width c.
The time distribution due to the finite channel width is therefore assumed to be

1/c for—-c/2<t<c/2
I3(t)= (III C3 a.6)

0 otherwise

The channel width ¢ may be energy dependent. For constant values of ¢ within an energy range, the
input is described in Table VI.B, card set 14, line 20. This is appropriate, for example, for data
having “crunch boundaries.” (In Europe, the French word “accordeon” is often used to denote the
system of crunch boundaries.)

When the channel width varies continuously with energy, for example, for data from the
nTOF facility, then the channel width (or bin width) is expressed as “n bins per decade.” That is, in
an energy decade from 10°to 10" for integer k, there are n bins equally spaced on a logarithmic
scale. The energy limits for the i" bin in this decade are given by

k=L Pl
n

k+i
E,=10 " <E=10 " <E,, =107, (I C3 a.7)

where i = 1 to n, and ¢ is a positive number between 0 and 1. Converting to time limits, using
t =7/+/E where 7 is a constant whose value is unimportant for this discussion, we find

fy = S t= e < =, (I C3 a.8)
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so that the channel width ¢ may be found from

£ —l+&
C=t,, ~t =t | A= }—t{lo 20 10 20 } . (I C3 2.9)
vion V1o
To calculate this quantity in SAMMY, we consider the value at £ =0,
c, =t {1—10*1/““)} , (111 C3 a.10)
andat £=1,
c =t {101/(2”> —1} . (I C3 a.11)

In either case, for large n these expressions may be expanded to first order in 1/n to give

Co

t {1-107""} ;t{l{l—(z—lnln(lo)m:;—nln(lo) (Il C3 a.12)

and

n 1 t
¢ =t {101/(z>_1} ;t{l + [%m(lo)j—l}:%ln(lo) . (IIIC3a.l3)

Because these two values agree to first order in 1/n, and n is large (~5000), it is therefore sufficient
to use the approximation

c=tln(10)/(2n) (111 C3 a.14)

rather than to spend the not-insignificant amount of computer time to generate exact values of k and i
(and therefore of ¢) for each value of E.

Input for the continuously varying definition of channel width c is given in Table VI.B, card
set 14, line 19.
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