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VIII.A.  EQUATIONS FOR UNRESOLVED RESONANCE REGION 
 

The formulae for cross sections in the unresolved resonance region, as implemented in 
SAMMY, are presented in this section.  The implementation is a modified form of that provided by 
Fritz Fröhner in his FITACS code [FF89].   (Please note that any mistakes in these formulae are 
attributable only to the author of this manual, not to Fröhner.  The author is indebted to Herve 
Derrien for significant contributions both to the development of the code and to the composition of 
this section of the manual.) 
 
 
Elastic cross section 
 
 The elastic cross section is given as the difference between the total cross section and the 
sum of all the non-elastic partial cross sections.  The total cross section is given by Eqs. (VIII A.1) 
through (VIII A.4), and the non-elastic partial cross sections by Eqs. (VIII A.5) through (VIII A.20). 
 
 
Total cross section 
 

The average total cross section, for a given spin and parity and incident channel c, may be 
written in the form 
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where, as usual, gc is the spin factor and kc is the center-of-mass momentum.  The average scattering 
matrix ccS  is given by 
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and the average R-matrix can be written in the form 
 
 ,cc c cR R i sπ∞= +  (VIII A.3) 
 
with parameters defined as follows: 
 

cR ∞  = distant-level parameter (an input quantity); 

cϕ  = hard-sphere scattering phase shift, generated using matching radius a (an input quantity); 
0
cL  = ( )c c cS B iP− +   (see Section II.A), with boundary condition Bc chosen such that 0c cS B− = ; 

cs  = pole strength. 
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The pole strength is defined in terms of input quantities cS  (the strength function, for which we have 
introduced the tilde to avoid confusion with the shift factor used in definition of 0

cL ) and ac (the R-
matrix matching radius) as 
 2 ,c cs S E ρ=  (VIII A.4) 
 
where ρ is the center-of-mass momentum kc multiplied by the channel radius ac. 
 
 
Non-elastic partial cross sections 
 

The non-elastic partial cross sections may be written in terms of transmission coefficients Tx 
as 
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where the quantities to the left of the integral sign are the Hauser-Feshbach expression, and the 
integrand is the Moldauer prescription [PM80] for the width fluctuation correction factor.  (A 
derivation of this expression, including the assumptions under which it is derived, is provided in 
Section VIII.A.1.)  Here a represents the incident channel and b the exit channel; cν  and Tc  represent 
the number of degrees of freedom (multiplicity) and transmission coefficient, respectively, for 
channel c.  Subscript γ refers to photon channels.  T is defined as the sum over all channels: 
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T T=∑  (VIII A.6) 

 
The transmission coefficient for neutron channels is given by 
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where c is an incident channel, P and L are as defined in Section II.A, and the other quantities are 
given above.  For photon and fission channels, the transmission coefficients for spin J are 
 
 2         and       2 ,J f f JT D T Dγ γπ π= Γ = Γ  (VIII A.8) 
 
in which DJ  is the mean level spacing for levels with this spin. 
 

The J-dependence of the mean level spacing is set in SAMMY/FITACS via the Bethe 
formula (e.g., [FF83]): 
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where d (E ) is independent of J, and σ is the spin cutoff parameter.  The spin cutoff parameter is 
related to the level density parameter a and the energy E by the formula 
 
 ( )( ) ( )2/32 0.14592 1 ,A a E BE PEσ = + + −  (VIII A.10) 
 
in which BE represents the neutron binding energy (an input parameter) and PE the pairing energy 
(also an input parameter).  The value for a is determined from the input quantity D, which is the 
mean level spacing of the l = 0 resonances at E = 0; note that  D includes both J = I  −  i and 
J = I + i, where I is the spin of the target nucleus and i = 2 is the spin of the neutron.  An expression 
for the inverse of D can be found from Eq. (VIII A.9) to be 
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this expression is used to determine the value of σ 2 and hence of the level density parameter a. 
 

The energy dependence of the mean level spacing is calculated with the Gilbert-Cameron 
composite formula [AG65].  Let xE represent the excitation energy of the compound nucleus; this 
energy is equal to the sum of the incident neutron kinetic energy E and the neutron binding energy 
BE (which is an input quantity).  That is to say, 
 
 .xE E BE= +  (VIII A.12) 
 

The energy dependence for low excitation energies ( )0xE E< , where 0E  is a matching 
energy, is given by the constant-temperature formula 
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In the code, the matching energy 0E  is set at  
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 (VIII A.14) 

 
in units of  MeV, with N + Z  being the mass number for the target nucleus.  Values of the constants 
C2 and C3 are given by 
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with q defined as 
 ( )2/30.14592 1 ,q N Z= + +  (VIII A.16) 
  
 
where N + Z is again the mass number for the target nucleus and a is the level density parameter. 
 

At higher energies ( )0xE E> , the energy dependence of the mean level spacing is calculated 
via the Fermi-Gas formula 
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Note that the two formulae agree at the matching energy (i.e., at 0xE E= ). 
 

Radiation widths γΓ  are assumed to depend only on parity π and on E.  The energy 
dependence is calculated with the giant dipole resonance model. 
 

Fission widths fΓ  may vary with spin as well as parity and incident neutron energy E.  
Energy dependence is calculated with the Hill-Wheeler fission barrier transmission coefficients 
[DH53].  For a given J π, the energy dependence of the fission widths is taken to be 
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where the Hill-Wheeler threshold energy HWE  and the Hill-Wheeler threshold width HWW  are input 
quantities.  This equation may be written in more “standard” notation as 
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 (VIII A.19) 

 
where, as above, xE  is the excitation energy of the neutron and BE is the binding energy.  Also, 

fE is the fission barrier height, and ω  the width of the fission barrier. 
 

Finally, a few words regarding the derivation of Eq. (VIII A.5) are warranted.  That 
derivation is based on several assumptions:  
 
(1) The Moldauer prescription [PM80] for width fluctuations is used. That is, the width fluctuation 

correction factor is introduced to compensate for the non-unity of the ratio 
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(2) Partial widths obey a chi-squared distribution with cv  degrees of freedom (where the value of 

cv depends on the number of channels of this de-excitation); averages are therefore weighted 
with this distribution.  In the Moldauer prescription for width fluctuations, simple channels 
have 1 < cv < 1.78;  for lumped channels, cv  is a function of T c . 

 
(3) Channels with the same transmission coefficients may be combined by introducing 

multiplicities. 
 
 

The integral of Eq. (VIII A.5) is described by Fröhner as the “width fluctuation correction or 
Dresner factor.”  One (relatively modest) difference between SAMMY and the original FITACS 
coding is the algorithm for calculating the Dresner integral; in SAMMY, the coding has been refined 
to increase both speed and accuracy of calculation by using a non-uniform grid designed specifically 
for this task. 

 
(Note:  Prior to release 7 of the code, the Moldauer correction was inadvertently disabled in 

code.  This has now been fixed.) 


