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III.B.2.  Leal-Hwang Doppler Broadening 
 

The assumption of a free gas model (FGM) for the sample atoms leads to a relatively simple 
relationship between the cross-section values at different temperatures.  Leal and Hwang [LL85] 
have used this idea to write the Doppler-broadened cross section in the form 
 
 ( ) ( ) / ,D E F v Eσ =  (III B2.1) 
 
where “velocity” v is the square root of energy E, 

 ,v E=  (III B2.2) 
 
and ( )F v obeys a partial differential equation having the same form as a one-dimensional time-

dependent heat equation.  That is, ( )F v obeys 
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in which Θ is given by 

 ,k T = 
2 M

Θ  (III B2.4) 

 
where again T is the effective temperature of the sample, k is Boltzmann’s constant, and M is the 
mass of the sample (target) nucleus.  This is equivalent to the integral equation in Eq. (III B1.1). 
 

The numerical solution of Eq. (III B2.3) may be readily accomplished by difference 
techniques.  Leal and Hwang have shown that if the step sizes Δv and ΔΘ are constant for both 
velocity v and “temperature” Θ, and if 
 ( )2 6 ,vΔ = ΔΘ  (III B2.5) 

then the error in the numerical solution is of the order of ( )4vΔ  or ( )2ΔΘ . 
 

The solution of Eq. (III B2.3) can be written in the form 
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in which the superscript j denotes the value of F evaluated at Θ = Θj, and subscript i denotes the 
value of F evaluated at v = vi. 
 

By combining Eq. (III B2.6) with the analogous equations for Fi
m, with m = 1 to j − 1, we 

find that the Fi
  j may be written as 
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where Fn
0 are the “initial” values of F (i.e., at zero temperature), and where the ak

  j, for negative k, 
are found from the relationship 

 .j j
k ka a− =  (III B2.8) 

 
For positive k, the values of j

ka  are found from the recursion relationships 
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and, in general, 
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 (III B2.10) 

 
 

The procedure employed in SAMMY is as follows. 
 
(1) Somewhat arbitrarily, choose ΔT = 5 degrees; this number is a user input, so it may be 

changed if desired.  (See Table VI A.1, card set 5, variable DELTTT.)  Figure the number of 
steps required to reach from zero temperature to the effective temperature T, and adjust ΔT 
so that T can be reached in exactly J steps.  Determine the corresponding ΔΘ and Δv. 

 
(2) Generate the coefficients J

ka  for k = 0 to J.  These coefficients will be large for small k and 
effectively zero for large k.  Choose M such that 0J

ka >  for all k > M. 
 
(3) Generate the auxiliary energy grid ENERGB, which is uniform in velocity space.  M points 

will be included on each side of the energy region [Emin − Wmin, Emax + Wmax], where 
Emin and Emax are the experimental energy limits, and Wmin and Wmax are resolution 
limits at Emin and Emax, respectively. 

 
(4) Generate theoretical cross sections σ(E) for all ENERGB points. 
 
(5) Evaluate Fi

J for all points i in the auxiliary grid, using Eq. (III B2.8), and convert to cross 
section using Eq. (III B2.1).  If needed, the partial derivative of the cross section with respect 
to the temperature may be generated from 
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Using the chain rule with Eq. (III B2.4), combined with Eqs. (III B2.6) and (III B2.11), gives 
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for the derivatives of the cross section with respect to the temperature. 

 
(6)   From here on, follow the prescription given in Section III.A, beginning at step 4. 
 
 

Finally, we recall from the discussion of the free-gas model (Section III.B.1) that the integral 
equation for Doppler broadening [Eq. (III B1.1) or (III B1.7)] is symmetric with respect to the 
transformation 'v  → 'v− , provided ( )'vσ − is defined as ( )'vσ− as in Eq. (III B1.6).   In a 
similar manner, the Leal-Hwang option permits the direct evaluation of the broadened cross section 
even for points near E = 0.   

 
[In earlier versions of SAMMY (prior to the 2006 release, sammy-7.0.0), studies suggested 

that results obtained for very low energies (well below thermal) were not completely accurate; 
specifically, Doppler-broadened 1/v cross sections did not retain the 1/v shape at these very low 
energies, and the step size ΔT was critically important.  This was found to be due to a mistake in the 
coding, which was corrected for the sammy-7.0.0 release.] 

 
To minimize the number of points required for use in the auxiliary grid, SAMMY users are 

encouraged to rely on the FGM (see Section III.B.1) for most calculations.  The Leal-Hwang model 
is useful for double-checking results at low energies, and in other situations that call for accurate 
calculation of Doppler broadening of smooth cross sections. 
 

To use the Leal-Hwang Doppler broadening, include in your INPut file a line which reads 
 

USE LEAL,HWANG DOPPLER BROADENING 
 
and specify the step size ΔT on card set 5 of the INPut file, Table VIA.1. 


