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I1.A.2. Derivation of Scattering Theory Equations

Many authors have given derivations of the equations for the scattering matrix in terms of
the R-matrix. Sources for the derivation shown here are unpublished lecture notes of Fréhner
[FFO2], presented at the SAMMY workshop in Paris in 2002, and Foderaro [AF71]. This
derivation is valid for only the simple case of spinless projectiles and target nuclei, assuming
only elastic scattering and absorption. For the general case, the reader is referred to Lane and
Thomas [AL58].

Schrédinger equation

The Schrodinger equation with a complex potential is

_ 2
(;q V2+V+iWJy/=Et// , (11 A2.1)

in which one can consider that V causes scattering and W causes absorption. The wave function
can be expanded in the usual fashion,

w(r,cosé) = iu'gr)a(cose) , (11 A2.2)

for which the radial portion obeys the equation

[(1+1
— k?-i—T(vnw)—% b =0 (11 A2.3)
subject to the conditions that |1//|2 is everywhere finite and that
u(r=0)=0 . (11 A2.4)

In the external region,r > a, the nuclear forces are zero (V = W = 0), so the solution has
the form

u(r) = 1,(r)-yU,o(r) . (11 A2.5)

I; represents an incoming free wave, and O, represents an outgoing free wave. Uj is the “collision
function” or “S function” that describes the effects of the nuclear interaction, giving both the
attenuation and the phase shift of the outgoing wave:

U,|°=1 forw =0 ,
U, <1 forw =0 .

and (11 A2.6)

Our goal is to determine an appropriate analytic form for U,.
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Orthogonal eigenvectors in interior region

For the interior region r < a, we define eigenfunctions w,, (r) and eigenvaluesE,

E, = , (11 A2.7)

dw I(1+1
“{kj—z—mV—@}wM:o , (11 A2.8)
r

=B . (11 A2.9)

Note that w;, (r) is real if the boundary parameter B, is chosen to be real. The eigenfunctions
are orthogonal, since

0 (11 A2.10)
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in which both equations of (11 A2.9) have been invoked. The integral in Eq. (11 A2.10) can also
be evaluated using Eq. (11 A2.8), giving
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:j[[ k; Zm—zv}wmw I: k2 2m2V} ujd
h h
0 (I A2.11)
j( kiw,w,, +k2w, Wﬂ,)dr
0
IW W, dr
Equating Eqg. (11 A2.10) to Eq. (Il A2.11) gives
jw w, dr=0 . (11 A2.12)
For A= u, assuming no degenerate states, it therefore follows that
jw W, dr=0 ifAzu . (11 A2.13)

The orthogonality of the eigenvectors is therefore established. We assume that these wave
functions are normalized such that

jw w, dr = (11 A2.14)

Mt
Matching at the surface

The internal wave function for the true potential (including the imaginary part iW ) can be
expanded in terms of the eigenfunctions as

r)=>.c,w,(r) forr<a , (11 A2.15)
A
with
Cy = [y w, dr . (11 A2.16)
0

This equation for c, is derived by multiplying Eqg. (Il A2.15) by uﬂ,(r), integrating, and
applying Eq. (11 A2.14).
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Consider now the integral
¢ (d,
J [

0

d 2w
—u,?j']dr ,

which can be expanded by use of Egs. (I1 A2.3) and (Il A2.8) to give

f{dzul dZW“Jdr
—— W, —u
) dr

o
[ (_{kz_;—T(VHW)—I(Ir—jl)}U' W, +“{kﬂz‘i_TV _w}%'}dr

r

(kf—kz)}[ulwﬂ dr + i—T_l'Wuledr .

Defining W,, as
W, = qu, W, dr/J‘uI w,, dr
0 0

permits rewriting Eq. (11 A2.18) in the form

¢ (d d ?w _ N\ ¢
I(—drzl WM—ul—dr;'jdr:(kf—szriil—TWM]ju, w,, dr .
0

Integrating the left-hand side of this equation gives

c(du,
J [

d? [
—-u WM\Jdr — %W _
r

0 " dr? dr ' d dr dr |
du B du w,, (a
) _d_rIWM UI I WM:|r=a ) |:a_I_UIBI:|r a /“a( )
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(11 A2.17)

(I A2.18)

(11 A2.19)

(11 A2.20)

(11 A2.21)

in which we have again made use of the boundary condition of Eq. (Il A2.9). Integrating the

right-hand side of Eq. (11 A2.20) by applying Eq. (Il A2.16) gives
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2m = ¢
(kf—k2+|?wﬂnu, w,, dr

(R7)

- (kf-k%ih—Tvvu

Equating Egs. (I1 A2.21) and (11 A2.22) therefore gives

du
a—-u,B | = =
| dr ], @
a—l_uB | - _
r a
L dr=a

or
n*w, (a)

(E,—E+iW,)

Cu=

Inserting this into Eq. (I1 A2.15) gives

2
n'w,

du,
- o a —u,B,
2ma(E, ~E+iW, )| dr r

u,(r):zl:wﬂ(r)

2ma(El—

which, when evaluated at r = a , becomes

" (a):z n'w, (@)

(a) ){adU.

E+iW,,

72ma(E, ~E+

Rearranging, this becomes

u,(a)= adu' uB
N dr T L4 (E,—E+iW,)
du, | 742|
=la—-u,B
Cdr r_aZ(El—EHrM/z)

in which the decay amplitude y,, is defined as

{ du,
——a—~-u
iw, )| dr

dr

2

(kf—k2+iil—TVVMjcM ,

2mc,,

hZ

=a

—u,B,} ,
IBI:|

Z [ n*w?, (a)/2ma]

_[n*w; (a)
Y= ma
and the absorption width T",, as
[, =2W,
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(11 A2.22)

(11 A2.23)

(11 A2.24)

(11 A2.25)

(11 A2.26)

(Il A2.27)

(11 A2.28)

(11 A2.29)
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If we then define the R-function as
2

Val
R, = , 11 A2.30
! ;(El—EﬂrM/z) ( )

then Eq. (11 A2.27) can be written in the form
du,
u, = aF—ulBI R, . (I A2.31)

in which everything is evaluated at the matching radius a.

Scattering matrix in terms of R-matrix (neutrons only)

Equation (Il A2.31) can be converted into the usual R-matrix formulae by inserting
Eq. (Il A2.5),

u=1-Y0 , (11 A2.32)
yielding
I ~U,0, {a[%_u,%}-a(l, —u,o,)}RI , (Il A2.33)
in which everything is again evaluated at the matching radius a. Solving Eq. (Il A2.33) for U
gives
UI[—OI+R,[a%-5lo,ﬂ=|I—Rl(a%—slllj , (11 A2.34)
or
,-Rr[adh g 1-r[ 24l _g
o T dr ! | | dr
U, = = EI Ido : (11 A2.35)
{—O|+R| (ado'—aqﬂ ' 1-R [a '—Blj
O d
We define L, as
L = O?a)% = S, +iP . (1 A2.36)
| r=a
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For spinless particles, I, =0, so that

a dl " .
— =L =S -iP
L(a)dr|_, " ol
and _
Lzo_l*:|o|ei_l(p 4
O G |O|e"”

Therefore Eq. (11 A2.34) becomes

y _e_zwl—R,(L*,—Bl)
' 1-R
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(11 A2.37)

(11 A2.38)

(11 A2.39)

which is the usual form for the scattering matrix in terms of the R-matrix in this simple case.
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