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III.C.3.a.  Components of the RPI / GELINA / nTOF resolution function 
 
 
1.  Electron burst 
 

The electron burst from the RPI linac may be described by a Gaussian function in time, of the 
form: 
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where 2 ln 2 / w p=  is the full width at half max of the burst.  Normalization is unity for this 
function. 
 
 
2.  Target plus detector 
 

The RPI transmission resolution function, which represents the combined components for the 
“bounce target” and transmission detector, has been found by RPI researchers [BM96] to be best 
described by the sum of a chi-squared function with six degrees of freedom plus two exponential 
terms.  A similar function (with different values for the parameters) describes the bounce target plus 
capture detector.   

 
The original RPI function had constant values for A3 and A5.  The GELINA and nTOF 

resolution functions proposed by Gunsing [FG05] use energy dependent values of the A3 and A5 
parameters.   
 

Specifically, the RPI resolution function has the form 
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 (III C3 a.2) 

 
in which the function ( )X t  is zero if the quantity within the square brackets (the sum of the 
exponential terms) is negative, and unity otherwise.  Likewise the χ2 function is assumed to have 
zero value when the exponent is positive (i.e., when 0t τ+ < ).  The value of A0 is chosen to give an 
overall normalization of unity for this function.  Parameters Λ, τ, A1, A3, and A5 are functions of 
energy, the specific forms being, respectively, 
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and 
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where i represents 1, 3, or 5, and αi is 1 for i = 1 but may be either unity or E  for i = 3 or 5.  All 
other quantities in Eq.(III C3 a.2) are independent of energy.   
 

As many as five exponential terms may be included in the sum over i; it is implicitly 
assumed that the coefficients of the exponentials ( 2 1iB − ) and the coefficients of time within the 
exponentials ( 2iB ) are positive numbers. These terms were added in an early attempt to provide a 
useful form for the GELINA and nTOF resolution function; they have been retained in order to 
permit additional flexibility for the analyst. 
 
 
3.  Time-of-flight channel width 
 

The time-of-flight channel width may be modeled as a rectangular distribution of width c.  
The time distribution due to the finite channel width is therefore assumed to be 
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The channel width c may be energy dependent.  For constant values of c within an energy range, the 
input is described in Table VI.B, card set 14, line 20.  This is appropriate, for example, for data 
having “crunch boundaries.” (In Europe, the French word “accordeon” is often used to denote the 
system of crunch boundaries.) 
 
 When the channel width varies continuously with energy, for example, for data from the 
nTOF facility, then the channel width (or bin width) is expressed as “n bins per decade.”  That is, in 
an energy decade from 10k to 10(k+1)  for integer k, there are n bins equally spaced on a logarithmic 
scale. The energy limits for the ith bin in this decade are given by 
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where i = 1 to n, and ε  is a positive number between 0 and 1.  Converting to time limits, using 

/t Eτ= where τ  is a constant whose value is unimportant for this discussion, we find 
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so that the channel width c may be found from 
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To calculate this quantity in SAMMY, we consider the value at 0ε = , 
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and at 1ε = , 
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In either case, for large n these expressions may be expanded to first order in 1/n to give 
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and 
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Because these two values agree to first order in 1/n, and n is large (~5000), it is therefore sufficient 
to use the approximation  

 ( ) ( )ln 10 2c t n≅  (III C3 a.14) 
 
rather than to spend the not-insignificant amount of computer time to generate exact values of k and i 
(and therefore of c) for each value of  E. 
 
 Input for the continuously varying definition of channel width c is given in Table VI.B, card 
set 14, line 19. 


